Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 3

1. Consider the two vectors

$$\vec{u} = \begin{pmatrix} -15\\20 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} 7\\24 \end{pmatrix}.$$

- a. Compute the lengths of \vec{u} and \vec{v} .
- b. Compute the cosine of the angle between \vec{u} and \vec{v} .
- c. Construct an orthogonal 2×2 matrix A such that $A\vec{u} = \vec{v}$.
- d. Is it possible to choose the matrix A in part c in such a way that det(A) = 1? If it is possible, compute such an orthogonal matrix A and explain its geometrical meaning. If it is not possible, argue why not.

Solution: The lengths of \vec{u} and \vec{v} are given by $\|\vec{u}\| = \sqrt{(-15)^2 + 20^2} = 25$ and $\|\vec{v}\| = \sqrt{7^2 + 24^2} = 25$. Hence, the cosine of the angle α between them is given by $(\vec{u} \cdot \vec{v})/(\|\vec{u}\| \|\vec{v}\|) = 375/25^2 = \frac{3}{5}$. Since $\|\vec{u}\| = \|\vec{v}\|$, there exists a rotation matrix A such that $A\vec{u} = \vec{v}$. Using that $\sin \alpha = -\frac{4}{5}$ (because \vec{u} is in the second quadrant and \vec{v} in the first quadrant, we need to rotate in the clockwise direction), we get

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix},$$

which satisfies det(A) = 1.

2. Find an orthonormal basis for

$$V = \operatorname{span}\left[\begin{pmatrix} -1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix}\right]$$

and use this information to write down the orthogonal projection of \mathbb{R}^4 onto V. Solution: Write $V = \operatorname{span}[\vec{v}_1, \vec{v}_2, \vec{v}_3]$. Since $\|\vec{v}_1\| = \sqrt{5}$, we get for the first orthonormal basis vector

$$\vec{u}_1 = \vec{v}_1 / \sqrt{5} = \begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \\ 0 \end{pmatrix}.$$

Next, compute

$$ec{m{w}}_2 = ec{m{v}}_2 - \underbrace{(ec{m{v}}_2, ec{m{u}}_1)}_{=8/\sqrt{5}} ec{m{u}}_1 = egin{pmatrix} 8/5 \\ 4/5 \\ 0 \\ 0 \end{pmatrix}.$$

Since $\|\vec{w}_2\| = \frac{4}{5}\sqrt{5}$, we get for the second orthonormal basis vector

$$ec{m{u}}_2 = ec{m{w}}_2 / rac{4}{5} \sqrt{5} = egin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \\ 0 \\ 0 \end{pmatrix}.$$

Next, compute

$$\vec{w}_3 = \vec{v}_3 - \underbrace{(\vec{v}_3, \vec{u}_1)}_{=-1/\sqrt{5}} \vec{u}_1 - \underbrace{(\vec{v}_3, \vec{u}_2)}_{=2/\sqrt{5}} \vec{u}_2 = \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} -1\\2\\0\\0 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\2 \end{pmatrix},$$

so that $\|\vec{w}_3\| = 2$. Hence the third orthonormal basis vector is given by

$$ec{oldsymbol{u}}_3 = rac{1}{2}ec{oldsymbol{w}}_3 = egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}.$$

The orthogonal projection P of \mathbb{R}^4 onto V is given by

$$P = \vec{u}_1 \vec{u}_1^T + \vec{u}_2 \vec{u}_2^T + \vec{u}_3 \vec{u}_3^T$$

$$= \begin{pmatrix} \frac{1}{5} & -\frac{2}{5} & 0 & 0\\ -\frac{2}{5} & \frac{4}{5} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} \frac{4}{5} & \frac{2}{5} & 0 & 0\\ \frac{2}{5} & \frac{1}{5} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Second Solution: Since the matrix having \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 as its columns has rank 3 and has a third row of zeros, it is clear that $V = \{\vec{x} \in \mathbb{R}^4 : x_3 = 0\}$. This subspace has the orthonormal basis

$$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$

Thus the orthogonal projection P of \mathbb{R}^4 onto V is given by

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3. Find a least-squares solution to the system

$$\begin{pmatrix} 3 & 4 \\ -4 & 3 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}.$$

Solution: Writing the system of equations as $A\vec{x} = \vec{b}$ and a least squares solution as \vec{x}^* , we get

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b} = \begin{pmatrix} 25 & 0 \\ 0 & 50 \end{pmatrix}^{-1} \begin{pmatrix} 3 & -4 & 0 \\ 4 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{25} & 0 \\ 0 & \frac{1}{50} \end{pmatrix} \begin{pmatrix} 3 \\ -6 \end{pmatrix} = \begin{pmatrix} 3/25 \\ -3/25 \end{pmatrix}.$$

This is the only least squares solution, because $\text{Ker } A = \{0\}$.

4. Find the determinant of the 3×3 matrix

$$A = \begin{pmatrix} 1 & 2 & -5 \\ -1 & 1 & 8 \\ 3 & 3 & 7 \end{pmatrix}.$$

Describe the parallelepiped whose volume is given by this determinant. Solution: By Sarrus's rule,

$$det(A) = (1.1.7) + (2.8.3) + ((-1).3.(-5)) - (3.1.(-5)) - ((-1).2.7) - (1.8.3) = 7 + 48 + 15 + 15 + 14 - 24 = 75.$$

The vectors pointing from the origin to the points with Cartesian coordinates (1, -1, 3), (2, 1, 3), and (-5, 8, 7) span the parallelepiped whose volume is given by this determinant.

5. Find the determinants of the matrices

$$A = \begin{pmatrix} 0 & 0 & 0 & 5 \\ 4 & 3 & 9 & -7 \\ 0 & 3 & 2 & -2 \\ 0 & 0 & 2 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 9 & -8 & 0 & 0 & 5 \end{pmatrix}$$

Solution: To compute det(A), we interchange, in A the first two rows, then the second and third rows, and finally the last two rows, resulting in an upper triangular matrix. Therefore,

$$\det(A) = - \begin{vmatrix} 4 & 3 & 9 & -7 \\ 0 & 3 & 2 & -2 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 5 \end{vmatrix} = -(4.3.2.5) = -120.$$

To compute det(B), we subtract 9/2 times the first row from the last row and add 25/4 times the second row to the last row. We then expand the resulting determinant with respect to the first column twice, and finally compute a 3×3 determinant by Sarrus's rule. In other words,

$$det(B) = det \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & -\frac{25}{2} & 0 & 0 & 5 \end{pmatrix} = det \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & \frac{25}{4} & 0 & 5 \end{pmatrix}$$
$$= 2 \times det \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & \frac{25}{4} & 0 & 5 \end{pmatrix} = 2 \times 2 \times det \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ \frac{25}{4} & 0 & 5 \end{pmatrix}$$
$$= 2 \times 2 \times \left(20 + \frac{25}{4} + 0 - 0 - 0 - 0 \right) = 105.$$

- 6. Let A be an 8×8 matrix with det(A) = -2.
 - a. Compute $\det(-\sqrt{2}A)$.
 - b. Compute $\det(A^T A^3)$.
 - c. Compute $det(SA^2S^{-1})$, where S is an 8×8 matrix satisfying det(S) = 7.
 - d. Compute the determinant of the matrix obtained from A by first interchanging the first two columns, then interchanging the last two columns, and then dividing the second row by 2.

Solution: $\det(-\sqrt{2}A) = (-\sqrt{2})^8 \det(A) = 16.(-2) = -32.$ Next, $\det(A^T A^3) = \det(A^T) \det(A)^3 = \det(A)^4 = (-2)^4 = 16.$ Next,

$$\det(SA^2S^{-1}) = \det(A^2) = \det(A)^2 = (-2)^2 = 4.$$

Finally, since the number of row/column interchanges is two (hence even), the only change in the determinant is caused by dividing a row by 2. Thus the final matrix in Part d) has determinant (-2)/2 = -1.