Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 3

Name: Grade: Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Consider the two vectors

$$
\overrightarrow{\boldsymbol{u}}=\binom{-15}{20}, \quad \overrightarrow{\boldsymbol{v}}=\binom{7}{24} .
$$

a. Compute the lengths of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
b. Compute the cosine of the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
c. Construct an orthogonal 2×2 matrix A such that $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}}$.
d. Is it possible to choose the matrix A in part c in such a way that $\operatorname{det}(A)=1$? If it is possible, compute such an orthogonal matrix A and explain its geometrical meaning. If it is not possible, argue why not.

Solution: The lengths of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$ are given by $\|\overrightarrow{\boldsymbol{u}}\|=\sqrt{(-15)^{2}+20^{2}}=$ 25 and $\|\overrightarrow{\boldsymbol{v}}\|=\sqrt{7^{2}+24^{2}}=25$. Hence, the cosine of the angle α between them is given by $(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{v}}) /(\|\overrightarrow{\boldsymbol{u}}\|\|\overrightarrow{\boldsymbol{v}}\|)=375 / 25^{2}=\frac{3}{5}$. Since $\|\overrightarrow{\boldsymbol{u}}\|=\|\overrightarrow{\boldsymbol{v}}\|$, there exists a rotation matrix A such that $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}}$. Using that $\sin \alpha=-\frac{4}{5}$ (because $\overrightarrow{\boldsymbol{u}}$ is in the second quadrant and $\overrightarrow{\boldsymbol{v}}$ in the first quadrant, we need to rotate in the clockwise direction), we get

$$
A=\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)=\left(\begin{array}{rr}
\frac{3}{5} & \frac{4}{5} \\
-\frac{4}{5} & \frac{3}{5}
\end{array}\right),
$$

which satisfies $\operatorname{det}(A)=1$.
2. Find an orthonormal basis for

$$
V=\operatorname{span}\left[\left(\begin{array}{r}
-1 \\
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right)\right]
$$

and use this information to write down the orthogonal projection of \mathbb{R}^{4} onto V. Solution: Write $V=\operatorname{span}\left[\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}\right]$. Since $\left\|\overrightarrow{\boldsymbol{v}}_{1}\right\|=\sqrt{5}$, we get for the first orthonormal basis vector

$$
\overrightarrow{\boldsymbol{u}}_{1}=\overrightarrow{\boldsymbol{v}}_{1} / \sqrt{5}=\left(\begin{array}{c}
-1 / \sqrt{5} \\
2 / \sqrt{5} \\
0 \\
0
\end{array}\right)
$$

Next, compute

$$
\overrightarrow{\boldsymbol{w}}_{2}=\overrightarrow{\boldsymbol{v}}_{2}-\underbrace{\left(\overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{u}}_{1}\right)}_{=8 / \sqrt{5}} \overrightarrow{\boldsymbol{u}}_{1}=\left(\begin{array}{c}
8 / 5 \\
4 / 5 \\
0 \\
0
\end{array}\right) .
$$

Since $\left\|\overrightarrow{\boldsymbol{w}}_{2}\right\|=\frac{4}{5} \sqrt{5}$, we get for the second orthonormal basis vector

$$
\overrightarrow{\boldsymbol{u}}_{2}=\overrightarrow{\boldsymbol{w}}_{2} / \frac{4}{5} \sqrt{5}=\left(\begin{array}{c}
2 / \sqrt{5} \\
1 / \sqrt{5} \\
0 \\
0
\end{array}\right)
$$

Next, compute
$\overrightarrow{\boldsymbol{w}}_{3}=\overrightarrow{\boldsymbol{v}}_{3}-\underbrace{\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{1}\right)}_{=-1 / \sqrt{5}} \overrightarrow{\boldsymbol{u}}_{1}-\underbrace{\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{2}\right)}_{=2 / \sqrt{5}} \overrightarrow{\boldsymbol{u}}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right)+\frac{1}{5}\left(\begin{array}{r}-1 \\ 2 \\ 0 \\ 0\end{array}\right)-\frac{2}{5}\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right)$,
so that $\left\|\overrightarrow{\boldsymbol{w}}_{3}\right\|=2$. Hence the third orthonormal basis vector is given by

$$
\overrightarrow{\boldsymbol{u}}_{3}=\frac{1}{2} \overrightarrow{\boldsymbol{w}}_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

The orthogonal projection P of \mathbb{R}^{4} onto V is given by

$$
\begin{aligned}
P & =\overrightarrow{\boldsymbol{u}}_{1} \overrightarrow{\boldsymbol{u}}_{1}^{T}+\overrightarrow{\boldsymbol{u}}_{2} \overrightarrow{\boldsymbol{u}}_{2}^{T}+\overrightarrow{\boldsymbol{u}}_{3} \overrightarrow{\boldsymbol{u}}_{3}^{T} \\
& =\left(\begin{array}{rrrrr}
\begin{array}{r}
\frac{1}{5}
\end{array}-\frac{2}{5} & 0 & 0 \\
-\frac{2}{5} & \frac{4}{5} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
\frac{4}{5} & \frac{2}{5} & 0 & 0 \\
\frac{2}{5} & \frac{1}{5} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Second Solution: Since the matrix having $\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}$, and $\overrightarrow{\boldsymbol{v}}_{3}$ as its columns has rank 3 and has a third row of zeros, it is clear that $V=\left\{\overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{4}\right.$: $\left.x_{3}=0\right\}$. This subspace has the orthonormal basis

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

Thus the orthogonal projection P of \mathbb{R}^{4} onto V is given by

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3. Find a least-squares solution to the system

$$
\left(\begin{array}{rr}
3 & 4 \\
-4 & 3 \\
0 & 5
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right) .
$$

Solution: Writing the system of equations as $A \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{b}}$ and a least squares solution as $\overrightarrow{\boldsymbol{x}}^{*}$, we get

$$
\begin{aligned}
\overrightarrow{\boldsymbol{x}}^{*} & =\left(A^{T} A\right)^{-1} A^{T} \overrightarrow{\boldsymbol{b}}=\left(\begin{array}{rr}
25 & 0 \\
0 & 50
\end{array}\right)^{-1}\left(\begin{array}{rrr}
3 & -4 & 0 \\
4 & 3 & 5
\end{array}\right)\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{25} & 0 \\
0 & \frac{1}{50}
\end{array}\right)\binom{3}{-6}=\binom{3 / 25}{-3 / 25} .
\end{aligned}
$$

This is the only least squares solution, because $\operatorname{Ker} A=\{0\}$.
4. Find the determinant of the 3×3 matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & -5 \\
-1 & 1 & 8 \\
3 & 3 & 7
\end{array}\right)
$$

Describe the parallelepiped whose volume is given by this determinant. Solution: By Sarrus's rule,

$$
\begin{aligned}
\operatorname{det}(A) & =(1 \cdot 1 \cdot 7)+(2 \cdot 8 \cdot 3)+((-1) \cdot 3 \cdot(-5))-(3 \cdot 1 \cdot(-5))-((-1) \cdot 2 \cdot 7) \\
& -(1 \cdot 8 \cdot 3)=7+48+15+15+14-24=75
\end{aligned}
$$

The vectors pointing from the origin to the points with Cartesian coordinates $(1,-1,3),(2,1,3)$, and $(-5,8,7)$ span the parallelepiped whose volume is given by this determinant.
5. Find the determinants of the matrices

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & 5 \\
4 & 3 & 9 & -7 \\
0 & 3 & 2 & -2 \\
0 & 0 & 2 & 7
\end{array}\right), \quad B=\left(\begin{array}{rrrrr}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 \\
9 & -8 & 0 & 0 & 5
\end{array}\right)
$$

Solution: To compute $\operatorname{det}(A)$, we interchange, in A the first two rows, then the second and third rows, and finally the last two rows, resulting in an upper triangular matrix. Therefore,

$$
\operatorname{det}(A)=-\left|\begin{array}{lllr}
4 & 3 & 9 & -7 \\
0 & 3 & 2 & -2 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & 5
\end{array}\right|=-(4.3 .2 .5)=-120
$$

To compute $\operatorname{det}(B)$, we subtract $9 / 2$ times the first row from the last row and add $25 / 4$ times the second row to the last row. We then expand the resulting determinant with respect to the first column twice, and
finally compute a 3×3 determinant by Sarrus's rule. In other words,

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & -\frac{25}{2} & 0 & 0 & 5
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & \frac{25}{4} & 0 & 5
\end{array}\right) \\
& =2 \times \operatorname{det}\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & \frac{25}{4} & 0 & 5
\end{array}\right)=2 \times 2 \times \operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
\frac{25}{4} & 0 & 5
\end{array}\right) \\
& =2 \times 2 \times\left(20+\frac{25}{4}+0-0-0-0\right)=105 .
\end{aligned}
$$

6. Let A be an 8×8 matrix with $\operatorname{det}(A)=-2$.
a. Compute $\operatorname{det}(-\sqrt{2} A)$.
b. Compute $\operatorname{det}\left(A^{T} A^{3}\right)$.
c. Compute $\operatorname{det}\left(S A^{2} S^{-1}\right)$, where S is an 8×8 matrix satisfying $\operatorname{det}(S)=7$.
d. Compute the determinant of the matrix obtained from A by first interchanging the first two columns, then interchanging the last two columns, and then dividing the second row by 2 .
Solution: $\operatorname{det}(-\sqrt{2} A)=(-\sqrt{2})^{8} \operatorname{det}(A)=16 \cdot(-2)=-32$. Next, $\operatorname{det}\left(A^{T} A^{3}\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)^{3}=\operatorname{det}(A)^{4}=(-2)^{4}=16$. Next,

$$
\operatorname{det}\left(S A^{2} S^{-1}\right)=\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}=(-2)^{2}=4
$$

Finally, since the number of row/column interchanges is two (hence even), the only change in the determinant is caused by dividing a row by 2. Thus the final matrix in Part d) has determinant $(-2) / 2=-1$.

