
Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 3

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Grade: . . . . . . . . . .Rank: . . . . . . . . . . .
To receive full credit, show all of your work. Neither calculators
nor computers are allowed.

1. Consider the two vectors

~u =

(
−15

20

)
, ~v =

(
7

24

)
.

a. Compute the lengths of ~u and ~v.

b. Compute the cosine of the angle between ~u and ~v.

c. Construct an orthogonal 2× 2 matrix A such that A~u = ~v.

d. Is it possible to choose the matrix A in part c in such a way that
det(A) = 1? If it is possible, compute such an orthogonal matrix
A and explain its geometrical meaning. If it is not possible, argue
why not.

Solution: The lengths of ~u and ~v are given by ‖~u‖ =
√

(−15)2 + 202 =

25 and ‖~v‖ =
√

72 + 242 = 25. Hence, the cosine of the angle α
between them is given by (~u · ~v)/(‖~u‖ ‖~v‖) = 375/252 = 3

5
. Since

‖~u‖ = ‖~v‖, there exists a rotation matrix A such that A~u = ~v. Using
that sinα = −4

5
(because ~u is in the second quadrant and ~v in the first

quadrant, we need to rotate in the clockwise direction), we get

A =

(
cosα − sinα
sinα cosα

)
=

(
3
5

4
5

−4
5

3
5

)
,

which satisfies det(A) = 1.

2. Find an orthonormal basis for

V = span



−1

2
0
0

 ,


0
4
0
0

 ,


1
0
0
2






and use this information to write down the orthogonal projection of R4

onto V . Solution: Write V = span[~v1, ~v2, ~v3]. Since ‖~v1‖ =
√

5, we
get for the first orthonormal basis vector

~u1 = ~v1/
√

5 =


−1/
√

5

2/
√

5
0
0

 .

Next, compute

~w2 = ~v2 − (~v2, ~u1)︸ ︷︷ ︸
=8/
√

5

~u1 =


8/5
4/5
0
0

 .

Since ‖~w2‖ = 4
5

√
5, we get for the second orthonormal basis vector

~u2 = ~w2/
4

5

√
5 =


2/
√

5

1/
√

5
0
0

 .

Next, compute

~w3 = ~v3−(~v3, ~u1)︸ ︷︷ ︸
=−1/

√
5

~u1−(~v3, ~u2)︸ ︷︷ ︸
=2/
√

5

~u2 =


1
0
0
2

+
1

5


−1

2
0
0

−2

5


2
1
0
0

=


0
0
0
2

 ,

so that ‖~w3‖ = 2. Hence the third orthonormal basis vector is given
by

~u3 =
1

2
~w3 =


0
0
0
1

 .



The orthogonal projection P of R4 onto V is given by

P = ~u1~u
T
1 + ~u2~u

T
2 + ~u3~u

T
3

=


1
5
−2

5
0 0

−2
5

4
5

0 0
0 0 0 0
0 0 0 0

+


4
5

2
5

0 0
2
5

1
5

0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .

Second Solution: Since the matrix having ~v1, ~v2, and ~v3 as its columns
has rank 3 and has a third row of zeros, it is clear that V = {~x ∈ R4 :
x3 = 0}. This subspace has the orthonormal basis


1
0
0
0

 ,


0
1
0
0

 ,


0
0
0
1


 .

Thus the orthogonal projection P of R4 onto V is given by

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 .

3. Find a least-squares solution to the system 3 4
−4 3

0 5

(x1

x2

)
=

 1
0
−2

 .

Solution: Writing the system of equations asA~x = ~b and a least squares
solution as ~x∗, we get

~x∗ = (ATA)−1AT~b =

(
25 0
0 50

)−1(
3 −4 0
4 3 5

) 1
0
−2


=

(
1
25

0
0 1

50

)(
3
−6

)
=

(
3/25
−3/25

)
.



This is the only least squares solution, because KerA = {0}.

4. Find the determinant of the 3× 3 matrix

A =

 1 2 −5
−1 1 8

3 3 7

 .

Describe the parallelepiped whose volume is given by this determinant.
Solution: By Sarrus’s rule,

det(A) = (1.1.7) + (2.8.3) + ((−1).3.(−5))− (3.1.(−5))− ((−1).2.7)

− (1.8.3) = 7 + 48 + 15 + 15 + 14− 24 = 75.

The vectors pointing from the origin to the points with Cartesian coor-
dinates (1,−1, 3), (2, 1, 3), and (−5, 8, 7) span the parallelepiped whose
volume is given by this determinant.

5. Find the determinants of the matrices

A =


0 0 0 5
4 3 9 −7
0 3 2 −2
0 0 2 7

 , B =


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
9 −8 0 0 5

 .

Solution: To compute det(A), we interchange, in A the first two rows,
then the second and third rows, and finally the last two rows, resulting
in an upper triangular matrix. Therefore,

det(A) = −

∣∣∣∣∣∣∣∣
4 3 9 −7
0 3 2 −2
0 0 2 7
0 0 0 5

∣∣∣∣∣∣∣∣ = −(4.3.2.5) = −120.

To compute det(B), we subtract 9/2 times the first row from the last
row and add 25/4 times the second row to the last row. We then expand
the resulting determinant with respect to the first column twice, and



finally compute a 3× 3 determinant by Sarrus’s rule. In other words,

det(B) = det


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 −25

2
0 0 5

 = det


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 25

4
0 5



= 2× det


2 1 0 0
0 2 1 0
0 0 2 1
0 25

4
0 5

 = 2× 2× det

 2 1 0
0 2 1
25
4

0 5


= 2× 2×

(
20 +

25

4
+ 0− 0− 0− 0

)
= 105.

6. Let A be an 8× 8 matrix with det(A) = −2.

a. Compute det(−
√

2A).

b. Compute det(ATA3).

c. Compute det(SA2S−1), where S is an 8 × 8 matrix satisfying
det(S) = 7.

d. Compute the determinant of the matrix obtained from A by first
interchanging the first two columns, then interchanging the last
two columns, and then dividing the second row by 2.

Solution: det(−
√

2A) = (−
√

2)8 det(A) = 16.(−2) = −32. Next,
det(ATA3) = det(AT ) det(A)3 = det(A)4 = (−2)4 = 16. Next,

det(SA2S−1) = det(A2) = det(A)2 = (−2)2 = 4.

Finally, since the number of row/column interchanges is two (hence
even), the only change in the determinant is caused by dividing a row
by 2. Thus the final matrix in Part d) has determinant (−2)/2 = −1.


