Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 4

Name:
Grade:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
6 & 1 \\
3 & 8
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible. Solution: The eigenvalues of A are the zeros of $\operatorname{det}(\lambda I-A)$. In fact,

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{cc}
\lambda-6 & -1 \\
-3 & \lambda-8
\end{array}\right|=(\lambda-6)(\lambda-8)-3 \\
& =\lambda^{2}-14 \lambda+45=(\lambda-5)(\lambda-9) .
\end{aligned}
$$

Thus the eigenvalues, 5 and 9 , are distinct and hence A is diagonalizable. The eigenvectors are to be computed as follows:

$$
\begin{aligned}
& \lambda=5:\left(\begin{array}{ll}
-1 & -1 \\
-3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}(5 I-A)=\operatorname{span}\left[\binom{1}{-1}\right], \\
& \lambda=9:\left(\begin{array}{rr}
3 & -1 \\
-3 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}(9 I-A)=\operatorname{span}\left[\binom{1}{3}\right] .
\end{aligned}
$$

Moreover,

$$
A \underbrace{\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right)}_{S}=\underbrace{\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right)}_{S}\left(\begin{array}{ll}
5 & 0 \\
0 & 9
\end{array}\right),
$$

where S is the diagonalizing transformation.
2. Find a 2×2 matrix A such that $\binom{1}{2}$ and $\binom{2}{-1}$ are eigenvectors of A, with eigenvalues -2 and 1 , respectively. Solution: The matrix A must satisfy

$$
A\binom{1}{2}=-2\binom{1}{2}=\binom{-2}{-4}, \quad A\binom{2}{-1}=\binom{2}{-1} .
$$

In other words, by combining columns in one matrix we get

$$
A\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right)=\left(\begin{array}{rr}
-2 & 2 \\
-4 & -1
\end{array}\right) .
$$

Hence,

$$
\begin{aligned}
A & =\left(\begin{array}{lr}
-2 & 2 \\
-4 & -1
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right)^{-1} \\
& =\frac{1}{-5}\left(\begin{array}{lr}
-2 & 2 \\
-4 & -1
\end{array}\right)\left(\begin{array}{rr}
-1 & -2 \\
-2 & 1
\end{array}\right)=\frac{1}{5}\left(\begin{array}{rr}
2 & -6 \\
-6 & -7
\end{array}\right) .
\end{aligned}
$$

3. Consider the discrete dynamical system

$$
x(n+1)=A x(n), \quad n=0,1,2,3, \ldots,
$$

where

$$
A=\left(\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right), \quad x(0)=\binom{2}{0}
$$

a. Write $x(0)$ as a linear combination of eigenvectors of A.
b. Compute $x(n)$ for $n=1,2,3, \ldots$.

Solution: The matrix A has two proportional and hence is not invertible. Thus one of its eigenvalues is $\lambda=0$. Since $\operatorname{Tr} A=3-1=2$, the other eigenvalue is $\lambda=2$. Let us now find the eigenvectors:

$$
\begin{aligned}
& \lambda=0:\left(\begin{array}{ll}
-3 & 3 \\
-1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker} A=\operatorname{span}\left[\binom{1}{1}\right], \\
& \lambda=2:\left(\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}(2 I-A)=\left[\binom{3}{1}\right] .
\end{aligned}
$$

It is now easily seen that

$$
x(0)=\binom{2}{0}=\binom{3}{1}-\binom{1}{1}
$$

Hence, for $n=1,2,3, \ldots$ we obtain

$$
x(n)=A^{n} x(0)=A^{n}\binom{3}{1}-A^{n}\binom{1}{1}=2^{n}\binom{3}{1}-0^{n}\binom{1}{1}=2^{n}\binom{3}{1} .
$$

4. Find all eigenvalues (real and complex) of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & 3
\end{array}\right)
$$

Explain why or why not the matrix A is diagonalizable. Solution: The eigenvalues of A are the zeros of the cubic polynomial $\operatorname{det}(\lambda I-A)$. In fact,

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
0 & 2 & \lambda-3
\end{array}\right|=\lambda\left|\begin{array}{cc}
\lambda & -1 \\
2 & \lambda-3
\end{array}\right| \\
& =\lambda\{\lambda(\lambda-3)+2\}=\lambda(\lambda-1)(\lambda-2) .
\end{aligned}
$$

Thus the eigenvalues, 0,1 , and 2 , are distinct and A is diagonalizable.
5. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{llll}
1 & 5 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible. Solution: The matrix A has the following block structure:

$$
A=\left(\begin{array}{ccc}
A^{\text {up }} & 0_{2 \times 1} & 0_{2 \times 1} \\
0_{1 \times 2} & 3 & 0 \\
0_{1 \times 2} & 0 & 4
\end{array}\right)
$$

where

$$
A^{\mathrm{up}}=\left(\begin{array}{ll}
1 & 5 \\
0 & 2
\end{array}\right)
$$

is an upper triangular matrix. Thus the eigenvalues of $A^{\text {up }}$ are 1 and 2 and those of A are $1,2,3$, and 4 . Thus A has distinct eigenvalues and hence is diagonalizable. Let us now diagonalize $A^{\text {up }}$. Indeed,

$$
\lambda=1:\left(\begin{array}{ll}
0 & -5 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}\left(I-A^{\mathrm{up}}\right)=\operatorname{span}\left[\binom{1}{0}\right],
$$

$$
\lambda=2:\left(\begin{array}{cc}
1 & -5 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Rightarrow \operatorname{Ker}\left(2 I-A^{\mathrm{up}}\right)=\operatorname{span}\left[\binom{5}{1}\right] .
$$

Now the eigenbasis of A corresponding to the respective eigenvalues 1 , 2,3 , and 4 is given by

$$
\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
5 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right]
$$

while by lining up these column vectors into one 4×4 matrix one gets the diagonalizing transformation S. Consequently,

$$
A \underbrace{\left(\begin{array}{llll}
1 & 5 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{llll}
1 & 5 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{=S} \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)}_{=\operatorname{diag}(1,2,3,4)}
$$

6. Consider the matrix

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

a. Compute the eigenvalues (real and complex) of the matrix A.
b. Compute the algebraic multiplicities of these eigenvalues.
c. Explain why your result is in full agreement with the values of $\operatorname{Tr}(A)$ and $\operatorname{det}(A)$.

Solution: The eigenvalues of A are the zeros of the quadratic polynomial $\operatorname{det}(\lambda I-A)$. In fact,

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{cccc}
\lambda & 0 & 0 & 1 \\
-1 & \lambda & 0 & 0 \\
0 & -1 & \lambda & 2 \\
0 & 0 & -1 & \lambda
\end{array}\right|=\lambda\left|\begin{array}{ccc}
\lambda & 0 & 0 \\
-1 & \lambda & 2 \\
0 & -1 & \lambda
\end{array}\right|-\left|\begin{array}{ccc}
-1 & \lambda & 0 \\
0 & -1 & \lambda \\
0 & 0 & -1
\end{array}\right| \\
& =\lambda^{2}\left(\lambda^{2}+2\right)+1=\left(\lambda^{2}+1\right)^{2} .
\end{aligned}
$$

Thus $\lambda= \pm i$ are both eigenvalues of algebraic multiplicity two. ${ }^{1}$ Thus the sum of the eigenvalues is $2[i+(-i)]=0$ (where the multiplicities are to be taken into account), which coincides with the sum of the diagonal elements, $\operatorname{Tr}(A)$, of A. The product of the eigenvalues is $[i .(-i)]^{2}=1$, which coincides with the determinant of A.

[^0]
[^0]: ${ }^{1}$ It can be shown that either eigenvalue has geometric multiplicity one, thus A is not diagonalizable.

