
Cornelis VAN DER MEE, Spring 2008, Math 3330, Final Exam

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Grade: . . . . . . . . . .Rank: . . . . . . . . . . .
To receive full credit, show all of your work. Neither calculators
nor computers are allowed.
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1. Bring the following matrix to reduced row echelon form:

A =


0 0 0 −1 2 3
1 −3 2 0 1 7
0 0 1 1 2 3
0 0 1 2 0 6

 ,

and determine its rank and nullity.

2. Find all solutions of the linear system A~x = 0, where

A =

(
3 6 7 −3
0 0 2 −8

)
.

3. Consider the following 4× 4 matrix:

A =


0 1 2 −8
1 0 0 −5
0 0 2 −8
0 3 0 0

 .

a. Find a basis of the image of A and show that it really is a basis.

b. Find a basis of the kernel of A and show that it really is a basis.



4. Argue why or why not the set of polynomials

35x4 − 30x2 + 3, 5x3 − 3x, 3x2 − 1, x, 1,

is a basis of the vector space of polynomials of degree ≤ 4.

6. Apply the Gram-Schmidt process to the given basis vectors of

V = span




5
0
0
0

 ,


0
4
3
0

 ,


0
4
0
1




to obtain an orthonormal basis of V .

7. Find a least-squares solution to the system
1 0
1 0
0 1
1 1

(x1

x2

)
=


1
0

−1
2

 .

8. Find the factors Q and R in the QR factorization of the matrix

M =

12 0
3 4
4 −3


by using the Gram-Schmidt process.

9. Find the determinant of the 3× 3 matrix

A =

1 2 3
4 5 6
7 8 9

 .

Explain why or why not A−1 exists.

10. Compute the eigenvalues and corresponding eigenvectors of the matrix

A =

(
6 −3

−2 7

)
.

Use this information to diagonalize the matrix A if possible. Otherwise
indicate why diagonalization is not possible.



11. Find all eigenvalues (real and complex) of the matrix

A =


0 1 0 0

−1 0 0 0
3 0 0 2
0 4 −2 0

 .

Why or why not is it possible to diagonalize the matrix A?

12. Consider the discrete dynamical system

x(n + 1) = Ax(n), n = 0, 1, 2, 3, . . . ,

where

A =

(
2 −1
4 −2

)
, x(0) =

(
1
0

)
.

a. Write x(1) = Ax(0) as a multiple of an eigenvector of A.

b. Compute the solution x(n) for n = 1, 2, 3, . . ..


