Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 2
Name: Grade: Rank: \qquad
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Consider the following 4×7 matrix:

$$
A=\left(\begin{array}{lllllll}
1 & 2 & 3 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 1 & 0 & 6 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Illustrate the rank-nullity theorem using the matrix A.
2. Consider the following 3×3 matrix:

$$
A=\left(\begin{array}{ccc}
0 & 3 & 6 \\
0 & 0 & 0 \\
0 & 16 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Does the union of the two bases found in parts a) and b) span \mathbb{R}^{3} ? Substantiate your answer.
3. Consider the following five vectors:

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
3 \\
5 \\
7
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{l}
1 \\
4 \\
7 \\
0
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{4}=\left(\begin{array}{r}
1 \\
-3 \\
-5 \\
7
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{5}=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right) .
$$

a. Argue why or why not $S=\left\{\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{v}}_{5}\right\}$ is a linearly independent set of vectors.
b. If S is not a linearly independent set of vectors, remove as many vectors as necessary to find a basis of its linear span and write the remaining vectors in S as a linear combination of the basis vectors.
4. Find the rank and nullity of the following linear transformations:
a. The orthogonal projection onto the plane $2 x_{1}-x_{2}+x_{3}=0$ in \mathbb{R}^{3}.
b. The reflection in \mathbb{R}^{3} with respect to the line passing through (31, 67, 97).
5. Compute the matrix of the linear transformation

$$
T(\overrightarrow{\boldsymbol{x}})=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 5 & 6
\end{array}\right) \overrightarrow{\boldsymbol{x}}, \quad \text { where } \overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{3},
$$

with respect to the basis

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right) .
$$

6. Consider the following polynomials:

$$
1+x^{2}, \quad x-2 x^{3}, \quad(1+x)^{2}, \quad x^{3}+x .
$$

Argue why or why not this set is a basis of the vector space of polynomials of degree ≤ 3.
7. Find a basis of the vector space of all 2×2 matrices S for which

$$
\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right) S=S\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

