Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 3

Name: \qquad Grade:
Rank: \qquad
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Consider the two vectors

$$
\overrightarrow{\boldsymbol{u}}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) .
$$

a. Compute the cosine of the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
b. Compute the distance between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
c. Does there exist an orthogonal 3×3 matrix A such that $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}}$? If it exists, construct one. If it does not exist, explain why not.
2. Find an orthonormal basis for

$$
V=\operatorname{span}\left[\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)\right]
$$

and use this information to write down the orthogonal projection of \mathbb{R}^{4} onto V.
3. Find a least-squares solution to the system

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

3.* (TO BE REPLACED) Find the factors Q and R in the $Q R$ factorization of the matrix

$$
M=\left(\begin{array}{rr}
1 & 0 \\
2 & 4 \\
1 & -2
\end{array}\right)
$$

by using the Gram-Schmidt process.
4. Find the determinant of the 3×3 matrix

$$
A=\left(\begin{array}{rrr}
1 & 1 & -5 \\
0 & 2 & 4 \\
3 & 6 & 9
\end{array}\right)
$$

Describe the parallelepiped whose volume is given by this determinant.
5. Find the determinants of the 4×4 matrices

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & 3 \\
0 & 0 & 1 & 3 \\
0 & 2 & 5 & -1 \\
4 & 2 & 8 & -2
\end{array}\right), \quad B=\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right) .
$$

6. Let A be a 7×7 matrix with $\operatorname{det}(A)=-3$.
a. Compute $\operatorname{det}(-2 A)$.
b. Compute $\operatorname{det}\left(A A^{T}\right)$.
c. Compute $\operatorname{det}\left(A^{T} A^{-1}\right)$.
d. Compute the determinant of the matrix obtained from A by first interchanging the last two columns and then interchanging the first two rows.
