Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Exam 4 Name: . Grade: Rank
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
3 & -2 \\
15 & -10
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible.
2. Find a 2×2 matrix A such that $\binom{1}{2}$ and $\binom{2}{3}$ are eigenvectors of A, with eigenvalues -2 and 3 , respectively.
3. Find the solution of the discrete dynamical system

$$
x(n+1)=A x(n), \quad n=0,1,2,3, \ldots,
$$

where

$$
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right), \quad x(0)=\binom{0}{1} .
$$

4. Find all eigenvalues (real and complex) of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -4 & 1
\end{array}\right)
$$

Why or why not is it possible to diagonalize the matrix A ?
5. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 3 & -3 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible.
6. Compute the eigenvalues (real and complex) and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Explain why your result is in full agreement with the values of $\operatorname{Tr}(A)$ and $\operatorname{det}(A)$.
7. Why is $45=1+2+3+4+5+6+7+8+9$ an eigenvalue corresponding to any 9×9 sudoku matrix? What is the corresponding eigenvector?

