Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Final Exam

Name:
Grade: \qquad
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Bring the following matrix to reduced row echelon form:

$$
A=\left(\begin{array}{rrrrr}
0 & 0 & 1 & 3 & -7 \\
1 & -5 & 0 & 2 & 4 \\
0 & 0 & 2 & 6 & -2 \\
0 & 0 & 0 & 0 & 9
\end{array}\right),
$$

and determine its rank and nullity.
2. Find all solutions of the linear system $A \overrightarrow{\boldsymbol{x}}=\mathbf{0}$, where

$$
A=\left(\begin{array}{rrr}
3 & 6 & 7 \\
0 & 2 & -1
\end{array}\right) .
$$

3. Consider the following 4×4 matrix:

$$
A=\left(\begin{array}{rrrr}
0 & 1 & 1 & 3 \\
1 & 0 & 0 & -2 \\
0 & 0 & 2 & 6 \\
0 & 2 & 0 & 0
\end{array}\right) .
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
4. Argue why or why not the set of polynomials

$$
\text { 1, } \quad x, \quad 2 x^{2}-1, \quad 4 x^{3}-3 x, \quad 8 x^{4}-8 x^{2}+1,
$$

is a basis of the vector space of polynomials of degree ≤ 4.
5. Find the matrix of the orthogonal projection of \mathbb{R}^{4} onto the hyperplane

$$
x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0 .
$$

6. Apply the Gram-Schmidt process to the given basis vectors of

$$
V=\operatorname{span}\left[\left(\begin{array}{l}
3 \\
0 \\
4 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
5 \\
0
\end{array}\right),\left(\begin{array}{l}
4 \\
0 \\
0 \\
3
\end{array}\right)\right]
$$

to obtain an orthonormal basis of V.
7. Find a least-squares solution to the system

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) .
$$

8. Find the factors Q and R in the $Q R$ factorization of the matrix

$$
M=\left(\begin{array}{rr}
1 & 0 \\
2 & 4 \\
1 & -2
\end{array}\right)
$$

by using the Gram-Schmidt process.
9. Find the determinant of the 3×3 matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & -3 \\
2 & 0 & 5 \\
2 & 6 & 4
\end{array}\right)
$$

10. Compute the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
5 & 3 \\
1 & 7
\end{array}\right)
$$

Use this information to diagonalize the matrix A if possible. Otherwise indicate why diagonalization is not possible.
11. Find all eigenvalues (real and complex) of the matrix

$$
A=\left(\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & 0 \\
-9 & -9 & -1
\end{array}\right)
$$

Why or why not is it possible to diagonalize the matrix A ?
12. Find the solution of the discrete dynamical system

$$
x(n+1)=A x(n), \quad n=0,1,2,3, \ldots
$$

where

$$
A=\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right), \quad x(0)=\binom{1}{0}
$$

