Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 1

Name: \qquad Grade:
Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

1. Bring the following matrix to reduced row echelon form:

$$
A=\left(\begin{array}{rrrrr}
1 & 3 & 0 & 5 & 3 \\
0 & 0 & 1 & 4 & -1 \\
0 & 0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 & 5
\end{array}\right),
$$

and determine its rank.
2. If the augmented matrix for a nonhomogeneous system of linear equations has been reduced by row operations to the matrix

$$
\left(\begin{array}{ccccc:c}
1 & 7 & 0 & 0 & -3 & 11 \\
0 & 0 & 2 & 0 & 8 & -10 \\
0 & 0 & 0 & 1 & -6 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

what is the solution to this linear system?
3. Find all solutions of the linear system $A \overrightarrow{\boldsymbol{x}}=\mathbf{0}$, where

$$
A=\left(\begin{array}{rrr}
2 & 3 & 6 \\
0 & 1 & -1
\end{array}\right)
$$

4. Evaluate the inverse of the matrix

$$
A=\left(\begin{array}{rr}
11 & 7 \\
-4 & -3
\end{array}\right)
$$

5. Find the matrix A such that

$$
A\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\binom{-4}{2}, \quad A\left(\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right)=\binom{5}{3}, \quad A\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\binom{-4}{5} .
$$

6. Determine the matrix of the projection of any point $\overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{3}$ onto the line through the origin and the point $(3,4,0)$.
7. Determine the matrix of the counterclockwise rotation in \mathbb{R}^{2} through the angle $\theta=45^{\circ}$.
8. Find the inverse of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 6 \\
0 & 4 & 5
\end{array}\right) .
$$

9. Compute A^{3}, where $A=\left(\begin{array}{ll}1 & a \\ 0 & 3\end{array}\right)$ and a is a parameter.
10. Compute the matrix product $A B C$, where

$$
A=\left(\begin{array}{rrr}
5 & 7 & 0 \\
2 & -3 & 1 \\
0 & 0 & 2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & -5 & 3 \\
0 & 3 & 2 \\
0 & -2 & 3
\end{array}\right), \quad C=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

