Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 2
Name:
Grade:
Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

ex.1	ex.2	ex.3	ex.4	ex.5	ex.6	ex.7	S2

1. Consider the following 5×7 matrix:

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 2 & 0 & 0 & 1 & 0 \\
1 & 3 & 6 & 0 & 4 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 & 3 \\
0 & 0 & 0 & 1 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Illustrate the rank-nullity theorem using the matrix A.
2. Consider the following 4×4 matrix:

$$
A=\left(\begin{array}{rrrr}
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
1 & 0 & 0 & -2
\end{array}\right) .
$$

a. Find a basis of the image of A and show that it really is a basis.
b. Find a basis of the kernel of A and show that it really is a basis.
c. Illustrate the rank-nullity theorem using the matrix A.
3. Consider the following four vectors:

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{r}
1 \\
0 \\
-2 \\
-4
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right), \overrightarrow{\boldsymbol{v}}_{4}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

a. Argue why or why not $S=\left\{\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{v}}_{4}\right\}$ is a linearly independent set of vectors.
b. If S is not a linearly independent set of vectors, remove as many vectors as necessary to find a basis of its linear span and write the remaining vectors in S as a linear combination of the basis vectors.
4. Find the rank and nullity of the orthogonal projection onto the hyperplane $x_{1}-x_{2}+x_{3}-x_{4}=0$ in \mathbb{R}^{4}. Argue why your result is correct.
5. Compute the matrix of the linear transformation

$$
T(\overrightarrow{\boldsymbol{x}})=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \overrightarrow{\boldsymbol{x}}, \quad \text { where } \overrightarrow{\boldsymbol{x}} \in \mathbb{R}^{3},
$$

with respect to the basis

$$
\overrightarrow{\boldsymbol{v}}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad \overrightarrow{\boldsymbol{v}}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

6. Argue why or why not the set of polynomials

$$
1+x^{2}, \quad x-x^{3}, \quad 1-x^{2}, \quad x+x^{3}, \quad x^{4},
$$

is a basis of the vector space of polynomials of degree ≤ 4.
7. Find a basis of the vector space of all 2×2 matrices S for which

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) S=S\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

