## Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 3

Name:
Grade:
Rank:
To receive full credit, show all of your work. Neither calculators nor computers are allowed.

| ex.1 | ex.2 | ex.3 | ex.4 | ex.5 | ex.6 | S1 | S2 | S3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |

1. Consider the two vectors

$$
\overrightarrow{\boldsymbol{u}}=\binom{-15}{20}, \quad \overrightarrow{\boldsymbol{v}}=\binom{7}{24} .
$$

a. Compute the lengths of $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$
b. Compute the cosine of the angle between $\overrightarrow{\boldsymbol{u}}$ and $\overrightarrow{\boldsymbol{v}}$.
c. Construct an orthogonal $2 \times 2$ matrix $A$ such that $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}}$.
d. Is it possible to choose the matrix $A$ in part c in such a way that $\operatorname{det}(A)=1$ ? If it is possible, compute such an orthogonal matrix $A$ and explain its geometrical meaning. If it is not possible, argue why not.
2. Find an orthonormal basis for

$$
V=\operatorname{span}\left[\left(\begin{array}{r}
-1 \\
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right)\right]
$$

and use this information to write down the orthogonal projection of $\mathbb{R}^{4}$ onto $V$.
3. Find a least-squares solution to the system

$$
\left(\begin{array}{rr}
3 & 4 \\
-4 & 3 \\
0 & 5
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right) .
$$

4. Find the determinant of the $3 \times 3$ matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & -5 \\
-1 & 1 & 8 \\
3 & 3 & 7
\end{array}\right)
$$

Describe the parallelepiped whose volume is given by this determinant.
5. Find the determinants of the matrices

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 0 & 5 \\
4 & 3 & 9 & -7 \\
0 & 3 & 2 & -2 \\
0 & 0 & 2 & 7
\end{array}\right), \quad B=\left(\begin{array}{rrrrr}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 1 \\
9 & -8 & 0 & 0 & 5
\end{array}\right)
$$

6. Let $A$ be an $8 \times 8$ matrix with $\operatorname{det}(A)=-2$.
a. Compute $\operatorname{det}(-\sqrt{2} A)$.
b. Compute $\operatorname{det}\left(A^{T} A^{3}\right)$.
c. Compute $\operatorname{det}\left(S A^{2} S^{-1}\right)$, where $S$ is an $8 \times 8$ matrix satisfying $\operatorname{det}(S)=7$.
d. Compute the determinant of the matrix obtained from $A$ by first interchanging the first two columns, then interchanging the last two columns, and then dividing the second row by 2 .
