Cornelis VAN DER MEE, Spring 2008, Math 3330, Exam 3

ex.1	ex.2	ex.3	ex.4	ex.5	ex.6	S1	S2	S3

1. Consider the two vectors

$$\vec{\boldsymbol{u}} = \begin{pmatrix} -15\\20 \end{pmatrix}, \qquad \vec{\boldsymbol{v}} = \begin{pmatrix} 7\\24 \end{pmatrix}.$$

- a. Compute the lengths of \vec{u} and \vec{v} .
- b. Compute the cosine of the angle between \vec{u} and \vec{v} .
- c. Construct an orthogonal 2×2 matrix A such that $A\vec{u} = \vec{v}$.
- d. Is it possible to choose the matrix A in part c in such a way that det(A) = 1? If it is possible, compute such an orthogonal matrix A and explain its geometrical meaning. If it is not possible, argue why not.
- 2. Find an orthonormal basis for

$$V = \operatorname{span}\left[\begin{pmatrix} -1\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix} \right]$$

and use this information to write down the orthogonal projection of \mathbb{R}^4 onto V.

3. Find a least-squares solution to the system

$$\begin{pmatrix} 3 & 4 \\ -4 & 3 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}.$$

4. Find the determinant of the 3×3 matrix

$$A = \begin{pmatrix} 1 & 2 & -5 \\ -1 & 1 & 8 \\ 3 & 3 & 7 \end{pmatrix}.$$

Describe the parallelepiped whose volume is given by this determinant.

5. Find the determinants of the matrices

$$A = \begin{pmatrix} 0 & 0 & 0 & 5 \\ 4 & 3 & 9 & -7 \\ 0 & 3 & 2 & -2 \\ 0 & 0 & 2 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 9 & -8 & 0 & 0 & 5 \end{pmatrix}$$

- 6. Let A be an 8×8 matrix with det(A) = -2.
 - a. Compute $det(-\sqrt{2}A)$.
 - b. Compute $\det(A^T A^3)$.
 - c. Compute $det(SA^2S^{-1})$, where S is an 8×8 matrix satisfying det(S) = 7.
 - d. Compute the determinant of the matrix obtained from A by first interchanging the first two columns, then interchanging the last two columns, and then dividing the second row by 2.