Tabella 2: Best 5 out of 6

	Iabelia 2. Dest 5 out of 6							
	es.1	es.2	es.3	es.4	es.5	es.6	somma	
	6	6	6	6	6	6	30	
ĺ								
İ								

Meccanica Razionale 1: Scritto Generale: 02.02.2012

1. Consideriamo il seguente moto di un punto P:

$$x = 2t - \sin(2t),$$
 $y = 1 - \cos(2t),$ $z = 4\sin(t),$

essendo $t \geq 0$.

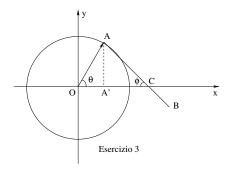
- a. Calcolare le componenti e i moduli della velocità del punto P.
- b. Calcolare la lunghezza della curva percorsa all'istante t.
- c. Calcolare la curvatura della curva descritta dal punto P.
- d. Qual'è la torsione della curva in ogni punto?
- 2. Con riferimento ad una terna trirettangola e levogira Oxyz di versori $\vec{i},\ \vec{j}$ e $\vec{k},$ si consideri il sistema di vettori applicati

$$(P_1, 2\vec{j} + \vec{k}), \quad (P_2, -2\vec{i} + \vec{k}), \quad (P_3, -\vec{j} - \vec{k}), \quad (P_4, 2\vec{i}),$$

essendo $P_1 = (1,0,0), P_2 = (0,1,0), P_3 = (0,0,1), P_4 = (0,0,0).$ Si chiede di:

- a. Trovare il momento risultante del sistema rispetto all'origine.
- b. Scrivere l'equazione dell'asse centrale.
- c. Dire, motivando la risposta, quale è il sistema di vettori applicati più semplice possibile (cioè costituito dal minor numero di vettori applicati) a cui il sistema è riducibile.

3. Nel piano xy di un sistema cartesiano levogiro Oxyz, si consideri l'asta AB vincolata con l'estremo A a ruotare uniformemente sulla circonferenza di centro O e raggio R, e a passare per il punto C sull'asse x. Sia $h = \|OC\|$. Determinare la velocità angolare $\vec{\omega}$ dell'asta e la velocità del punto dell'asta che transita per C.



4. Consideriamo l'unione $S = S_1 \cup S_2$ delle due semisfere omogenee

$$\begin{cases} S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z - R)^2 \le R^2, \ z \ge R\}, \\ S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z + R)^2 \le R^2, \ z \le -R\}, \end{cases}$$

essendo R>0. Supponiamo che la densità sia uguale a ρ_1 nella semisfera superiore e a ρ_2 in quella inferiore.

- a. Determinare il baricentro di S.
- b. Determinare il momento d'inerzia rispetto all'asse z.
- b. Determinare il momento d'inerzia rispetto all'asse z=R.
- 5. Consideriamo il sistema binario di due stelle puntiformi di masse M_1 e M_2 , Le due stelle si muovono nel piano xy.
 - a. Determinare la velocità iniziale \vec{v}_0 affinchè la traiettoria della seconda stella attorno al baricentro sia una circonferenza.
 - b. Dimostrare la terza legge di Newton (cioè, a^3/τ^2 costante) se la traiettoria della seconda stella è una circonferenza attorno al baricentro.
 - c. Trovare almeno un punto in cui qualunque massa sarebbe sottoposta, da parte delle due stelle, a forze gravitazionali in equilibrio.

6. Una particella di massa m è vincolata a muoversi sulla paraboloide di equazione $z=2(x^2+y^2)$ sotto l'effetto della sola forza

$$\vec{F} = -k(x^2 + y^2)(x\vec{i} + y\vec{j}),$$

essendo k > 0 un'opportuna costante.

- a. Determinare il grado di libertà N del sistema e formulare la lagrangiana in N coordinate generalizzate.
- b. Formulare le equazioni di Eulero-Lagrange.
- c. Indicare due costanti del moto e spiegare perchè lo sono.