es.1	es.2	es.3	es.4	es.5	es. 6	somma
6	6	6	6	6	6	30

Meccanica Razionale 1: Scritto Generale: 21.09.2012

Gli studenti che hanno seguito il corso nell'AA 2011-2012 devono svolgere gli esercizi 1-5. Gli studenti che hanno seguito nell'AA precedenti devono svolgere gli esercizi 1-4 e 6.

1. Consideriamo il seguente moto di un punto P:

$$x = \frac{3}{5}t$$
, $y = -\frac{4}{5}t$, $z = \frac{1}{2}t^2$.

essendo $t \geq 0$.

- a. Calcolare le componenti e il modulo della velocità del punto P.
- b. Calcolare la lunghezza della curva percorsa all'istante t.
- c. Calcolare la curvatura della curva descritta dal punto P.
- d. Qual'è la torsione della curva in ogni punto?
- 2. Consideriamo il solido di rotazione

$$\{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le h, \ 3(x^2 + y^2) \le z\} \cup \{(0, 0, -h)\},\$$

essendo h > 0. Supponiamo che la densità della parte superiore sia uguale a ρ e che nel punto P(0, 0, -h) è concentrata una massa m.

- a. Trovare il baricentro del solido.
- b. Determinare il momento d'inerzia del solido rispetto all'asse z.
- c. Determinare il momento d'inerzia del solido rispetto all'asse x.
- d. Determinare il momento d'inerzia del solido rispetto all'asse di equazione y=0 e z=-h.

3. Una particella di massa m cade sotto l'effetto della forza gravitazionale e di una seconda forza d'attrito proporzionale al suo vettore velocità, cioè,

$$\vec{F} = -m \left\{ g\vec{k} + c\dot{\vec{x}} \right\}$$

per un'opportuna costante c>0, essendo $\vec{k}=(0,0,1).$

- a. Date la posizione iniziale $(0,0,z_0)$ e la velocità iniziale $(\dot{x}_0,0,0)$, determinare la velocità $\dot{\vec{x}}(t)$.
- b. Discutere l'andamento della velocità se $t \to +\infty$.
- c. Determinare la posizione $\vec{x}(t)$.
- d. Discutere l'andamento della posizione se $t \to +\infty$.
- 4. Una particella di massa m è vincolata a muoversi sulla superficie conica di equazione $z = \sqrt{3(x^2 + y^2)}$ sotto l'effetto della sola forza elastica

$$\vec{F} = -k\sqrt{x^2 + y^2 + z^2}\,\hat{e}_r = -k(x\vec{i} + y\vec{j} + z\vec{k}),$$

essendo k > 0 la costante di elasticità.

- a. Determinare il grado di libertà N del sistema e formulare la lagrangiana in N coordinate generalizzate.
- b. Formulare le equazioni di Eulero-Lagrange.
- c. Indicare, motivando la risposta, tutti i moti lungo una circonferenza di tipo $\sqrt{x^2 + y^2} = R$.
- 5. Per opportune costanti fisiche positive k e α si consideri la lagrangiana

$$\mathcal{L} = \frac{1}{2}m(\dot{q}_1^2 + \dot{q}_2^2 + \dot{q}_3^2) - V(q_2 - q_1) - V(q_3 - q_2) - V(q_1 - q_3),$$

dove m è la massa delle tre particelle e $V(r) = e^{-2r} + 2r - 1$.

- a. Derivare le equazioni di Eulero-Lagrange.
- b. Trovare la hamiltoniana e derivare le equazioni di Hamilton.
- c. Indicare, motivando la risposta, almeno due costanti di moto.

6. Con riferimento ad una terna trirettangola e levogira Oxyz di versori $\vec{i},\ \vec{j}$ e $\vec{k},$ si consideri il sistema di vettori applicati

$$(P_1, \vec{i} + 2\vec{j} + \vec{k}), \quad (P_2, 3\vec{i} - \vec{k}), \quad (P_3, -\vec{j} + \vec{k}), \quad (P_4, \vec{j}),$$

essendo $P_1=(1,0,0),\ P_2=(0,1,0),\ P_3=(0,0,1),\ P_4=(0,0,0).$ Si chiede di:

- a. Trovare il momento risultante del sistema rispetto all'origine.
- b. Scrivere l'equazione dell'asse centrale.
- c. Dire, motivando la risposta, quale è il sistema di vettori applicati più semplice possibile (cioè costituito dal minor numero di vettori applicati) a cui il sistema è riducibile.

6. Con riferimento ad una terna trirettangola e levogira Oxyz di versori $\vec{i},\ \vec{j}$ e $\vec{k},$ si consideri il sistema di vettori applicati

$$(P_1, \vec{i} + 2\vec{j} + \vec{k}), \quad (P_2, 3\vec{i} - \vec{k}), \quad (P_3, -\vec{j} + \vec{k}), \quad (P_4, \vec{j}),$$

essendo $P_1=(1,0,0),\ P_2=(0,1,0),\ P_3=(0,0,1),\ P_4=(0,0,0).$ Si chiede di:

- a. Trovare il momento risultante del sistema rispetto all'origine.
- b. Scrivere l'equazione dell'asse centrale.
- c. Dire, motivando la risposta, quale è il sistema di vettori applicati più semplice possibile (cioè costituito dal minor numero di vettori applicati) a cui il sistema è riducibile.