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1. Introduction

The Shannon—Whittaker sampling theorem asserts that any band limited function f
in L?(R) with band width 7 (i.e., a function whose Fourier transform is supported in
[—m, ]) can be uniquely represented in the form

_ > sin(t —n)
f@ = Z f(”)m,

where Zfli_oo | f(n)|> < oo. For such functions we have

n=—oo
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/_Oolf<z>|2dr =Y [rmf.

n=—0oo

Thus there is an isometric one-to-one correspondence between band limited functions f
in L?(R) with band width 7 and sequences { f (m)}2_ o in (7).

The Paley—Wiener theorem [25] gives a direct characterization of the space B, (R)
of band limited signals whose Fourier transforms have support in [—m, 7], namely, a
function in L*(R) belongs to B, (R) if and only if it is the restriction of an entire function
and is of exponential order at most 7 on the real line. The space B, (R) has several

interesting properties:
(1) B (R) is a reproducing kernel Hilbert space with reproducing kernel

’

(i1) the sequence {S,},en, Where S, (t) = k(¢, n), constitutes an orthonormal basis for
L*(R);

(iii) the sequence {S,(¢)},en has the discrete orthogonality property S,(m) = &,.m;
(iv) the space B, (R) is closed under differentiation;

(v) the space B;(R) is unitarily translation invariant, i.e., for any f € B,(R) and
c € R,wehave f(- —¢) € By(R)and [ f(- =)l = [ fI.

The Shannon—Whittaker sampling theorem has been generalized in many direc-
tions (for some perspectives see [6-8,17,18,20,23,31]). Some of the above properties
of the space B, (R) have served as key ingredients in the generalizations and exten-
sions of the Shannon—Whittaker sampling theorem. In particular, it has been shown that
the theorem and many of its extensions have an equivalent formulation in appropriate
reproducing kernel Hilbert spaces (RKHS). By a reproducing kernel Hilbert space of
functions supported on a set S we mean a (complex) Hilbert space H of functions on S,
where all evaluation functionals &,(f) = f(¢), f € H, for each fixed t € S, are con-
tinuous. Then, by the Riesz representation theorem, for each ¢ € § there exists a unique
element k, € H such that

f@)=(fik), feH,

where (-, -) is the inner product in H. Let k(¢,u) = (k;, k,) for t,u € S. Then k(-, -)
is called the reproducing kernel of H. Clearly, k(-, -) is Hermitian and positive definite.
For properties of reproducing kernel Hilbert spaces, see [4,5,9,19,22,26,28].

Nashed and Walter [23] have shown that there is a strong affinity between RKHS
and sampling expansions. They have derived general sampling theorems for functions
in RKHS which are subspaces of L2(R) closed in the Sobolev space H~!(R). They
have also shown that with every sampling expansion one can associate a corresponding
RKHS [24]. Applications of RKHS to other recovery problems from partial information
are given in [21].
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In this paper we introduce an approach to sampling problems, where the unitary
translation invariance property of the space plays a pivotal role. The main thrust of this
paper is the study of sampling problems on subspaces of a class of unitarily translation
invariant RKHS generated from a single function. Within this framework we are able
to exploit Gershgorin’s theorem and results on Toeplitz matrices. Shift-invariance prop-
erties, i.e., invariance properties upon translation over integer distances, have recently
been used by Aldroubi and Grochenig [2,3] (see also related references cited therein),
but to our knowledge this is the first time that unitarily translation invariant spaces have
been used explicitly to develop sampling expansions. When the sampling points are
equidistant, we also use the symbol function as a tool in studying sampling expansions.

To be specific, we study sampling problems on RKHS with

k(t,u) :/wd)(x—t)d)(x—u)dx, (1.1

where ¢ € L'(R) N L?(R) and the Fourier transform of ¢ does not have real zeros. Such
functions ¢ come up in the expansion of a general function f in the integer translates
of a given function ¢, both on R and on R*, as studied in [15]. The question naturally
arises in such settings if f can be reconstructed from its values at countably many, not
necessarily equidistant, points. This question is addressed in the present paper.

Given a function f from an RKHS H on an infinite set S, let {z;} ;c, be a sequence
of distinct sampling points in S indexed by an infinite subset J of Z. Under mild condi-
tions, it is easy to show that the sampling map f +— {f(7;)};c; and the inverse sampling
map {f(t;)}jes > f are both continuous. Hence there exist positive constants C; and
C, such that

1/2

Cillflln < [Z \f(tj)\z] <Gl fllu. feH. (1.2)
jeJ

In the case of the Shannon—Whittaker sampling theorem, (1.2) reduces to two equalities

with C; = C, = 1, where J = Z. The preservation of (1.2) is essential to the deriva-

tion of sampling expansions. The requirement that the function belongs to an RKHS

allows one to state the sampling inequalities (1.2) in terms of the boundedness and strict

positivity of a so-called symbol function when the sampling points are equidistant.

We now describe the organization of this paper. In section 2 we reformulate (mostly
known) results in the theoretical framework needed for this paper and augment them by
a new property that utilizes unitary translation invariance of the RKHS. In section 3 we
derive sampling theorems and interpolation results for signals in unitarily translation
invariant RKHS on the line. In section 4 we study sampling problems for RKHS on the
positive real line with reproducing kernel

k(t,u) = fooqb(x —)ox —u)ydx, t,u=0, (1.3)
0

where ¢ € L'(R) N L*(R). Using the corresponding sampling results on S = R and a
recent result of Goodman et al. [16] on deriving Riesz bases of functions of the half-line
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by restricting functions on the full line, we finally derive sampling theorems for § = R*.
We conclude this paper with a brief comparison with the results in [23]. Throughout the
paper we illustrate the results with the help of four standard examples.

2. Theoretical framework

Given a complex Hilbert space H, an infinite sequence { f; },cs, J C Z, of vectors
in H is called a frame (cf. [10,30]) if there exist positive constants C;, C; such that

1/2
cl||f||H<[Z\<f,fn>|2} <Clfla. feH

nelJ

These inequalities are called the frame inequalities. A frame is called an exact frame if
the removal of any vector from the frame causes it not to be a frame any more. Given
a frame, the operator T defined by Tf = ) _, (f, fu) fu is a bounded linear operator
on H. Further, for every f € H there exists a unique moment sequence {a,},c; such

that
f = Z anfn

nelJ

and ) ,_; la, |? is minimal. A well-known result [10,30] states that a sequence { f,},cs
in a separable Hilbert space H is an exact (or tight) frame if and only if it is a Riesz basis
in H (i.e., if it can be obtained from an orthonormal basis in H by applying a boundedly
invertible operator).

The inequalities (1.2) can now be interpreted as frame inequalities, since (f, f,,) =
f(,), where f, = k,, forn € J. Given an RKHS H of functions supported on an
(infinite) set S and the sequence {¢;} e, of distinct sampling points with J C Z infinite,
the associated sampling problem consists of (1) uniquely reconstructing f belonging to
a suitable closed subspace Hy of H from its values { f(;)};c; at the sampling points,
and (2) showing that the frame inequalities (1.2) hold true for f € Hy. Once the direct
sampling problem (of finding the subspace Hj and suitable sampling points for f € Hy)
and the inverse sampling problem (of reconstructing f € H, from the sampling points,
while indicating a suitable RKHS) have been formulated, we introduce a (complex)
Hilbert space of sequences £,(J) induced by ¢ = {t;};c,, the sampling map (or point-
evaluation map)

o:Hy — £6(J), Uf:{f(tj)}jel’
and the inverse sampling map (or recovery map)
vil()) — Hy,  t{f@p),., =1

The objective is to select a suitable subspace Hj and to prove the invertibility and bound-
edness of the sampling map, the boundedness of the inverse sampling map, and hence
the well-posedness of the point evaluation problem.



C.V.M. van der Mee et al. / Interpolation reproducing kernel Hilbert spaces 359

Letting k(-, -) denote the reproducing kernel of H and (-, -) i its inner product, we
define the infinite Gram matrix

Gij = (kti’kzj)H =k(t;,t;), i,j€J,

which is a positive semi-definite linear operator on £,(J).
We shall make frequent use of the following proposition (see theorem 1.9 of [30]).
The enumeration of the vectors has been changed from i, j € Ntoi, j € Z.

Proposition 2.1. Let X’ be a separable Hilbert space. Then the following statements are
equivalent:

1. The sequence {k,j} jez forms a Riesz basis in X'

2. The sequence {k,j } jez 1s complete in X, and there exist positive constants C; and C,
such that for arbitrary positive integers n, m and arbitrary scalars c_,,, ..., ¢, one
has

n 2

Z Cik,

i=—m

n
2 2
C1 E lci|” <

i=—m

<G Z il

i=—m

3. The sequence {k,j} jez 1s complete in X', and its Gram matrix

(ki ki)

generates a bounded invertible operator on £2(Z).

i,j=—00

We now immediately have the following result.

Corollary 2.2. Let t = {t;};c; be infinitely many distinct sampling points in S and
let H be a reproducing kernel Hilbert space of functions on S with reproducing kernel
k(-,-). Let k,(-) = k(t, -). Then the following statements are equivalent:

1. There exist positive constants Cy, C, such that (1.2) holds for every f € H and no
such relation holds for any proper subset of sampling points.

2. The sequence {k;,};c; is a Riesz basis in H.

3. The sequence of functions {ktj }jes 1s complete and the Gram matrix (k(%;, 7;)); jes
is bounded and strictly positive selfadjoint on ¢2(J).

If any of these conditions hold, we have the sampling expansion
k(tj, 1)

f = Z G )k(tj,tj)

2.1

When § = R, the sampling points are equidistant (i.e., ; = «j, j € Z) and the
RKHS H is unitarily translation invariant, the bi-infinite Gram matrix {G;;}>° I is a
Toeplitz matrix (i.e., G;; = G;_j, i, j € Z).
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Proposition 2.3. Let {oj}72_., be equidistant sampling points in § = R and let the
reproducing kernel Hilbert space H be unitarily translation invariant. Then the following
statements are equivalent:

1. There exist positive constants C;, C; such that

00 /2

2

Cill fllu < [ > | f @] } <Gllfllu. feH,
Jj=—00

and no such relation holds for any proper subset of sampling points.

}OO

72 oo 1s @ Riesz basis in H.

2. The sequence {k,;

3. The sequence of functions {kq;}7Z_, is complete and the bi-infinite Toeplitz matrix

(Gi-j (a))l o0 defined by G;_;(a) = (kqi, kqj) n is bounded and strictly positive
selfadjoint operator on £>(Z).

4. The sequence of functions {kq;}5° is complete and the symbol

j=—0

o0
= > s/Gi@. IsI=1,
j=—00

is positive, essentially bounded, and essentially bounded away from zero.

If any of these conditions hold, we have the sampling expansion

k k
=3 flah KD Z flajy 2.

T ke ag) Go(@)
Proof.  The proposition is immediate from corollary 2.2 with the exception of the equiv-
alence of parts 3 and 4. That statement, however, follows from the well-known result
([13], corollary XXIII 2.2) that a bi-infinite Toeplitz matrix is bounded on £2(Z) if and
only if its symbol is an L°°-function, where the statement is being applied to both the
Toeplitz matrix and its inverse. U

3. Reproducing kernels of functions on the line and sampling

Suppose H is an RKHS on R with reproducing kernel (-, -) that is unitarily trans-
lation invariant. Then for all s, ¢, u € R we have

k(t+s,u+s) = (kiys, kuts) = ke, k) = k(t,u),

so that k(-, -) is a difference kernel which we rewrite as « (-) satisfying k(¢, u) = «(t —u)
for all #,u € R. Moreover, the sesquilinearity of the inner product in H implies that
k() = k(—t).

Let us now discuss specific unitarily translation invariant RKHS.
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3.1. Suppose P(w) is a pgsitive continuous functi_on of w € R such that 1/P(w) be-
longs to L'(R). Writing f(w) = (27)~'/2 [% el*' f(1)dt for the Fourier transform
of f, let H be the Hilbert space of all measurable functions f on the real line such
that

o 1/2
IIfIIH;ZU !f(w)|2P(w)dw:| < oo0.

Further, for every r € R we have

1 © de 12
|f(t)|<ﬁ||f”h’f|:/_oo m] ,

and hence f +— f(¢) is continuous if 1/ P (w) belongs to L'(R). Thus H2P is an RKHS
whenever 1/ P (w) belongs to L'(R). If k(-, -) is the corresponding reproducing kernel,
then on one hand we have

£ = (f k) = / F() (@) P () do,

whereas on the other hand

fo) = \/;2—,, f_ Z e f(w) do.
Hence,
fo) = —— = G.1)

Vaz P(@)’

and so the reproducing kernel for H, is given by

k(t )_ 1 fm eiw(t—u)d
W= L P

Moreover, the kernel k(-, -) is continuous, while H2P is unitarily translation invariant,

since | f (w)| does not change when replacing f by one of its translates. If P(w) is areal
and even function, then the reproducing kernel (-, -) is real symmetric.

3.2. Let ¢ be a real function in L'(R) N L?(R) whose Fourier transform ¢3 does not
have real zeros, and let ¢, (u) = ¢ (u—1). We seek a reproducing kernel Hilbert space Hy
on § = R whose reproducing kernel is given by

ko(t, u) = /OO P(x — 1) (x —u)dx = /OO e ¢()] do,

where ¢(w) = ¢p(—w). Let ky(r) = ky(t, 0). Then
ko (t,u) = kgt —u) = kg (|t —ul). (3.2)
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Moreover, since ¢ € L'(R) we obtain k; € L'(R). Further, because ¢ € L?(R) and
translation is a strongly continuous linear operator on L?(R), we see that k4 is a bounded
continuous function. In fact, as |g£|2 e L'(R), by the Riemann-Lebesgue lemma we
have that k() — 0 ast — Foo.

Let us determine the function P (w) such that k4 (-, -) is the reproducing kernel of
the generalized Sobolev space H; . To this end, we seek a positive function P(w) of
o € R satisfying (1/P(-)) € L'(R) such that Hy = HZP . Then we must solve the
equation

1 o) eia)(t—u)
27 ) o P(w)

o
dw = / ¢(x —t)p(x —u)dx
—00
for P(w). Writing p = t — u and changing the variable in the right-hand side, we have
1 o] eia)p

27 ) o P(w)

do = / $)$(x + p) dx.
and hence

—P(w)zf_ooe P/oo¢(x>¢(x+p>dxdp

= / " ) / T et (x 4 p) dp d
= V27 ()27 P(—w) = 27 |d(w)|*.

Since dA)(a)) # 0 for w € R, the function

1 1 1 1

Pwy=——+——+—"=——"—
VT fd—w) 27 g

3.3)

is indeed nonnegative. Wg have (1/P) € L'(R) because ¢ € L>(R), and P is continuous
because ¢ € L'(R) and ¢(w) # 0 for all v € R. Thus, by (3.1),

k(@) = V27 [p() e,

The condition that dAJ(a)) # 0 for every w € R is sufficient for k4(-, ) to be a
reproducing kernel on S = R. Indeed, let 74, ..., #, be distinct real numbers. Then for
every nontrivial n-tuple (&, ..., §,) of complex numbers we have

> kotpsE = [ p@f Y e E
ij=1 - ij=1
= / @)’ > etieg;
- i=1

2
do > 0,
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which proves that k4 (-, -) is a reproducing kernel on § = R if b (w) # 0 forevery w € R.
Note that ¢ as above but with compact support in [—c, ¢] cannot lead to a reproducing
kernel on § = R, because in that case k4 (¢, u) = 0 whenever |t — u| > 2c.

3.3. In[15], where the limiting profile arising from orthonormalizing the nonnegative
integer translations of a fixed function on the half-line has been studied, the following
three examples of the function ¢ were given:

1. ¢(t) = el for some o > 0. Then dAJ(a)) = (2/m)"?0(0? + w*)~!, and hence

1+olt —ul
=" k¢(t,u)=K¢(|t—u|)=f

2. ¢(t) = e " for some o > 0. Then ¢(w) = exp(—w?/402) /(o +/2), and hence

2
o 2 /92 T 2 2
P(w) = —e“ /%", ky(t,u) = ky(|t —ul) = [ =— e~ /D7 -07,
(@) = (7, u) ¢(| |) 262

3. ¢(t) = 1/(c* + 1) for some o > 0. Then dAJ(a)) = (m/20%)/? . e=*l and hence

o’ 20w 2
P)= 5" kpltou) =ky(lt —ul) =~

—o|t—u
€ l l.

In addition, we present the following example.

4. ¢(t) = e " fort > 0and ¢(t) = O for ¢t < 0, where o > 0. Then qAb(a)) =
(27)~"'? (6 —iw)~!, and hence

1
P(a)):az—{—a)z, ky(t, u) :K¢(|l‘—u|) — 2_e—(7|t—u|.
o}

As we immediately see, each of these functions generates an RKHS H, and a
corresponding sampling expansion.

When the sampling points are equidistant (i.e., when 7; = «j for some a > 0), we
define the symbol by

Gs.a) = —kp(O) + Y (s + 5 )eplaj) = Y sf/ ¢ (xX)p(x + o)) dx,

j=0 j=—00

where the series converge uniformly and absolutely in s on the unit circle if the condition

Z |/c¢(o¢j)| < 00 (3.4)

j=—00

is satisfied.

The following result provides conditions on ¢ and the sampling points in order
that the Gram matrix {«(|t; — 7;])}; je; be bounded on £2(J). In the case of equidistant
sampling points, we prove that condition (3.4) holds. Note that the above four examples
in 3.3 satisfy these conditions.
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Theorem 3.1. Let the distinct sampling points {z;} jc;, with J C Z an infinite set, satisfy
|t —t;j| = & > Ofori # jin J. Further, let ¢ have one of the following two properties:

1. 3t > 0,y € L'(R): |y (£)| < ¥ (¢) and v (7) nonincreasing forr > 1;

2. [2 ¢(x)*(1 +x?)Y dx < oo for some y > 1.
Then the Gram matrix {ky (%, #;)}; jes is bounded on ¢2(J). In particular, if t; = ai
(i € J =7Z) for some o > 0, then (3.4) is satisfied.

Proof. Note that
sup > kg (ti, )| =sup > |k (It — ;1) 3.5)
ieJ jeJ ieJ jeJd

is an upper bound for the norm of the Gram matrix on £2(J).
When the first condition holds, 0 = #0 < #; < 1, < ---with#;,; —1; > ¢
(j € J=Z%)and Ne¢ > T, one gets

D ket tpl= 7 |l =)+ Y ol — 1)

jezt |j—il<N |j—il=N
o0
< Y gl =) +2)° wije)
|j—il<N Jj=N
2 o0
<@N - 1>||K¢||oo+—/ o,
& J(N-1)e

2
< (2N = 1)llkglloo + gllwlll,

which is finite and hence implies (3.5).
When the second condition is satisfied, we have

(1 + 1) |icp )| g/ (1+ 1) [6@)] - (1 + 1x + 1) [ (x + 1) dx

o]

<f°°(1+|x|)2y¢>(x>2dx <2Vf (1+x%)7p(0)?dx,

oo —0o0

which implies (3.5) when [t; —t;| > ¢ fori # j. O

Theorem 3.1 can be generalized by assuming that ¢ belongs to Wiener’s amalgam
(cf. [11,12]). Such a generalization would require technicalities beyond the scope of
ideas and tools used in the proof of theorem 3.1.

Let us now compute the symbols for the four examples above in the case of equidis-
tant sampling points. Since ¢ decays exponentially in the examples 1, 2 and 4 below,
the first condition of theorem 3.1 is obviously satisfied for any y > 1. In example 3
below, the first condition is satisfied for y = 4/3. The second condition holds for the
four examples in section 3.3.
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1. For ¢(t) = el for some ¢ > 0, we have

plao) +q(ao)[s +s7']
(1 _ Se—ao)2(1 _ S—le—a0)2’

where p(f) = 1/B —4e ™ — (1/B)e™ and q(B) = (1 + 1/B)e™ + (1 -
1/B)e? are positive when 8 > 0. Thus G (s, ) is strlctly positive on the unit
circle for every o > 0.

6(s,o¢) =

2. For ¢(t) = e~ with & > 0, we have

9]
-~ T _o2a2? . T 1 )
G(S,Ol)z‘/m<l+2 E e ]/ZCOS(J0)>= lﬁﬁ_g(ze /2),
j=1

where s = ¢!’ and 13 denotes a Jacobian theta function ([29], section 21.11). Using
a product formula ([29], section 21.3) we get

Gs.e) = Gla), /5~ 2]‘[ (1 4 €017 G0 (1 4 o120 i)}

where G(«) = ]_[;X):l (1 — e/°"*")y and s = e. Hence, the symbol is strictly
positive on the unit circle for every o > 0.

3. For ¢(t) = 1/(c> + t*) with o > 0, we have

72 2 (a 20 & (—1)fcos{j(n—9)}>
- 40 « = j2+ 2o /a)?

1 eZ(ﬂ—@)a/a +e—2(n—9)a/a

- ; e2no/a _ o—27n0/a

’

where s = € (cf. [29], example 9 to chapter IX), and this is a strictly positive
function on the unit circle for every o > O.

4. If ¢p(t) = e fort > 0and ¢(t) = 0 for t < 0, where o > 0, we have

1 1
20 (1 —se %) (1 —s~le—0%)’

6(s,o¢) =

which is a strictly positive function on the unit circle for every o > 0.

We now give sufficient conditions on ¢ and the sampling points for the Gram ma-
trix {«y(|t;—1;1)}i jes to be bounded below on X)) by a positive multiple of the identity.
Together with theorem 3.1 we then obtain sufficient conditions on ¢ and the sampling
points in order that this Gram matrix be bounded and strictly positive selfadjoint on
£%(J) and the frame inequalities (1.2) be satisfied. The four above examples satisfy
these conditions. The proof is based on ideas of Schaback ([27], theorem 3.1).
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Theorem 3.2. Let --- <t , <ty <t)=0<1t <1 <--- besampling points with
tit1 —tj = € > Ofor j € Z. Let ¢ be a real function in L'(R) N L*(R) whose Fourier
transform does not have real zeros and for which the function x4 defined by (3.2) satisfies
either of the conditions (i) or (ii) of theorem 3.1. Then the Gram matrix {ky(|t; —;])}; jez
is bounded and strictly positive selfadjoint on £2(Z). Moreover, if X denotes the closed
linear span of {x,(- —#;)}32__ in Hy defined in section 3.1, then

j=—00

(a) there exist positive constants C;, C, such that the frame inequalities

-~ 12
Cillfllar < |: Z |f(tj)‘2:| SGllflay. fed, (3.6)

Jj=—00
hold, where P (w) is given by (3.3), and

(b) the sampling expansion

- Lkt =15
fm-ijm»—@@7a teR, (3.7)

j=—00

is valid for every f € X.

Proof. For N € N and any set of N sampling points and arbitrary complex numbers
1, ..., Cn, by Parseval’s theorem we have

f Y cipx — 1| dx
N
:/ che“”tjd)(a)) dw
o
1 M| N B
. A 2 ‘ot
> (2M \w\lgM‘('b(w)| )M/_zM /2—; e (ZM_ lwl) “
N
. ~ 2 —
> (2M  inf ) T A, 3.8
(ot @) 32 e 4, 9
i,j=
where
sin(M@ — )\ ...,
e S S f ,
Ay = ( Mm—m>) i

1 ifi =j.
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‘We now estimate

1 1 [ N 1
Z' ol Z (Meli — j|>2=(Me>2{Z Tt (j—i)Z}

j=1 j=i+1

J#t J#t
72

1
(Mz-:) kX_: K 3(Me)?

Using Gershgorin’s theorem ([14], theorem 8.1.3), the real symmetric matrix {A; ]}l V=t
has all of its eigenvalues in 3, 3] whenever Me > . Therefore, for this choice of M the
lower bound (3.8) extends to arbitrary subsets of the sampling points and hence the Gram
matrix {«kg(|t; — 1j])}i jez 1s strictly positive selfadjoint. Its boundedness follows from

theorem 3.1. The frame inequalities (3.6) now follow with the help of proposition 2.1. [J

The assumption b (w) # 0 for » € R has not been used in the proof of theorem 3.1.
Moreover, the proof of theorem 3.2 goes through if p(w) # 0 for |w| < 2w /e. A close
inspection of this proof where the interval [ ] is replaced by [1 — §, 1 4 &] for some

6 € (0,1), reveals that the conclusion of theorem 3.2 is also true if d)(a)) # 0 for

lw| < 2 /e/3).

4. Reproducing kernels of functions on the half-line and sampling

In this section we consider sampling expansions for functions in RKHS on R*.
Such RKHS are not unitarily translation invariant, so the techniques of section 3 do not
apply immediately. However, it will turn out that the sequence of unilateral translates
{p(- — tj)}‘]?ozo is a Riesz basis of a suitable RKHS on R* which can be described ex-
plicitly in terms of Hardy spaces, if the sequence of bilateral translates {¢ (- —1,)}72_,
is a Riesz basis of HS. A major tool in deriving these results will be the main result
of [16] which allows one to derive certain sampling expansions on RKHS of functions
on R from the corresponding results on RKHS of functions on R*.

LetO0 =1 <1 <1, <--- besampling points with 7,1 —1; > ¢ > Ofor j € Z".
Let ¢ be a real function in L' (R) N L?(R) whose Fourier transform does not have real
zeros and for which the function k4 defined by (3.2) satisfies |k4 ()| < ¥ (¢) fort > 7
and ¥ € L'(R) for some 7 > 0. Then, as we have seen in theorem 3.1, the Gram matrix
{ks(t; — 1j1}i, jez 1s bounded and strictly positive selfadjoint on £%(Z) and the functions
{ki;}jez form a Riesz basis of some closed subspace of the RKHS H#. P where P (o) is
given by (3.3). The purpose of this section is to prove that the semi-infinite matrix

Gij = /ood’(x —t)¢(x —t)dx, i,jeZ, 4.1)
0

is bounded and strictly positive selfadjoint on ¢>(Z*) or, equivalently, that the functions
{¢(- — 1)} jez+ on the positive half-line form a Riesz basis of a suitable closed subspace
of the RKHS HzlD defined in section 3.1. Its proof is based on [16], theorem 2.4.
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Theorem 4.1. Let0 =1y <1 <1, < ---besampling points with ;| —¢; > ¢ > 0 for
j € Z*. Let ¢ be a real function in L'(R) N L?(R) whose Fourier transform does not
have real zeros, which satisfies either of the conditions (i) and (ii) of theorem 3.1, and
which satisfies fooo x|¢ (—x)|*> dx < oo and for which supp ¢ NR* has positive measure.
Then the Gram matrix defined by (4.1) is bounded and strictly positive selfadjoint on
¢2(Z*). Furthermore, if X+ denotes the closed linear span of {kp (-, 1 j)}‘]?‘;o in A}, then

(a) there exist positive constants C;, C, such that the frame inequalities

. 1/2
Cill fllyy < {Z |f(t,-)|2} <Glflyp.  feX, 4.2)

j=0
hold, and
(b) the sampling expansion

k(. 17)

t>0, (4.3)
AGEDE

f@) —Z flpn

holds for every f € X™.

Proof.  In view of theorem 2.4 of Goodman et al. [16] and theorem 3.2 above, it suffices
to prove the following:

(i) The functions {¢ (- —1;)}jez+ form a Riesz basis of some closed subspace of L*(R).

(ii) Let{a;};cz+ belong to €*(Z™). Then Zj€Z+ aj¢(x—t;) = 0foralmostall x € R*
implies a; = O for all j € Z*.

(iii)) We have

0 a0
3 / p(x —1)[* dx < oo. (4.4)
j=177%

Part (i) follows directly from theorems 3.1 and 3.2, using corollary 2.2. Condi-
tion (ii) is immediate, because of the condition that supp ¢ N R™ has positive measure.
In this case the constants kg (z;, ;) = ff’;j | (x)|? dx satisfy

</ |6()|* dx < ks (15, 17) < 1113 < oo.
0

Further, to establish (4.4) we estimate

00 0 oo 00 1 00 00
Z/ |¢>(x—r,~>|2dx=2f |¢>(—x>|2dx<;2(tj—t,~_1>f |6(—x)[" dx
j=1 Y% j=1 1 j=1 1

g—/ / ‘¢(—x)| dx dr = —f x‘¢(—x)| dx < oo,
€ Jo t € Jo
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which settles (4.4). Finally, the positive definiteness of the Gram matrix defined by (4.1)
implies that there exists an RKHS of functions on the positive half-line having

[e¢)
k(t,u) = / ¢(x —)p(x —u)dx
0
as its reproducing kernel. O

Let us now derive the reproducing kernel (¢, #) and the sampling expansion (4.3)
for the four examples of functions ¢ discussed before.

1. Let ¢(t) = e °!"l for some o > 0. Then (cf. [15])

1 1
k(l, u) = (; + |l‘ _ u|>e—at—u o ge—a(t-i-u)‘

Hence the corresponding sampling expansion has the form

0 e —olt—tj| _ —o (1+t)
f0=3 f(tj)(l +olt—ti])e (1/2) e .

_20- .
po 1—(1/2)e20

2. Letop(t) = e~ for some o > 0. Then (cf. [15])

1 /7\"? 20 2 1
k(t,u) = %(5) g~ (/207 (t=w) erfc<§0(t + u)),

where erfc(z) = (2/4/7) fz e gt (cf. [1], 7.1.2). Hence the corresponding sam-
pling expansion has the form

—(1/2)0’2(1—Ij)2 erfc((l/z)o— (t + t]))
erfc(ot;) '

f@=>" fle
j=0

3. Let ¢(t) = 1/(c? + t?) for some 0 > 0. Then by elementary though tedious
calculations we find

1 o o? 2 t u
k(t,u) = odo 1 (=7 o log - + 7 + arctan > + arctan itk

Hence the corresponding sampling expansion has the form

+ 7 4 arctan £ + arctan 4

o

2442
g o+t
—l‘/' log 0’2-'1-1‘/2

1) = t; - .
1o JX_; 1 [1 + (%)2][ 200 + m + 2 arctan %]

2442
0+tj

4. Letgp(t) =e ' fort > 0and ¢ () = 0 for t < 0, where o > 0. Then

k(t,u) = L gotu
T 20 ’
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Hence the corresponding sampling expansion has the form

Fy =3 fape il

j=0

5. Concluding remarks

We conclude this paper with a comparison between the sampling results in [23]
and those in the present paper.

In [23], the RKHS Hj is assumed to be a closed subspace of the Sobolev space
H~'(R) and is also closed under differentiation but need not have unitary translation
invariance properties. Under the conditions that
1) {tj}‘;il is a set of uniqueness of Hp and #; ~ j as j — o0;

(i1) k(-, -) is continuous and
t
AY) = O(ltl_z), t — +00,
k(t,t)

we have the sampling expansion

k(t,1)
k(lj,lj).

HOED NI
j=1

Applications are given to Sobolev spaces, the Shannon—Whittaker sampling theorem and
Sturm—Liouville transforms. The leading idea of [23] is to imbed the space B, (R) of
band limited signals in a closed subspace of H ! (R).

In the present paper, the RKHS H is assumed to be unitarily translation invariant.
Starting from a real function ¢ € L'(R) N L?(R) to represent an extensive class of corre-
sponding reproducing kernels as in (1.1), we arrive at the sampling results of section 3.
When modified to encompass reproducing kernels as in (1.3), we derive the sampling
results of section 4 on the half-line.

In the present paper some technical assumptions on ¢ are needed to derive theo-
rems 3.1, 3.2 and 4.1. No sampling expansions were obtained for band limited signals.
On the other hand, in [23] one requires an asymptotic condition on the sampling points
and a growth condition on f(¢)/k(¢,t) when f € H. The approach in [23] does not
lead to sampling expansions in RKHS on R*.
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