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APPROXIMATION OF SOLUTIONS OF RICCATI EQUATIONS∗

PAVEL BUBÁK† , CORNELIS V. M. VAN DER MEE‡ , AND ANDRÉ C. M. RAN§

Abstract. This paper deals with two interrelated issues. One is an invariant subspace approach
to finding solutions for the algebraic Riccati equation for a class of infinite dimensional systems.
The second is approximation of the solution of the algebraic Riccati equation by finite dimensional
approximants. The theory of exponentially dichotomous operators and bisemigroups is instrumental
in our approach.
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1. Introduction. The goal of this paper is twofold. The first goal is to use the
theory of exponentially dichotomous operators and bisemigroups to derive a result
from the existence of solutions to an algebraic Riccati equation of the type occurring
in LQ-optimal control. This approach allows one to mimic the finite dimensional
approach to algebraic Riccati equations; that is, it allows one to use an invariant
subspace argument to obtain the extremal solutions to the algebraic Riccati equation.
This topic is dealt with in section 2. It is a continuation of earlier work in this direction
presented in [18, 19].

The second goal is to use the results obtained in section 2 to discuss finite dimen-
sional approximations of the solutions of the algebraic Riccati equation and of the
corresponding closed loop semigroup. Our results in this direction are presented in
section 3.

The work on which this paper reports is loosely based on the work done by the
first author for his masters thesis, in combination with work on the perturbation of
bisemigroup generators of the last two authors [19].

Finite dimensional approximations of solutions of algebraic Riccati equations and
of the corresponding closed loop semigroups are the topic of several earlier contribu-
tions; see [2, 8, 14, 12, 13, 20]. In comparison with [14] we do not discuss the algebraic
Riccati equation coming from H∞-control theory, but rather confine ourselves to the
one stemming from LQ-optimal control. The result we obtain is, in this special case,
the same, under slightly different assumptions, but with a completely different, and
in our view, more transparent proof. In [20] attention was also focused on the alge-
braic Riccati equation from LQ-optimal control. The assumptions there are seriously
weaker than the ones imposed in previous works. In particular, instead of exponen-
tial stability (or exponential stabilizability) in [20] strong stabilizability is assumed.
Instead, we consider exponentially dichotomous operators, which allows us to deal
with Hamiltonian operators of linear systems that have no spectrum within a strip
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about the imaginary axis and for which one of the off-diagonal operators is compact.
However, we obtain stronger results on the closed loop approximants (compare our
Theorem 3.4 with Theorem 4.2 in [20]) in return for our stronger assumptions. Again,
our methods of proof are quite different from the ones in [20].

Our approach is part of a long tradition of studying stability results for solutions
of Riccati equations by performing a stability analysis of certain invariant subspaces
of the Hamiltonian operator, while also linking these to stable factorizations of a
transfer function [3, 17]. Structural similarities between these interlocking problems
and state space approaches to solve convolution equations [5] and stationary transport
equations [10] have naturally led to the formal study of exponentially dichotomous
operators [4], results on their perturbation [19], and its present stability analysis of
Hamiltonian operators of autonomous linear systems.

In [19] we have linked the left and right canonical Wiener–Hopf factorizability of
a transfer function built from the Hamiltonian operator(

A0 −D
−Q −A1

)
(1.1)

of a linear system to the existence of the stable and anti-stable solution of a Ric-
cati equation, under hardly more than the assumption that −A0 and −A1 gener-
ate exponentially decaying C0-semigroups on a general Banach space. Even though
not stated explicitly, stability results for these solutions of the Riccati equations are
expected (and thus now conjectured) to hold if the transfer function has a left or
right canonical Wiener–Hopf factorization. Using the well-known fact that this is true
for positive selfadjoint transfer functions on a Hilbert space, we naturally arrive at
the basic outline of the present paper. The stability analysis itself appears to be
straightforward.

Our present approach may be viewed as a tool to derive stability results for Riccati
equations starting from the Hamiltonian operator, where the derivation of the latter
is standard system theory [7, 15]. Many of the existing results (but not all; see [20])
can thus be derived in a transparent way, but the present approach potentially leads
to useful applications to delay systems where the underlying spaces are L1 [11].

When dealing with Hamiltonian operators of the type (1.1) with D = BR−1B∗,
Q = C∗C, and A0 = A∗

1 = A, the infinitesimal generator of a C0-semigroup on a
separable Hilbert space H, it is sufficient to require the exponential stabilizability
of (A,B) or the exponential detectability of (C,A) to arrive at an exponentially di-
chotomous operator on H+̇H after a similarity implementing state feedback or output
injection (e.g., see [7]). Thus for the purpose of this article it is sufficient to deal with
Hamiltonian operators that are exponentially dichotomous.

Let us conclude the introduction with some notations and definitions. By D(A),
KerA, and ImA we denote the domain, kernel, and range of a linear operator A,

respectively, and by IH the identity operator on a Hilbert space H. By H def
= H1+̇H2

we denote the orthogonal direct sum of the Hilbert spaces H1 and H2 and by A
def
=

A1+̇A2 the linear operator on H with domain {(x1, x2) : xj ∈ D(Hj), j = 1, 2} defined
by A(x1, x2) = (A1x1, A2x2).

2. Preliminaries. A closed and densely defined linear operator −S on a Hilbert
space H is called exponentially dichotomous [4] if for some bounded projection P com-
muting with S, the restrictions of S to ImP and of −S to KerP are the infinitesimal
generators of exponentially decaying C0-semigroups. We then define the bisemigroup
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generated by −S as

E(t;−S) =

{
e−tS(I − P ), t > 0

−e−tSP, t < 0.

Its separating projection P is given by P = −E(0−;−S) = IH − E(0+;−S). One
easily verifies [4] the existence of ε > 0 such that {λ ∈ C : |Reλ| ≤ ε} is contained in
the resolvent set ρ(S) of S and for every x ∈ H

(λ− S)−1x = −
∫ ∞

−∞
eλtE(t;−S)x dt, |Reλ| ≤ ε.(2.1)

As a result, ‖(λ− S)−1x‖ → 0 as λ → ∞ in {λ ∈ C : |Reλ| ≤ ε′} for some ε′ ∈ (0, ε].
We have the following perturbation result given also in [19]. We shall give its

proof for selfcontainedness.
Theorem 2.1. Let −S0 be exponentially dichotomous, Γ be a compact operator,

and −S = −S0 +Γ, where D(S) = D(S0). Suppose the imaginary axis is contained in
the resolvent set of S. Then −S is exponentially dichotomous. Moreover, E(t;−S)−
E(t;−S0) is a compact operator, also in the limits as t → 0±.

Proof. There exists ε > 0 such that∫ ∞

−∞
eε|t|‖E(t;−S0)‖ dt < ∞.(2.2)

Using the resolvent identity

(λ− S)−1 − (λ− S0)
−1 = −(λ− S0)

−1Γ(λ− S)−1, |Reλ| ≤ ε,

for some ε > 0, we obtain the convolution integral equation

E(t;−S)x−
∫ ∞

−∞
E(t− τ ;−S0)ΓE(τ ;−S)x dτ = E(t;−S0)x,(2.3)

where x ∈ H and 0 �= t ∈ R. In (2.3), the convolution kernel E(·;−S0)Γ is continuous
in the norm except for a jump discontinuity in t = 0, as a result of the strong continuity
(except for the jump) of E(·;−S0) and the compactness of Γ. Further, (2.2) implies
that eε|·|E(·;−S0)Γ is Bochner integrable.

The symbol of the convolution integral equation (2.3), which equals IH + (λ −
S0)

−1Γ = (λ−S0)
−1(λ−S), tends to IH in the norm as λ → ∞ in the strip |Reλ| ≤ ε,

since Γ is compact and (λ− S0)
−1 tends to zero strongly. Moreover, it is a compact

perturbation of the identity which, by definition, only takes invertible values on the
imaginary axis. Thus there exists ε0 ∈ (0, ε] such that the symbol only takes invertible
values on the strip |Reλ| ≤ ε0.

Before proceeding with the proof we now state the Bochner–Phillips theorem
[6, 9]:

• Let A0 be a Banach algebra, A its natural extension to a Banach algebra with
unit element, and WA0

the Banach algebra of all ordered pairs (A∞, A), where
A∞ ∈ A and A is a Bochner integrable function from R into A0, endowed
with the norm

‖(A∞, A)‖WA0

def
= ‖A∞‖A +

∫ ∞

−∞
‖A(t)‖A0 dt.
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Then (A∞, A) is invertible in WA0
if and only if A∞ and all of the Fourier

transform values

A∞ +

∫ ∞

−∞
eiλtA(t) dt, λ ∈ R,

are invertible elements of A. In that case the inverse (B∞, B) is given by
B∞ = (A∞)−1 and

B∞ +

∫ ∞

−∞
eiλtB(t) dt =

[
A∞ +

∫ ∞

−∞
eiλtA(t) dt

]−1

, λ ∈ R.

We now apply this result in two different situations: (i) A = A0 = L(H) is the
Banach algebra of bounded linear operators on H, and (ii) A0 = K(H) is the Banach
algebra of compact operators on H and A = {λIH + K : λ ∈ C,K ∈ K(H)}. We
then also use that an element (A∞, A) ∈ WL(H) induces a bounded linear operator
on BC(R−;H) ⊕ BC(R∗;H), the bounded continuous functions from R into H with
a jump discontinuity at t = 0, by convolution.

By the Bochner–Phillips theorem, the convolution equation (2.3) has a unique
solution u(·;x) = E(·;−S)x with the following properties:

1) E(·;−S) is strongly continuous, except for a jump discontinuity at t = 0,
2)

∫∞
−∞ eε0|t|‖E(t;−S)‖ dt < ∞; hence E(·;−S) is exponentially decaying,

3) E(t;−S)−E(t;−S0) is a compact operator, also in the limits as t → 0±, and
4) the identity (2.1) holds.

As result [4], −S is exponentially dichotomous.
The set θ = (A0, Q,D;H) is called a triple if H is a complex Hilbert space, A0

generates a strongly continuous semigroup on H of negative exponential type, and Q
and D are bounded selfadjoint operators on H. Then obviously −S0 = (−A0)+̇A∗

0 is
exponentially dichotomous on H+̇H and P0 = IH+̇0 is the separating projection of
the corresponding bisemigroup E(·;−S0). The triple θ is called semicompact if D is
a compact operator on H, and compact if both D and Q are compact operators on
H. The triple θ is called positive semidefinite if Q and D are positive semidefinite
selfadjoint, and antipodal if one of Q and D is positive semidefinite selfadjoint and
the other is negative semidefinite selfadjoint.

Theorem 2.1 can be used to prove the following more specific result.
Theorem 2.2. Let θ = (A0, Q,D;H) be a positive semidefinite and semicompact

triple. Then the block matrix operator −S defined on H+̇H by

S =

[
A0 −D
−Q −A∗

0

]
,

is exponentially dichotomous.
Proof. Suppose (2.2) is satisfied. Let us define the operator

SQ =

[
A0 0
−Q −A∗

0

]
, D(SQ) = D(S0).

Consider the unique and positive semidefinite solution X of the Lyapunov equation
(e.g., [7, (1.12)–(1.13)])

A∗
0X + XA0 = −Q,
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given by

Xx =

∫ ∞

0

eτA
∗
0Qe−τA0x dτ, x ∈ H.

Note that [
I 0

−X I

]
SQ

[
I 0
X I

]
= S0.

So SQ and S0 are similar. Hence −SQ is exponentially dichotomous, and we obtain

E(·;−SQ) =

[
I 0
X I

]
E(·;−S0)

[
I 0

−X I

]
.

We also see that the separating projection PQ of E(·;−SQ) is given by

PQ =

[
I 0
X 0

]
.

Next, we remark that S − SQ is a compact operator. Hence by Theorem 2.1, to
prove that −S is exponentially dichotomous, it suffices to prove that −S does not
have imaginary eigenvalues. Indeed, let λ be an imaginary eigenvalue of −S. Then
there exist x ∈ D(A0) and y ∈ D(A∗

0) such that

(λ + A0)x−Dy = 0,

−Qx + (λ−A∗
0)y = 0.

Then, since λ is purely imaginary, we have

〈Qx, x〉 + 〈Dy, y〉 = 〈(λ−A∗
0)y, x〉 + 〈(λ + A0)x, y〉 = 0,

which implies Qx = Dy = 0. But then (λ−A0)x = (λ+A∗
0)y = 0 for some imaginary

λ, and hence x = y = 0, as claimed.
Let

P = −E(0−;−S) = IH+̇H − E(0+;−S)

denote the separating projection of E(·;−S). Consider the indefinite scalar product
generated by

J1 =

[
0 −IH

−IH 0

]

on H+̇H. Since J1S + S∗J1 = 2(Q+̇D), the real part 1
2 (S + J−1

1 S∗J1) of S with
respect to the indefinite scalar product generated by J1 is positive semidefinite selfad-
joint whenever θ = (A0, Q,D;H) is a positive semidefinite triple. Hence, in this case
it is clear that ImP is a J1-nonpositive and KerP is a J1-nonnegative S-invariant
subspace of H+̇H (cf. [1, section 3.2]). Also [1], since iS is selfadjoint with respect
to the indefinite scalar product generated by

J2 =

[
0 iIH

−iIH 0

]
,
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it is clear that ImP and KerP are J2-neutral S-invariant subspaces of H+̇H (i.e., on
these subspaces the sesquilinear form (x, y) �→ (J2x, y) is trivial).

Further, with X as above and θ = (A0, Q,D;H) a positive semidefinite triple, we
have

−SX
def
=

[
IH 0

−X IH

]
(−S)

[
IH 0
X IH

]
= −S0 +

[
IH

−X

]
D

[
X IH

]
,

which implies that (A0 −DX,XDX,−D;H) is an antipodal compact triple.
We need the following definitions. Suppose W is a continuous function from the

extended imaginary axis i(R ∪ {∞}) into L(H). Then by a left canonical (Wiener–
Hopf ) factorization of W we mean a representation of W of the form

W (λ) = W+(λ)W−(λ), Reλ = 0,

in which W±(±λ) is continuous on the closed right half-plane (the point at ∞ in-
cluded), is analytic on the open right half-plane, and takes only invertible values for
λ in the closed right half-plane (the point at infinity included). Obviously, such an
operator function only takes invertible values on the extended imaginary axis. By a
right canonical (Wiener–Hopf ) factorization we mean a representation of W of the
form

W (λ) = W−(λ)W+(λ), Reλ = 0,

where W±(λ) is as above.
Theorem 2.3. Let θ = (A0, Q,D;H) be a positive semidefinite and semicompact

triple. Then we have the following decompositions:

ImP +̇KerP0 = H+̇H,(2.4)

KerP +̇ImP0 = H+̇H.(2.5)

Proof. Let us introduce the operators

V = P0P + (I − P0)(I − P ),(2.6)

VQ = P0PQ + (I − P0)(I − PQ).(2.7)

Then

VQ =

[
IH 0
0 0

] [
IH 0
X 0

]
+

[
0 0
0 IH

] [
0 0

−X IH

]
=

[
IH 0
−X IH

]
,

so that VQ is invertible. On the other hand, the identity

E(t;−S) −
∫ ∞

−∞
E(t− τ ;−SQ)

[
0 D
0 0

]
E(τ ;−S) dτ

= E(t;−S) −
∫ ∞

−∞
E(t− τ ;−SQ)

[
0 D1/2

0 0

](
E(τ ;−S∗)

[
0 0

D1/2 0

])∗
dτ

= E(t;−SQ),

which is analogous to (2.3) and where the integrand is norm continuous in τ , implies
that

P − PQ = −
∫ ∞

−∞
E(−τ ;−SQ)

[
0 D
0 0

]
E(τ ;−S) dτ,
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is compact. Further,

V − VQ = [P0 − (I − P0)] (P − PQ)

implies that V − VQ is compact. As a result, V is a Fredholm operator of index zero.
Now the operator V satisfies the identities

KerV = [ImP ∩ KerP0] +̇ [KerP ∩ ImP0],

ImV = [ImP + KerP0] ∩ [KerP + ImP0].

So, in order to establish (2.4) and (2.5) it suffices to prove that

ImP ∩ KerP0 = KerP ∩ ImP0 = {0}.

Indeed, the operator function

W (λ) = I +

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1

[
0 D1/2

Q1/2 0

]

= I +

[
Q1/2 0

0 D1/2

] [
0 (λ + A∗

0)
−1

(λ−A0)
−1 0

] [
Q1/2 0

0 D1/2

]
(2.8)

has the identity operator as its real part for imaginary λ and hence

sup
Reλ=0

‖IH − cW (λ)‖ < 1

for some c > 0.
Also, W belongs to the Wiener algebra in the sense that there exists a norm

measurable operator function L(·) for which W is equal to I plus the Fourier transform
of L, and with L having only compact operators as its values such that∫ ∞

−∞
eε|t|‖L(t)‖ dt < ∞,

because of the norm continuity of L(t) for t ∈ R \ {0} and the exponential decay of
‖L(t)‖ as t → ±∞. As a result [9], cW and hence W has left and right canonical
factorizations

W (λ) = W
(l)
− (λ)W

(l)
+ (λ) = W

(r)
+ (λ)W

(r)
− (λ), |Reλ| ≤ ε,(2.9)

for some ε > 0, where W
(l)
− (λ), W

(r)
− (λ) and their inverses are analytic in the half-

plane Reλ < ε and tend to the identity in the norm as λ → ∞ in this half-plane and

W
(l)
+ (λ), W

(r)
+ (λ) and their inverses are analytic in the half-plane Reλ > −ε and tend

to the identity in the norm as λ → ∞ in this half-plane. Using

S = S0 −
[

0 D1/2

Q1/2 0

] [
Q1/2 0

0 D1/2

]

and

W (λ)−1 = I −
[
Q1/2 0

0 D1/2

]
(λ− S)−1

[
0 D1/2

Q1/2 0

]
,
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we obtain

W (λ)−1

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1 =

[
Q1/2 0

0 D1/2

]
(λ− S)−1.(2.10)

Letting x ∈ KerP0∩ImP , we substitute the first of the factorizations (2.9) into (2.10),
observe that the left- and right-hand sides of the resulting identity

W
(l)
− (λ)−1

[
Q1/2 0

0 D1/2

]
(λ− S0)

−1x = W
(l)
+ (λ)

[
Q1/2 0

0 D1/2

]
(λ− S)−1x

are analytic in λ for Reλ < ε and Reλ > −ε, respectively, apply Liouville’s theorem,
and obtain [

Q1/2 0
0 D1/2

]
(λ− S0)

−1x =

[
Q1/2 0

0 D1/2

]
(λ− S)−1x = 0.

Next, we employ the equality

(λ− S)−1x− (λ− S0)
−1x = −(λ− S)−1

[
0 D
Q 0

]
(λ− S0)

−1x

= −(λ− S)−1

[
0 D1/2

Q1/2 0

]
·
[
Q1/2 0

0 D1/2

]
(λ− S0)

−1x = 0

to enable the application of Liouville’s theorem to the analytic continuation of (λ −
S)−1x = (λ− S0)

−1x and conclude that x = 0. As a result, KerP0 ∩ ImP = {0}, as
claimed. In a similar way we prove that ImP0 ∩ KerP = {0}.

Theorem 2.3 implies that (λ − S0)
−1(λ − S) has left and right canonical factor-

izations (as in (2.9)). Letting

Γ =

[
0 D
Q 0

]
,

these factorizations have the following form ([3, Chapter 1])

(λ− S0)
−1(λ− S) =

[
I + (λ− S0)

−1(I − P)Γ
] [
I + P(λ− S0)

−1Γ
]
,

where

(I + (λ− S0)
−1(I − P)Γ)−1 = I − (I − P)(λ− S)−1Γ,

(I + P(λ− S0)
−1Γ)−1 = I − (λ− S)−1PΓ.

Here P is either the projection of H+̇H onto ImP along KerP0 (for the right canonical
factorization) or the projection of H+̇H onto KerP along ImP0 (for the left canonical
factorization).

The following result has been established in [18] for a positive semidefinite triple,
without assuming the compactness of D. As a result, in [18] one does not get the
compactness of Π+, only its boundedness.

Theorem 2.4. Let (A0, Q,D;H) be a positive semidefinite and semicompact
triple. Then there exist unique positive semidefinite selfadjoint operators −Π+ and
Π− on H, where Π+ is compact and Π− is bounded, such that
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(1) the image and kernel of the separating projection P of E(·;−S) are graph
subspaces in the sense that

ImP = Im

[
IH
Π−

]
, KerP = Im

[
Π+

IH

]
,(2.11)

(2) Π− maps D(A0) into D(A∗
0) and Π+ maps D(A∗

0) into D(A0),
(3) Π− is a solution of the operator Riccati equation

ΠA0x + A∗
0 Πx + Qx− ΠDΠx = 0, x ∈ D(A0),(2.12)

and Π+ is a solution of the operator Riccati equation

A0Πx + ΠA∗
0 x + ΠQΠx−Dx = 0, x ∈ D(A∗

0),(2.13)

(4) and A0−DΠ− and A0+Π+Q are the infinitesimal generators of exponentially
decaying C0-semigroups on H.

Proof. According to Theorem 2.3, there exist bounded projections P(l) and P(r)

on H+̇H such that P(l) projects H+̇H onto KerP along ImP0 and P(r) projects
H+̇H onto ImP along KerP0. Hence there exist bounded linear operators Π− and
Π+ on H, so-called angular operators (cf. [3, Chapter 5]), such that

P(l) =

[
IH 0
Π− 0

]
, P(r) =

[
0 Π+

0 IH

]
.(2.14)

As a result, there exist bounded linear operators Π− and Π+ on H such that (2.11)
is true.

One easily proves that

P(l) = V −1(IH − P0), P(r) = V −1P0,

where V is given by (2.6). Since the projections P0 and I−P0 commute with (λ−S0)
−1

and P and I − P commute with (λ − S)−1 whenever |Reλ| ≤ ε for some ε > 0, the
invertible operator V maps D(S0) = D(S) = D(A0)+̇D(A∗

0) onto itself. Consequently,
P(l) and P(r) map this domain into itself and hence Π− maps D(A0) into D(A∗

0) and
Π+ maps D(A∗

0) into D(A0).
The Riccati equations (2.12) and (2.13) follow from the identities

S

[
IH
Π−

]
x =

[
IH
Π−

]
(A0 −DΠ−)x, S

[
Π+

IH

]
y =

[
Π+

IH

]
(−A∗

0 −QΠ+)y,(2.15)

where x ∈ D(A0) and y ∈ D(A∗
0), in the standard way. Furthermore, since S is

exponentially dichotomous with separating projection P and

KerP = Im

[
IH
Π−

]
, ImP = Im

[
Π+

IH

]
,

we immediately have part (4) of Theorem 2.4.
Now remark that Π− and Π+ are selfadjoint (because of the J2-neutrality of

ImP and KerP ), while −Π+ and Π− are positive semidefinite (because of the J1-
nonpositivity of ImP and the J1-nonnegativity of KerP ).
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Finally, from the compactness of V − VQ and hence from the compactness of

V −1 − V −1
Q =

[
IH Π+

Π− IH

]
−
[
IH 0
X IH

]
=

[
0 Π+

Π− −X 0

]
,

where V and VQ are given by (2.6) and (2.7), it follows directly that Π+ and Π− −X
are compact operators.

In [16] a closely related existence result was obtained under the assumption that
the spectrum of the block matrix operator S only consists of algebraically and geo-
metrically simple eigenvalues and does not have finite accumulation points.

3. Approximation. Letting Hn be a sequence of closed linear subspaces of H,
there exist unique operators πn : H → Hn and ın : Hn → H such that ınπn is the
orthogonal projection of H onto Hn and πnın is the identity operator on Hn. We
assume that ınπn tends to IH in the strong sense.

Starting from a given triple θ = (A0, Q,D;H), we define Qn = πnQın, Dn =
πnDın, which are selfadjoint on Hn and positive semidefinite whenever Q and D are
positive semidefinite. Let A0n be a generator of a strongly continuous semigroup on
Hn of negative exponential type. Then a sequence of triples θn = (A0n, Qn, Dn;Hn)
is called an approximant to the triple θ if the following condition holds: for some ε > 0
we have the approximation

lim
n→∞

eε|t| ‖ı̂nE(t;−S0n)π̂nx− E(t;−S0)x‖H = 0(3.1)

for every x ∈ H, uniformly in t ∈ R \ {0}. Here π̂n = πn+̇πn, ı̂n = ın+̇ın and S0n =
A0n+̇(−A∗

0n) on Hn+̇Hn. The sequence of triples θn is called a finite dimensional
approximant to θ if it is an approximant to θ and the spaces Hn = πn[H] are finite
dimensional.

We remark that it is easily seen that ınQnπn converges to Q strongly, while
ınDnπn converges to D in norm because of the compactness of D.

Theorem 3.1. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant
to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Put

Sn =

[
A0n −Dn

−Qn −A∗
0n

]
.

Then

lim
n→∞

‖ı̂nE(t;−Sn)π̂nx− E(t;−S)x‖H = 0(3.2)

for every x ∈ H+̇H, uniformly in t ∈ R \ {0}.
Proof. Consider the sequence of triples θQn = (A0n, Qn, 0;Hn) approximant to the

positive semidefinite triple θ = (A0, Q, 0;H). Put

SQ
n =

[
A0n 0
−Qn −A∗

0n

]
.

In analogy with (2.3) we obtain

E(t;−SQ
n )x = E(t;−S0n)x +

∫ ∞

−∞
E(t− τ ;−S0n)ΓQE(τ ;−SQ

n )x dτ.
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Because of (3.1), we see that ‖E(t;−S0n)‖ has a finite upper bound which is inde-
pendent of t ∈ R \ {0} and n ∈ N. Using dominated convergence, we take the limit
under the integral sign and find that for some ε > 0

lim
n→∞

eε|t|
∥∥ı̂nE(t;−SQ

n )π̂nx− E(t;−SQ)x
∥∥
H = 0(3.3)

for every x ∈ H, uniformly in t ∈ R \ {0}.
Next, in analogy with (2.3) we have

E(t;−Sn) −
∫ ∞

−∞
E(t− τ ;−SQ

n )ΓD
n E(τ ;−Sn) dτ = E(t;−SQ

n ),

where ΓD
n =

(
0 Dn

0 0

)
. This integral equation implies that

ı̂nE(t;−Sn)π̂nx−
∫ ∞

−∞
ı̂nE(t− τ ;−SQ

n )ΓD
n E(τ ;−Sn)π̂nx dτ

= ı̂nE(t;−SQ
n )π̂nx,(3.4)

where x ∈ H+̇H. Note that ΓD
n = π̂nΓD ı̂n, so that (3.4) can be written in the form

ı̂nE(t;−Sn)π̂nx−
∫ ∞

−∞
ı̂nE(t− τ ;−SQ

n )π̂nΓD · ı̂nE(τ ;−Sn)π̂nx dτ

= ı̂nE(t;−SQ
n )π̂nx,

where x ∈ H+̇H. Equation (3.3) and the compactness of ΓD imply that for some
ε > 0

lim
n→∞

eε|t|
∥∥ı̂nE(t;−SQ

n )π̂nΓD − E(t;−SQ)ΓD

∥∥
H = 0,

uniformly in t ∈ R \ {0}. Because of the unique solvability of (3.4) on the complex
Banach space of bounded continuous Hn-valued functions on the real line with a
possible jump discontinuity in t = 0, in combination with (3.3), we obtain (3.2) as
claimed.

Let

Xn =

∫ ∞

0

eτA
∗
0nQne

τA0n dτ

be the unique solution of the Lyapunov equation

A∗
0n Xn + XnA0n = −Qn.

Using dominated convergence one easily proves that, under the hypotheses of Theorem
3.1,

lim
n→∞

‖ınXnπnx−Xx‖ = 0, x ∈ H.(3.5)

Similarly, the unique solution

Yn =

∫ ∞

0

eτA0nDne
τA∗

0n dτ
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of the Lyapunov equation

A0nYn + YnA
∗
0n = −Dn

has the property that

lim
n→∞

‖ınYnπnx− Y x‖ = 0, x ∈ H,

where

Y =

∫ ∞

0

eτA0D eτA
∗
0 dτ

is the unique solution of the Lyapunov equation

A0Y + Y A∗
0 = −D.

Let us now prove the strong stability of Π− and the stability of Π+ in the norm
if a positive semidefinite and semicompact triple is approximated by a sequence of
triples in the sense of the above definition. The obvious way to do so is to study the
operator Wiener–Hopf equation

u(t;x) −
∫ ∞

0

E(t− τ ;−S0)Γu(τ ;x) dτ = E(t;−S0)x,(3.6)

where x ∈ KerP0 and t > 0, or the operator Wiener–Hopf equation

v(t;x) −
∫ 0

−∞
E(t− τ ;−S0)Γv(τ ;x) dτ = E(t;−S0)x,(3.7)

where x ∈ ImP and t < 0. Unfortunately, their integral kernel E(·;−S0)Γ is, in
general, not Bochner integrable. If it were, one would trivially obtain the solutions of
(3.6) and (3.7) as follows:

u(t;x) = E(t;−S)P(l)x, v(t;x) = E(t;−S)P(r)x.

Let us therefore introduce the modified operator convolution kernel

K(t;−S0) =

[
Q1/2 0

0 D1/2

]
E(t;−S0)

[
0 D1/2

Q1/2 0

]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
0 −Q1/2e−tA0D1/2

0 0

]
, t < 0,

[
0 0

D1/2etA
∗
0Q1/2 0

]
, t > 0.

Note that K(t;−S0) is compact and norm continuous in t �= 0. This integral kernel
satisfies [

Q1/2 0
0 D1/2

]
E(t;−S0)Γ = K(t;−S0)

[
Q1/2 0

0 D1/2

]
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and leads to operator Wiener–Hopf equations with Bochner integrable convolution
kernel and symbol W (λ) defined by (2.8). Indeed, these equations are given by

w(t;x) −
∫ ∞

0

K(t− τ ;−S0)w(τ ;x) dτ =

[
Q1/2 0

0 D1/2

]
E(t;−S0)x,(3.8)

where x ∈ KerP0 and t > 0, and by

z(t;x) −
∫ 0

−∞
K(t− τ ;−S0)z(τ ;x) dτ =

[
Q1/2 0

0 D1/2

]
E(t;−S0)x,(3.9)

where x ∈ ImP and t < 0. Equations (3.8) and (3.9) are uniquely solvable, because
their symbol W (λ) has left and right canonical Wiener–Hopf factorizations. Once
(3.8) and (3.9) have been solved, we have

u(t;x) = E(t;−S0)x +

∫ ∞

0

E(t− τ ;−S0)

[
0 D1/2

Q1/2 0

]
w(τ ;x)dτ(3.10)

for x ∈ KerP0 and t > 0, and

v(t;x) = E(t;−S0)x +

∫ 0

−∞
E(t− τ ;−S0)

[
0 D1/2

Q1/2 0

]
z(τ ;x)dτ(3.11)

for x ∈ ImP0 and t < 0. We then finally obtain

P(l)x = u(0+;x), P(r)x = −v(0−;x),

and hence [cf. (2.14)]

Π−x =
[
0 IH

]
u(0+;x), Π+x = −

[
IH 0

]
v(0−;x).(3.12)

Theorem 3.2. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant
to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then

lim
n→∞

‖ınΠ−,nπnx− Π−x‖ = 0,(3.13)

and

lim
n→∞

‖ınΠ+,nπnx− Π+x‖ = 0(3.14)

for every x ∈ H.

Proof. From (3.1), the strong convergence ınQ
1/2
n πn → Q1/2 and the compactness

of D1/2, we obtain for some ε > 0

lim
n→∞

eε|t| ‖ı̂nK(t;−S0n)π̂n −K(t)‖ = 0,

uniformly in t ∈ R \ {0}, and hence for some ε > 0

lim
n→∞

∫ ∞

−∞
eε|t| ‖ı̂nK(t;−S0n)π̂n −K(t)‖ dt = 0.

Thus, using (3.1) and the unique solvability of (3.8), we get for some ε > 0

lim
n→∞

eε|t| ‖ı̂nwn(t; π̂nx) − w(t;x)‖ = 0
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for every x ∈ H+̇H, uniformly in t ∈ R
+. Similarly, for some ε > 0 we have

lim
n→∞

eε|t| ‖ı̂nzn(t; π̂nx) − z(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R
−. With the help of (3.1), (3.10), and (3.11),

we find for some ε > 0

lim
n→∞

eε|t| ‖ı̂nun(t; π̂nx) − u(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R
+, as well as

lim
n→∞

eε|t| ‖ı̂nvn(t; π̂nx) − v(t;x)‖ = 0

for every x ∈ H+̇H, uniformly in t ∈ R
−. Using (3.12) we then easily obtain (3.13)

and (3.14).
The following result strengthens the convergence properties stated in Theorem

3.2.
Theorem 3.3. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant

to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then

lim
n→∞

‖ın(Π−,n −Xn)πn − (Π− −X)‖ = 0,(3.15)

lim
n→∞

‖ınΠ+,nπn − Π+‖ = 0.(3.16)

Proof. From (3.8) and E(t;−S0) = 0+̇etA
∗
0 for t > 0 it is clear that for every

t > 0 the right-hand side of (3.8) can be viewed as the result of applying a compact
operator to a vector x ∈ H. Since (3.1) and the compactness of D1/2 imply that for
some ε > 0

lim
n→∞

∥∥∥ınD1/2
n etA

∗
0n(I − P0n)πn −D1/2etA

∗
0 (I − P0)

∥∥∥ = 0, t > 0,

we have

lim
n→∞

∥∥∥∥∥ı̂n
[
Q

1/2
n 0

0 D
1/2
n

]
E(t;−S0n)π̂n −

[
Q1/2 0

0 D1/2

]
E(t;−S0)

∥∥∥∥∥ = 0,

and this allows one to sharpen the derivation of (3.14) and to obtain (3.16) instead.
To prove (3.15), we replace (3.7), (3.9), and (3.11) by

vQ(t;x) −
∫ 0

−∞
E(t− τ ;−SQ)ΓDvQ(τ ;x) dτ = E(t;−SQ)x,(3.17)

zQ(t;x) −
∫ 0

−∞
K(t− τ ;−SQ)zQ(τ ;x) dτ =

[
0 0
0 D1/2

]
E(t;−SQ)x,(3.18)

vQ(t;x) = E(t;−SQ)x +

∫ 0

−∞
E(t− τ ;−SQ)

[
0 D1/2

0 0

]
zQ(τ ;x)dτ ,(3.19)

respectively, where x ∈ H, ΓD =

(
0 D
0 0

)
, and the convolution kernel K(t;−SQ)

satisfies

K(t;−SQ)

[
0 0
0 D1/2

]
=

[
0 0
0 D1/2

]
E(t;−SQ).
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Repeating the proof of (3.16) with the help of (3.17), (3.18), and (3.19) we obtain
(3.15).

It remains to consider the approximation of the C0-semigroups generated by A0−
DΠ− and A∗

0 + QΠ+. Indeed, from (2.15) we easily derive the identity

S

[
IH Π+

Π− IH

]
=

[
A0 −D
−Q −A∗

0

] [
IH Π+

Π− IH

]
=

[
IH Π+

Π− IH

] [
A0 −DΠ− 0

0 −A∗
0 −QΠ+

]
,

where A0−DΠ− and A∗
0 +QΠ+ both generate exponentially decaying C0-semigroups

on H. Writing down the analogous identity for resolvent operators and applying the
inverse Laplace transform, we get[

IH Π+

Π− IH

]−1

E(t;−S)

[
IH Π+

Π− IH

]
=

{
et(A0−DΠ−)+̇0H, t > 0,

0H+̇
(
−e−t(A∗

0+QΠ+)
)
, t < 0,

(3.20)

where 0H denotes the zero operator on H.
Theorem 3.4. Let θn = (A0n, Qn, Dn;Hn) be a sequence of triples approximant

to the positive semidefinite semicompact triple θ = (A0, Q,D;H). Then for t > 0 we
have

lim
n→∞

∥∥∥ınet(A0n−DnΠ−,n)πn − et(A0−DΠ−)
∥∥∥ = 0,(3.21)

lim
n→∞

∥∥∥ınet(A∗
0n+QnΠ+,n)πn − et(A

∗
0−QΠ+)

∥∥∥ = 0,(3.22)

uniformly in t on compact intervals of either [0,∞) or (−∞, 0].
Proof. Because of (3.2) and (3.20), it suffices to prove that for each x ∈ H we

have

lim
n→∞

‖[̂ınMnπ̂n −M ]x‖ = 0,(3.23)

lim
n→∞

∥∥[ı̂nM−1
n π̂n −M−1

]
x
∥∥ = 0,(3.24)

where

M =

[
IH Π+

Π− IH

]
, Mn =

[
IHn

Π+,n

Π−,n IHn

]
.

Indeed, (3.13), (3.16), and the compactness of the operator Π+ imply that

lim
n→∞

‖ın(IHn − Π−,nΠ+,n)πn − (IH − Π−Π+)‖ = 0.

Now note that IH −Π−Π+ is invertible, as a result of the existence of the projection
P [cf. (2.11)]. Thus

lim
n→∞

∥∥ın(IHn − Π−,nΠ+,n)−1πn − (IH − Π−Π+)−1
∥∥ = 0,

and by taking the adjoint

lim
n→∞

∥∥ın(IHn − Π+,nΠ−,n)−1πn − (IH − Π+Π−)−1
∥∥ = 0.

We now easily show that

M−1 =

[
(IH − Π+Π−)−1 −(IH − Π+Π−)−1Π+

−(IH − Π−Π+)−1Π− (IH − Π−Π+)−1

]
.(3.25)

Hence from (3.25) and the analogous expression for M−1
n , we now easily derive (3.23)

and (3.24).
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4. Conclusions and remarks. In this paper, exponentially dichotomous block
matrix operators on H+̇H have been studied as additive perturbations of exponen-
tially dichotomous operators of the type A0+̇(−A∗

0). This allows a considerable range
of LQ-optimal control theory applications; for instance, the example in [16] concern-
ing the heat equation could be dealt with in this way. (We did not do so explicitly,
because we expect no better results than the ones one can expect for a Hamiltonian
that is a Riesz spectral operator, and taking as approximations for Hn the spaces
spanned by the first n vectors in a properly constructed Riesz basis of eigenvectors
of the Hamiltonian. The results would be no better than the ones already existing in
the literature.)

Also we considered (possibly finite dimensional) approximations. In connection
with the latter topic there are still many open questions. Questions that are natural
from a numerical analysis point of view come to mind; for instance, how is the speed
of convergence in the results described in section 3 tied to the speed of convergence in
(3.1) and to the speed of convergence of ınDπn to D? What about Lipschitz estimates
and relative error bounds? All these points are open problems, although an analysis
of our proofs may provide some answers.

Finally, delay systems defy application of the existing results. In order to be
able to deal with applications to delay systems we would need criteria for exponen-
tial dichotomy, where the linear operator is not a perturbation of a naturally given
exponentially dichotomous operator, and where a Banach space setting is adopted.
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