
UNIVERSITY OF CAGLIARI

PhD COURSE IN MATHEMATICS AND
SCIENTIFIC COMPUTING

Scientific Disciplinary Sector: MAT/08

Applications of low-rank approximation:
complex networks and inverse problems

SUPERVISOR:

Prof. Giuseppe Rodriguez

CANDIDATE:

Caterina Fenu

Academic year 2013 – 2014

A matematikus olyan gép, amely a kávét tételekké alakítja
(A mathematician is a machine for turning coffee into theorems)

— Alfréd Rényi (1921− 1970)

Contents

Introduction xvii

1. Preliminaries 1
1.1 Eigendecomposition, Singular Value Decomposition and Jordan Canoni-

cal Form . 1
1.2 Low-rank approximation . 2
1.3 Orthogonal polynomials . 3
1.4 Krylov subspaces and Decomposition algorithms 6

1.4.1 The Symmetric Lanczos algorithm 6
1.4.2 The Arnoldi algorithm . 7
1.4.3 The Nonsymmetric Lanczos algorithm 7
1.4.4 The Golub–Kahan Bidiagonalization algorithm 8
1.4.5 The Symmetric Block Lanczos Algorithm 8
1.4.6 The Nonsymmetric Block Lanczos Algorithm 10

1.5 Bilinear Forms and Quadrature Rules 13
1.5.1 The Gauss rule . 15
1.5.2 The Gauss–Radau rule . 15
1.5.3 The Anti–Gauss rule . 16
1.5.4 The Symmetric Block Gauss quadrature rule 17
1.5.5 The Nonsymmetric Block Gauss quadrature rule 18
1.5.6 The Symmetric Block Anti-Gauss quadrature rule 19
1.5.7 The Nonsymmetric Block Anti-Gauss quadrature rule 21
1.5.8 Bilinear forms . 22
1.5.9 Block methods . 24

1.6 Inverse Problems . 27
1.6.1 Linear least squares problems 28
1.6.2 Nonlinear least squares problems 28
1.6.3 Regularization Methods . 30
1.6.4 Choice of the regularization parameter 33

2. Complex networks 35
2.1 Graphs and Complex networks . 35
2.2 Centrality indices and rank of the nodes 37
2.3 Undirected networks . 39

2.3.1 Use of low-rank approximation 40
2.3.2 Numerical experiments . 47

2.4 Directed networks . 61
2.4.1 Use of low-rank approximation 64

v

vi CONTENTS

2.4.2 Numerical experiments . 75

3. Electromagnetic Sounding 85
3.1 The nonlinear forward model . 86
3.2 Solution of the inverse problem . 88

3.2.1 Inversion algorithm . 89
3.2.2 Computation of the Jacobian 90
3.2.3 Low-rank approximation as regularization method 93
3.2.4 Choice of the regularization parameter 95

3.3 Numerical experiments . 95
3.3.1 Synthetic data . 95
3.3.2 Field data . 101

Conclusions and future work 107

Bibliography 109

List of Figures

2.1 Two examples of graphs that are not complex networks. On the left side
a random graph and on the right side a complete graph. 35

2.2 Representation of the Watts-Strogatz rewiring process. 37
2.3 The sparsity pattern of a typical 1000× 1000 matrix for each one of the

nine kinds of random adjacency matrices used in the computed examples.
The parameter nz shows the number of nonzero entries of each matrix. 48

2.4 From right to left: Eigenvalue distribution (top) and subgraph centrali-
ties (bottom) for the networks smallw, renga, and sticky with n = 512
nodes. 51

2.5 Execution time for the algorithms considered when the size of the
network varies. 53

2.6 Hybrid algorithm: execution time versus block-size for four classes of
adjacency matrices, n = 4096. 54

2.7 Eigenvalues of the adjacency matrix of the yeast (left) and power (right)
networks. 54

2.8 The sparsity pattern of the Netbeans network: original adjacency matrix
(left), symmetrized version (right). The parameter nz shows the number
of nonzero entries of each matrix. 56

2.9 Execution times for symmetric Lanczos methods with block-size 1 (top
graph) and for block-size k (bottom graph) as a function of k when
determining approximations of the entries of WT f(A)W . The right
panel shows the ratio between the timings. 62

2.10 Execution times for block-size 1 (top graph) and block-size k (bottom
graph) as a function of k when computing the subgraph centralities of
k nodes. The right panel shows the ratio between the timings. 63

2.11 Singular values of the Celegans (left) and Air500 (right) test matrices.
The graphs in the top row are in decimal scale, while the ones at the
bottom are plotted using a semilogarithmic scale. 76

2.12 Graph of the first 100 singular values of the adjacency matrices of the
three largest networks considered in the experiments. From left to right:
PGP, Wikipedia, and Slashdot. 77

2.13 Differences between upper and lower bounds during the first 5 steps of
Algorithm 3–4. On the left, we report the differences for the bounds
(2.4.20), on the right those resulting from (2.4.21). 81

3.1 Vertical and horizontal alignment of the coils of a GCM 85
3.2 Schematic representation of the subsoil and of the discretization used in

the following. 87

vii

3.3 SVD of the Jacobian matrix: left, average singular values and errors
(n = 20); right, average singular values for n = 10, 20, 30, 40. 93

3.4 Graphs of the conductivity distribution models f1, f2, and f3. The
horizontal axis reports the depth in meters, the vertical axis the electrical
conductivity in Siemens/meter. 96

3.5 Optimal reconstruction for the model functions f2 and f3. The number
of underground layers is n = 40, the noise level is τ = 10−3. The solid
line is the solution obtained by taking as input 5 measurements for every
loop orientation (that is, m = 5), the dashed line corresponds to m = 10,
the line with bullets to m = 20. The exact solution is represented by a
dash-dotted line. 97

3.6 Results for the reconstruction of test function f3,ξ with a variable step
length ξ, which is reported on the horizontal axis. The left graph reports
the average error eopt, obtained with three regularization matrices
M = I,D1, D2. Each test is repeated 20 times for each noise level
τ = 10−3, 10−2. The right graph reports the corresponding standard
deviations. 99

3.7 Optimal reconstructions for the test function f3,ξ, with step lengths
ξ = 1.0 (left), 0.5 (center), and 0.2 (right), obtained with M = D1 and
noise level τ = 10−2. 100

3.8 Results for test function f1, with m = 10, n = 40, τ = 10−2, and
M = D2. The graph on the left displays the L-curve; the one on
the right the exact solution and the reconstructions produced by the
discrepancy principle and the L-corner method. 101

3.9 Results for test function f2, with m = 10, n = 40, τ = 10−3, and
M = D1. The graph on the left displays the L-curve; the one on
the right the exact solution and the reconstructions produced by the
discrepancy principle and the L-corner method. 101

3.10 ERT results: in the left graph we display the conductivity section; the
right graph reports the conductivity profile versus the depth, at the
position where the electromagnetic data were collected, marked by a
dashed line in the first graph. 102

3.11 Left: mean apparent conductivities measured in vertical (circles) and
horizontal (triangles) modes at different heights above the ground; error
bars are standard deviations, which are multiplied by 10 for display
purpose. Right: the wooden frame used to put the instrument at
different heights above the ground. In the picture, the GCM is placed
at height 0.5m. 103

3.12 Regularized solutions σ`, with regularization parameter ` = 2, . . . , 7,
obtained by applying TSVD (M = I) to each iteration of the Gauss–
Newton method. We used all the available measurements (m = 20) and
set n = 40. The dashed line represents the conductivity predicted by
ERT. 104

3.13 Use of TGSVD . 105
3.14 Regularized solutions σ`, with regularization parameter ` = 1, 2, 3,

obtained by applying TGSVD (M = D2) to each iteration of the Gauss–
Newton method, and setting n = 40. In the top graphs we used half of
the available measurements (m = 10); the bottom graphs are obtained
by m = 5, that is, employing a quarter of the data. The dashed line
represents the conductivity predicted by ERT. 106

viii

LIST OF TABLES ix

List of Tables

2.1 Mean and standard deviation (sdev) for nine classes of random adjacency
matrices of order n = 1024 of the number N of eigenpairs required to
achieve |S(N)| ≤ M for M = 2k, 0 ≤ k ≤ 9. The sample size is 100
matrices of each kind. 49

2.2 Results obtained by the low-rank approximation method with termina-
tion due to strong or weak convergence. The table shows the number
of failures, the number N of eigenpairs required to satisfy the specified
termination criterion, the execution time in seconds, and in case of weak
convergence the cardinality of the list N of candidate nodes. Each test
was repeated 10 times with 4096× 4096 adjacency matrices. 50

2.3 Comparison of Gauss quadrature and the hybrid algorithm. Each test is
repeated 10 times with n = 4096. For each kind of adjacency matrix, we
report the average number of matrix-vector product evaluations required
(mvp) and the average execution time in seconds. 52

2.4 Comparison between hybrid algorithms with block-size k = 5 and k = 1.
Each test is repeated 10 times, with n = 4096. 55

2.5 Results obtained by the low-rank approximation algorithm with both
strong and weak convergence criteria. The table reports the number of
failures, the number N of eigenpairs required to reach convergence, the
execution time, and, in case of weak convergence, the cardinality of the
list N of candidate nodes. 55

2.6 Comparison of Gauss quadrature and hybrid algorithms. For each
matrix, we report the number of matrix-vector product evaluations
(mvp) and the execution time in seconds. 56

2.7 Results obtained by the low-rank approximation algorithm with both
strong and weak convergence criteria. The table reports the number of
failures, the number N of eigenpairs required to reach convergence, the
execution time, and, in case of weak convergence, the cardinality of the
list N of candidate nodes. 57

2.8 Comparison of Gauss quadrature and hybrid algorithms. For each
matrix, we report the number of matrix-vector product evaluations
(mvp) and the execution time in seconds. 57

2.9 Contingency table reporting the frequency of bugs with respects to
either subgraph centrality or starting convenience. 58

x LIST OF TABLES

2.10 Execution time, in seconds, for computing centralities of and communi-
cabilities between five nodes of undirected networks. 61

2.11 Number of MVP evaluations and size of the error GN (2.3.15) for both
block-sizes 1 and 5. 61

2.12 Results obtained by the low-rank approximation algorithm, with both
strong and weak convergence criteria, when determining the 5 most
important hubs and authorities. The table reports the number of failures,
the number N of triplets required to reach convergence, and, in case of
weak convergence, the cardinality of the lists S(N)

H,5 and S(N)
A,5 of candidate

nodes. 78

2.13 Comparison of Gauss quadrature, low rank approximations and the
hybrid algorithm. For each adjacency matrix, we report the number of
matrix-vector product evaluations required (mvp). 78

2.14 Comparison of expm, Gauss quadrature, low rank approximations and
the hybrid algorithm. For each adjacency matrix, we report the execution
time in seconds. 79

2.15 Results obtained by the low-rank approximation algorithm, with both
strong and weak convergence criteria, when determining the m most
important hubs and authorities with m = 1%, 5%, and 10% of the
number of nodes in the network. The table reports the number of
failures, the number N of singular triplets required to reach convergence,
and, in case of weak convergence, the cardinality of the lists S(N)

H,m and

S
(N)
A,m of candidate nodes. 79

2.16 Computation of starting conveniences by Algorithm 3-4 with the aid of
the strong convergence criterion using the bounds (2.4.20) or (2.4.21).
We report the number of singular triplets required to satisfy the strong
convergence criterion and the number of matrix-vector product evaluations. 80

2.17 Differences between the ranking produced by the hub/authority cen-
trality and by the HITS algorithm. We report the number of nodes,
among the first 100, which are placed in a different position by the two
methods, and the index of the first different node in each ranking list. 81

2.18 Execution times (in seconds) of expm and the nonsymmetric block
Lanczos method. The table also shows the number of matrix-vector
product evaluations, the number of block Lanczos steps, and the quantity
(2.3.15). 84

3.1 Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for the TSVD
solution (M = I) and the TGSVD solution with M = D1 and M = D2.
The Jacobian is computed as in Section 3.2.2. 97

3.2 Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for f1 (M = D2), f2
(M = D1), and f3 (M = D2). The results obtained from measurements
collected with the instrument in both vertical and horizontal orientation
are compared to those obtained with a single orientation. 98

3.3 Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for f1 (M = D2),
f2 (M = D1), and f3 (M = D2). The Jacobian is computed every 10
iterations and then updated by the Broyden method. 99

LIST OF TABLES xi

3.4 Performance of the methods for the estimation of the regularization
parameters described in Section 3.2.4, when the inversion algorithm is
applied to field data with m = 20, n = 40, and M = I,D1, D2. Each
entry of the table reports the value of ` identified by a particular method
and, in parentheses, the depth at which the maximum of σ` is located
and the value of the maximum (in S/m). The values predicted by ERT
are (1.68,1.74). 103

Abstract

The use of low-rank approximation is crucial when one is interested in solving
problems of large dimension. In this case, the matrix with reduced rank can be obtained
starting from the singular value decomposition considering only the largest components.
This thesis describes how the use of the low-rank approximation can be applied both
in the analysis of complex networks and in the solution of inverse problems.

In the first case, it will be explained how to identify the most important nodes
or how to determine the ease of traveling between them in large-scale networks that
arise in many applications. The use of low-rank approximation is presented both
for undirected and directed networks, whose adjacency matrices are symmetric and
nonsymmetric, respectively.

As a second application, we propose how to identify inhomogeneities in the ground
or the presence of conductive substances. This survey is addressed with the aid of
electromagnetic induction measurements taken with a ground conductivity meter.
Starting from electromagnetic data collected by this device, the electrical conductivity
profile of the soil is reconstructed with the aid of a regularized damped Gauss–Newton
method. The inversion method is based on the low-rank approximation of the Jacobian
of the function to be inverted.

xiii

Acknowledgements

There are many people that I would like to thank for helping me during my Ph.D.,
both from the professional point of view and the personal one.

First of all my “academic dad” Giuseppe Rodriguez, for his guidance and his support
over the past four years. I couldn’t have wished for a better advisor. I am also grateful
to the entire research group based on Viale Merello, especially Francesco and Luisa,
for making me feel at home. I would like also to thank Prof. Lothar Reichel for the
lasting collaboration and inspiration.

I am extremely grateful to all the people in my life who encouraged me. First of
all my parents and my sister who always trusted in me. My second family, Ale, Fra,
Mu, Silvy and Vale, for the (many many!) years of friendship. My Businco family,
especially Ale, Cesare, Simona and Matteo, and my Abacus family, Beto, Cozio, DD,
Faby, Red and Ste. With you all I spent the best moments of my life.

Last, but not least, Vanni. Thank you for your constant therapy and for your
friεndship.

Cagliari, 2015 C. F.

xv

Introduction

Numerical Linear Algebra is the part of mathematics that studies algorithms which
involve matrix computation. It is common to deal with problems of large dimension
that cannot be faced directly and require some kind of approximation. A low-rank
approximation of a matrix is a matrix with reduced rank that replaces the original
one in the resolution of a problem. The Eckart–Young theorem [40] proves that the
best low-rank approximation of a matrix can be obtained starting from the singular
value decomposition. There are several applications that make use of this kind of
approximation. Moreover, there is an increasing interest in tensor decomposition in
the past few years [34, 61, 83, 136]. In this thesis we will describe how the low-rank
approximation can be useful both in the analysis of complex networks and in the
solution of inverse problems.

First, we will describe an application in Complex Networks Theory (CNT). This is
a branch of Graph Theory which has recently gained much attention. In particular,
complex networks are used to model interactions between various entities in real life
applications, e.g. in computer science, sociology, economics, genetics, epidemiology; see
for example [13, 43, 46, 103]. A graph is a pair of sets G = (V,E), with |V | = n and
|E| = m. The elements of V are called nodes or vertices and those of E are known as
edges or arcs. If the edges can be travelled in both directions the network is said to be
undirected, directed otherwise. The adjacency matrix corresponding to an unweighted
graph is the matrix A ∈ Rn×n such that Aij = 1 if there is an edge from node i to
node j, and Aij = 0 if node i and j are not adjacent. This kind of matrix is binary
and, in general, nonsymmetric. One of the main issues in CNT is to find the “most
important” nodes within a graph G. To this aim, various indices (or metrics) have
been introduced to characterize the importance of a node in terms of connection with
the rest of the network. The simplest and most classical ones are the in-degree and
the out-degree, that is, the number of nodes that can reach one node or that can be
reached from that node, respectively. These metrics do not give global information on
the graph, since they only count the number of neighbors of each node. We will focus
on indices that can be computed in terms of matrix functions applied to the adjacency
matrix of the graph. We can define a class of indices starting from a matrix function

f(A) =

∞∑
m=0

cmA
m, cm ≥ 0.

Since [Am]ij gives the number of paths of length m starting from the node i and
ending at node j, [f(A)]ij is a weighted average of all the paths connecting i to j, and
describes the ease of travelling between them. We refer to [f(A)]ii as the f -centrality
of node i, and [f(A)]ij as the f -communicability between node i and node j.

In the literature, particular attention has been reserved to the exponential function.
In [44, 49], the authors refer to

[
eA
]
ii

as the subgraph centrality of node i and to

xvii

xviii INTRODUCTION

[
eA
]
ij

as the subgraph communicability between node i and node j, in the case of an
undirected graph. Recently, the notion of hub centrality and authority centrality has
been introduced [11] in the case of a directed graph.

Benzi and Boito [10], following the techniques described by Golub and Meurant [58,
59], employed quadrature formulas to find upper and lower bounds of bilinear forms of
the kind uT f(A)v (with u and v unit vectors) in the case of a symmetric adjacency
matrix.

If we assume that [f(A)]ii is a measure of the importance of node i, then we can
identify the m most important nodes as the m nodes with the largest centrality. In
order to do this using Gauss-type quadrature rules, we may apply this method with
u = ei, for i = 1, . . . , n. Since a complex network is generally very large, this approach
may be impractical.

We will describe a new computational method to rank the nodes of both undirected
and directed unweighted networks, according to the values of the above matrix functions.
The idea is to reduce the cardinality of the set of candidate nodes in order to apply
Gauss-type quadrature rules to a smaller number of nodes. The first part of the resulting
algorithm, called hybrid method, is based on a low-rank approximation of the adjacency
matrix. If the network is undirected a partial eigenvalue decomposition is used [51],
while if the network is directed we make use of a partial singular value decomposition
[5]. We will compare the hybrid algorithm to other computational approaches, on test
networks coming from real applications, e.g. in software engineering, bibliometrics
and social networks. We will also present a block algorithm to compute the entries
of the matrix exponential for both symmetric and nonsymmetric matrices, which
is particularly efficient on computers with a hierarchical memory structure. This
algorithm is based on block Gauss and anti-Gauss quadrature rules. In the case of a
nonsymmetric matrix the block approach is necessary to avoid breakdowns during the
computation [50, 99].

As a second application, we will present an inversion procedure in geophysics. In
particular, we are interested in recovering the conductivity profile of the soil starting
from measured data. To this aim, we will make use of the Electromagnetic induction
(EMI) technique. This method has had widespread use in hydrological and hydrogeo-
logical characterizations [89, 108, 118], hazardous waste characterization studies [62,
100], precision-agriculture applications [26, 54, 135], archaeological surveys [86, 106,
127], geotechnical investigations [110] and unexploded ordnance (UXO) detection [79,
80]. The use of small measurement systems, with rapid response and easy to integrate
into mobile platforms, has been the key factor in the success of EMI techniques for
near-surface investigations in these fields, as they allow dense surveying and real-time
conductivity mapping over large areas in a cost-effective manner. EMI theory and foun-
dations of measurement systems are described in the applied geophysics literature [101,
122, 133]. The basic instrument, usually called a ground conductivity meter (GCM),
contains two small coils, a transmitter and a receiver, whose axes can be aligned either
vertically or horizontally with respect to the ground surface. An alternating sinusoidal
current in the transmitter produces a primary magnetic field HP , which induces small
eddy currents in the subsurface. These currents, in turn, produce a secondary magnetic
field HS which is measured, together with the primary field, at the receiver. The ratio
of the secondary to the primary magnetic fields, recorded as in-phase and quadrature
components, is then used, along with the instrumental parameters (height above the
ground, frequency, inter-coil spacing, and coil configuration), to estimate electrical
properties (conductivity and magnetic susceptibility) of the subsurface.

Traditional GCMs have been designed as profiling instruments for apparent electrical

xix

conductivity (defined as the conductivity of a homogeneous half-space that produces
the same response as measured above the real earth with the same device) mapping,
mainly with subsequent qualitative interpretation. Nevertheless, they can be also used
to perform sounding surveys to get quantitative estimates of depth variations in true
electrical conductivity. For this purpose, different approaches have been considered.
Assuming a linear dependence between the GCM response and the subsurface electrical
conductivity, McNeill [101] presented a method to estimate conductivities for simple
multi-layered earth models, which is applicable for low induction numbers

B =
r

δ
= r

√
µ0ωσ

2
� 1,

under the assumption of uniform electrical conductivity σ. Here r is the inter-coil
distance while δ represents the skin depth (the depth at which the principal field HP

has been attenuated by a factor e−1); µ0 = 4π10−7 H/m is the magnetic permeability
of free space and ω = 2πf , where f is the operating frequency of the device in Hz.

Adopting the same linear model of McNeill [101], Borchers et al. [20] implemented a
Tikhonov inverse procedure. Subsequently, to account for high values of the induction
number, Hendrickx et al. [74] fitted the technique of Borchers et al. [20] to the nonlinear
model described in Ward and Hohmann [133]. Besides, Deidda et al. [35] proposed
a least squares inverse procedure to estimate conductivity profiles under the linear
model assumption. All these approaches were reliable and useful, as they provided
quantitative estimate of depth variation in true electrical conductivity, but they were
not very appealing for the practitioners, as long as the use of traditional GCMs
prevailed. In fact, collecting the required multiple measurements at several heights
above the ground involves time-consuming, laborious, and costly fieldwork.

We will describe a regularized 1D inversion procedure designed to swiftly manage
multiple GCM depth responses [36]. It is based on the coupling of the damped Gauss–
Newton method with either the truncated singular value decomposition (TSVD) or the
truncated generalized singular value decomposition (TGSVD), and it implements an
explicit (exact) representation of the Jacobian to solve the nonlinear inverse problem.
To illustrate its performance, we first describe the results obtained inverting synthetic
data sets generated over three 1D layered models with very high conductivities. In
particular, we analyze the influence of some experimental settings, such as number and
type of measurements (vertical and horizontal coil configurations), highlighting the
different behavior of TSVD and TGSVD, implemented with two different regularization
matrices. In addition, we also investigate how to choose the optimal regularization
parameter, both when the noise level in the data is known and when it is not. Besides,
measuring the execution time for all numerical experiments, in contrast with Schultz
and Ruppel [119], we prove that the analytical computation of the Jacobian, combined
with the Broyden update, makes the inversion algorithm more than ten times faster
than approximating the Jacobian by finite differences. Finally, we present a real
case study: using a field data set measured at a site where an independent electrical
resistivity tomography (ERT) was also collected, we assess the reliability of the inversion
procedure by comparing the inverted conductivity profile to the profile obtained by
ERT.

The plan of the thesis is the following:

The first chapter introduces preliminary notions of the numerical linear algebra
that will be used in the rest of the thesis.

xx INTRODUCTION

The second chapter discusses how the low-rank approximation is useful when trying
to identify the most important nodes in a network.

The third chapter investigates the application of low-rank approximations in the
regularization of an inverse problem in geophysics.

1. Preliminaries

In this chapter we recall some basic concepts in numerical linear algebra that will
be used to show how low-rank approximation can help in the analysis of both complex
networks and inverse problems. The first part is dedicated to the connection between
Lanczos algorithms and quadrature formulae investigated by Golub and Meurant [58,
59]. These results, and some new ones presented in Subsections 1.5.6 and 1.5.7, will be
used in the second chapter. The second part is devoted to the description of some well
known results in the inverse problems field that we will use in the third chapter.

1.1 Eigendecomposition, Singular Value Decomposi-
tion and Jordan Canonical Form

Definition 1.1.1 (Eigenvalues and eigenvectors). Given a square matrix A ∈ Cn×n,
an eigenvector of A is a vector v 6= 0 ∈ Cn such that Av = λv, λ ∈ C. The scalar λ
is called the eigenvalue corresponding to the eigenvector v.

By definition, the eigenvectors of a matrix A are the non-trivial solutions of the
linear system (A − λI)v = 0 and therefore the eigenvalues are the solutions of the
characteristic equation det (A− λI) = 0. By the fundamental theorem of algebra, the
characteristic equation has exactly n roots, counted with multiplicity, i.e., every matrix
A ∈ Cn×n has n, possibly non distinct, eigenvalues.

Definition 1.1.2 (Normal matrix). A square matrix A ∈ Cn×n is normal if A∗A =
AA∗, where A∗ = ĀT is the conjugate transpose of A.

Theorem 1.1.1 (Spectral decomposition). Let A ∈ Cn×n be a normal matrix. Then
there exist a unitary matrix V ∈ Cn×n and a diagonal matrix Λ ∈ Cn×n such that

A = V ΛV ∗ (1.1.1)

where Λ contains the eigenvalues of A and the columns of V are the correspond-
ing (properly normalized) eigenvectors. The identity (1.1.1) is called the Spectral
Decomposition or Eigendecomposition of the matrix A.

Proof. See [85].

Definition 1.1.3 (Singular values and singular vectors). Given a matrix A ∈ Cm×n,
a scalar σ ≥ 0 is a singular value for A if and only if there exist unit-length vectors
u ∈ Cm and v ∈ Cn such that

Av = σu and A∗u = σv. (1.1.2)

The vectors u and v are called left-singular and right-singular vectors for σ,
respectively.

1

2 CHAPTER 1. PRELIMINARIES

Multiplying the (1.1.2) by A∗ and A, respectively, we obtain

A∗Av = σA∗u = σ2v and AA∗u = σAv = σ2u,

that is:

• the right-singular vectors of A are eigenvectors of A∗A;

• the left-singular vectors of A are eigenvectors of AA∗;

• the non-zero singular values of A are the square roots of the non-zero eigenvalues
of both A∗A and AA∗.

• the number of zero singular values is p−r, where p = min {m,n} and r = rank (A).

Theorem 1.1.2 (Singular value decomposition). Let A ∈ Cm×n be a matrix. Then
there exist a unitary matrix U ∈ Cm×m, a diagonal matrix Σ ∈ Cm×n and a unitary
matrix V ∈ Cn×n such that

A = UΣV ∗ (1.1.3)

where Σ contains the singular values of A and the columns of U and V are the
corresponding (properly normalized) left and right singular vectors, respectively. The
identity (1.1.3) is called the Singular Value Decomposition (SVD) of the matrix
A.

Proof. See [60].

Definition 1.1.4 (Jordan canonical form). The Jordan form of a square matrix
A ∈ Cn×n is a matrix J ∈ Cn×n such that

Z−1AZ = J = diag (J1, . . . , Jp), (1.1.4)

where

Jk =

λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk

and Z ∈ Cn×n is nonsingular. The elements λ1, . . . , λp are the eigenvalues of the
matrix A and m1, . . . ,mp satisfy m1 + · · ·+mp = n.

1.2 Low-rank approximation

Generally speaking, computing a low-rank approximation consists of solving an
optimization problem in which the loss function to be minimized measures how a
matrix is an appropriate approximation of a given matrix containing the data, subject
to the constraint that the approximating matrix has reduced rank.

Definition 1.2.1 (Low-rank approximation). A low-rank approximation of a matrix
A ∈ Rm×n is a matrix Ar ∈ Rm×n such that

Ar = min
Â∈Rm×n

‖A− Â‖ subject to rank Â ≤ r. (1.2.1)

1.3. ORTHOGONAL POLYNOMIALS 3

The following theorem shows that the low-rank approximation problem admits an
analytical solution in terms of the singular value decomposition of the data matrix.

Theorem 1.2.1 (Eckart–Young). Let A = UΣV T ∈ Rm×n be the singular value
decomposition of A e let U , V and Σ partitioned as follows:

U =:
[
U1 U2

]
, Σ =:

[
Σ1 0
0 Σ2

]
, and V =:

[
V1 V2

]
, (1.2.2)

where Σ1 ∈ Rr×r, U1 ∈ Rm×r, and V1 ∈ Rn×r. Then the rank-r matrix, obtained from
the truncated singular value decomposition (TSVD) Â∗ = U1Σ1V

T
1 , is such that

‖A− Â∗‖ = min
rank Â≤r

‖A− Â‖.

The minimizer Â∗ is unique if and only if σr+1 6= σr.

Proof. See [40]

1.3 Orthogonal polynomials

Definition 1.3.1 (Stieltjes integral). The Riemann–Stieltjes integral of a function
f : R→ R with respect to a function ω : R→ R is defined as∫ b

a

f(x) dω(x) = lim
δ(P)→0

n−1∑
i=0

f(ci)(ω(xi+1)− ω(xi)), ci ∈ [xi, xi+1]

where P = {a = x0 < x1 < · · · < xn = b} is a partition of the interval [a, b] and

δ(P) = max
xi∈P

|xi+1 − xi|.

The two functions f and ω are respectively called the integrand and the integrator.

In the following we also will make use of the notation∫ b

a

f(x)w(x) dx,

where w(x) is a weight function.

Definition 1.3.2 (Inner product). Let Π be the space of real polynomials. Given two
polynomials p, q ∈ Π, the inner product with respect to the measure ω is defined as

〈p, q〉 =

∫ b

a

p(x)q(x) dω(x), (1.3.1)

and the the norm of p is given by

‖p‖ω =

(∫ b

a

p(x)2 dω(x)

) 1
2

4 CHAPTER 1. PRELIMINARIES

The discrete version of inner product (1.3.1) is given by

〈p, q〉 =

m∑
j=1

p(xj)q(xj)w
2
j . (1.3.2)

The values xj and wj are called nodes and weights, respectively. The relation
between the two inner products is given by the fact that (1.3.2) can be seen as an
approximation of (1.3.1) which, conversely, can be viewed as a Stieltjes integral with
respect to the measure ω(x) defined as

ω(x) =

0 if x < t1,∑i
j=1 w

2
j if ti ≤ x < ti+1, i = 1, . . . ,m− 1,∑m

j=1 w
2
j if x ≥ tm.

(1.3.3)

The space (L2
w, 〈·, ·〉) of measurable functions such that∫ b

a

f(x)2 dω(x) <∞

with the inner product given by (1.3.1) (or (1.3.2)), is a Hilbert Space.

Definition 1.3.3 (Orthogonal polynomials). A set of polynomials {pi}, i = 1, 2, . . . , is
said to be orthogonal with respect to inner products (1.3.1)– (1.3.2) if 〈pi, pj〉 = 0,∀i 6= j.
Moreover, the polynomials pi are orthonormal if 〈pi, pj〉 = δij.

Theorem 1.3.1 (Three-term recurrence). For orthonormal polynomials, there exist
sequences of coefficients αk and βk, k = 1, 2, . . . , such that

βk+1pk+1(x) = (x− αk+1)pk(x)− βkpk−1(x), k = 0, 1, . . . ,

p−1 =: 0, and p0 =: 1/β0
(1.3.4)

with αk+1 = 〈xpk, pk〉, k = 0, 1, . . . , and βk computed such that ‖pk‖ω = 1.

Proof. See [59].

If the orthonormal polynomials exist for every k, then we can associate to them an
infinite symmetric tridiagonal matrix, called the Jacobi matrix, defined as

J∞ =

α1 β1
β1 α2 β2

β2 α3 β3
.

 . (1.3.5)

We will denote by Jk its leading principal submatrix of order k.
The three-term recurrence (1.3.4) can be written in matrix form as

xPk(x) = JkPk(x) + βkpk(x)ek, (1.3.6)

where Pk(x) = [p0(x), p1(x), . . . , pk−1(x)]T is the vector of the first k orthonormal
polynomials valued at x, Jk is the Jacobi matrix of order k and ek is the last column
of the identity matrix of order k.

1.3. ORTHOGONAL POLYNOMIALS 5

Theorem 1.3.2. The zeros θ(k)j of the orthonormal polynomial pk are the eigenval-
ues of the matrix Jk, called the Ritz values, and Pk(θ

(k)
j) are the corresponding

(unnormalized) eigenvectors.

Proof. The proof follows easily from (1.3.6).

Following [59] we refer to matrix polynomials as polynomials whose coefficients are
square matrices.

Definition 1.3.4. A matrix polynomial p(x) of order k, x ∈ R, is defined as

p(x) =

i∑
j=0

xjCj

where the coefficients Cj are given square matrices of order k.

Definition 1.3.5 (Inner product). The inner product of two matrix polynomials p
and q is defined as

〈p, q〉 =

∫ b

a

p(x)dω(x)q(x)T , (1.3.7)

where the measure ω(x) is a square matrix of order k.

Definition 1.3.6 (Orthogonal matrix polynomials). A sequence of matrix polynomials
{p`}, ` = 0, 1, . . . , is said to be orthonormal if

〈pi, pj〉 = δi,jIk.

for every pair (i, j).

Theorem 1.3.3. Sequences of orthogonal matrix polynomials satisfy a block three-term
recurrence

xpj−1(x) = pj(x)Γj + pj−1(x)Ωj + pj−2(x)ΓTj−1, j = 1, 2, . . . ,

p0(x) := Ik, p−1(x) := Ok,
(1.3.8)

where Ok denotes the k × k zero matrix. For each j, the recursion coefficients Γj and
Ωj are k × k matrices with real entries. Moreover, Ωj is symmetric and Γj can be
chosen to be upper triangular. Defining

PN (x) := [p0(x), . . . , pN−1(x)] ∈ Rk×kN , (1.3.9)

it follows that
xPN (x) = PN (x)JN + pN (x)ΓNE

T
N , (1.3.10)

where

JN :=

Ω1 ΓT1
Γ1 Ω2 ΓT2

.
ΓN−2 ΩN−1 ΓTN−1

ΓN−1 ΩN

 ∈ RkN×kN . (1.3.11)

and Ei := [e(i−1)k+1, . . . , eik] denotes a “block axis vector” of appropriate size with
k × k blocks, that is, its ith block is Ik and all other blocks vanish. The matrix JN is
symmetric, block-tridiagonal, and has bandwidth 2k + 1.

6 CHAPTER 1. PRELIMINARIES

1.4 Krylov subspaces and Decomposition algorithms
Definition 1.4.1. Let A be a symmetric matrix of order n and u a given vector of
size n. The Krylov subspace of order k is the linear subspace spanned by the images
of u under the first k − 1 powers of A, that is

Kk(A,u) = span{u, Au, A2u, . . . , Ak−1u}.

The matrix
Kk = [u, Au, A2u, . . . , Ak−1u]

is called the Krylov matrix.

As k increases, the columns of Kk tend to align with the dominant eigenvector of
A, that is, Kk is ill conditioned.

1.4.1 The Symmetric Lanczos algorithm
The Lanczos algorithm allows to construct an orthonormal basis for the Krylov

subspace. The application of k steps of the Lanczos method to the matrix A with
initial vector u yields the decomposition

AUk = UkTk + βkuk+1e
T
k , (1.4.1)

where the matrix Uk ∈ Rn×k has orthonormal columns with Uke1 = u,

Tk =

α1 β1
β1 α2 β2

.
. βk−1

βk−1 αk

 ∈ Rk×k, (1.4.2)

uk+1 ∈ Rn is a unit vector that is orthogonal to the columns of Uk, βk is a positive
scalar, and ej denotes the jth axis vector of appropriate dimension. After n steps, the
Lanczos algorithm yields the factorization

A = UnTnU
T
n ,

that is, the matrix A is similar to a tridiagonal matrix.
The following theorems state the connection between Lanczos algorithm and or-

thogonal polynomials.

Theorem 1.4.1. The Lanczos vectors uk can be represented as polynomials in A
applied to the initial vector u1 = u. In particular, uk+1 = pk(A)u1 where

pk(λ) = (−1)k−1
det (Tk − λI)

β1 · · ·βk−1
, k ≥ 1, β0p0(λ) ≡ 1. (1.4.3)

Proof. See [59]

Theorem 1.4.2. Given the Lanczos vectors uk there exists a measure ω(λ) such that

〈uk,u`〉 = 〈pk, p`〉 =

∫ b

a

pk(λ)p`(λ) dω(λ)

1.4. KRYLOV SUBSPACES AND DECOMPOSITION ALGORITHMS 7

where a ≤ λ1 and b ≥ λn. This measure is given by

ω(λ) =

0 if λ < λ1,∑i
j=1 w

2
j if λi ≤ λ < λi+1, i = 1, . . . ,m− 1,∑m

j=1 w
2
j if λ ≥ λn,

where A = QΛQT is the eigendecomposition of the matrix A and w = QTu .

Proof. See [59]

It is easy to show that the polynomials given by (1.4.3) satisfy a three-term
recurrence

βk+1pk+1(λ) = (λ− αk+1)pk(λ)− βkpk−1(λ)

with initial condition p−1 =: 0 and p0 =: 1/β0.

1.4.2 The Arnoldi algorithm
If the matrix A is nonsymmetric, an orthonormal basis {uj} for the Krylov subspace

Kk(A,u) can be constructed applying a variant of the Gram–Schmidt orthogonalization
process. The Arnoldi algorithm consists of orthogonalizing Auj , with u1 = u, instead
of orthogonalizing Aju against the previous vectors. After k steps, the Arnoldi process
yields

AUk = UkHk + hk+1,kuk+1e
T
k ,

where Uk = [u1, . . . ,uk], Hk is an upper Hessenberg matrix and the vector ek is the
kth column of the identity matrix of order k.

If the matrix A is symmetric, then the matrix Hk is a tridiagonal matrix, that is,
the Arnoldi algorithm corresponds to the Lanczos algorithm.

1.4.3 The Nonsymmetric Lanczos algorithm
An alternative way to deal with nonsymmetric matrices is the nonsymmetric Lanczos

algorithm which constructs two biorthonormal bases {uj} and {ũj} for the Krylov
subspaces Kk(A,u) and Kk(AT , ũ), respectively, with 〈u, ũ〉 6= 0. If

Jk =

α1 β2
β̃2 α2 β3

.
. βk

β̃k αk

 ,

Uk = [u1, . . . ,uk] and Ũk = [ũ1, . . . , ũk], the algorithm yields

AUk = UkJk + β̃k+1uk+1e
T
k ,

AT Ũk = ŨkJ
T
k + βk+1ũk+1e

T
k .

The drawback of this algorithm is that it may break down, that is, at some step
〈uk, ũk〉 = 0. There are two different cases:

• one of both uk and ũk vanish. In this case an invariant susbspace has been
found.

• none of uk and ũk vanishes. This is known as “serious breakdown” and the
computation can be continued only applying some strategies.

8 CHAPTER 1. PRELIMINARIES

1.4.4 The Golub–Kahan Bidiagonalization algorithm
In some applications the decomposition of a matrix M = AAT is crucial. In this

case, since M is symmetric, we could apply the Lanczos algorithm. However, the
fact that the matrix M is factorized in such a way can be used. Application of `
Golub–Kahan bidiagonalization steps to the matrix A with initial vector u yields the
decompositions

AP` = Q`+1B`+1,`, ATQ` = P`B
T
` , (1.4.4)

where the matrices P` ∈ Rn×` and Q`+1 ∈ Rn×(`+1) have orthonormal columns,
Q` ∈ Rn×` consists of the first ` columns of Q`+1, Q`+1e1 = u, and the matrix
B`+1,` = [βjk] ∈ R(`+1)×` is lower bidiagonal with leading ` × ` submatrix B`. All
diagonal and subdiagonal entries of B`+1,` may be assumed to be nonvanishing,
otherwise the recursions break down and the discussion simplifies. A detailed discussion
on Golub–Kahan bidiagonalization is provided, e.g., by Björck [15].

Combining the equations (1.4.4) gives

AATQ` = Q`B`B
T
` + β`+1,`β`,`q`+1e

T
` , (1.4.5)

where q`+1 denotes the last column of Q`+1. The matrix

T` = B`B
T
` (1.4.6)

is symmetric and tridiagonal. Therefore, the expression (1.4.5) is a partial symmetric
Lanczos tridiagonalization of the symmetric positive semidefinite matrix AAT .

1.4.5 The Symmetric Block Lanczos Algorithm
The Block Lanczos algorithms can be used in the special case when we start the

iterative method with a block-vector instead of a column-vector, as presented in [58, 59].
Let the matrix X1 ∈ Rm×k have orthonormal columns and define X0 := O ∈ Rm×k.
The recurrence relations of the symmetric block Lanczos method are given by

Ωj = XT
j AXj ,

Rj = AXj −XjΩj −Xj−1ΓTj−1, j = 1, . . . , N,

Xj+1Γj = Rj ,

(1.4.7)

and can be expressed in the form

A [X1, . . . , XN] = [X1, . . . , XN] JN +XN+1ΓNE
T
N . (1.4.8)

Here Xj+1Γj = Rj is a QR factorization, that is Xj+1 ∈ Rm×k has orthonormal
columns, Γj ∈ Rk×k is upper triangular, and

JN :=

Ω1 ΓT1
Γ1 Ω2 ΓT2

.
ΓN−2 ΩN−1 ΓTN−1

ΓN−1 ΩN

 ∈ RkN×kN . (1.4.9)

is a block tridiagonal matrix. The symmetric block Lanczos method is said to break
down at the jth step if Rj is (numerically) rank deficient. In this case, the computations

1.4. KRYLOV SUBSPACES AND DECOMPOSITION ALGORITHMS 9

can be continued by replacing (numerically) linearly dependent columns of Xj+1 by
arbitrary columns that are orthogonal to the ranges of the matrices Rj and X1, . . . , Xj ,
and then computing the QR factorization Xj+1Γj = Rj . The upper triangular matrix
Γj ∈ Rk×k so obtained is necessarily singular. For ease of exposition, we assume that
the block Lanczos method does not break down during the first N steps, that is, the
step N + 1 of the recursions (1.4.7) determines the matrices ΩN+1, RN+1, XN+2, and
ΓN+1. In this case, each upper triangular matrix Γj , for 1 ≤ j ≤ N , is invertible and
may be chosen to have positive diagonal elements.

By construction, the block-vectors Xi ∈ Rm×k satisfy

XT
i Xj = δijIk,

and it can be shown by induction that

Xi+1 =

i∑
j=0

AjX1C
(i)
j , 0 ≤ i ≤ N,

for suitable matrices C(i)
j ∈ Rk×k. Similarly as Golub and Meurant [58, 59], we consider

the sequence of matrix polynomials pi defined by

pi(λ) =

i∑
j=0

λjC
(i)
j , 0 ≤ i ≤ N. (1.4.10)

The following result from [58, 59] shows that these polynomials are orthonormal with
respect to the bilinear form

I(f, g) :=

m∑
i=1

fT (λi)αiα
T
i g(λi), (1.4.11)

where α : R→ Rk×k is a discrete matrix-valued distribution with jumps αiαTi at the
eigenvalues λi of A.

Theorem 1.4.3. Let I be defined by (1.4.11). Then the polynomials (1.4.10) satisfy

I(pi, pj) = XT
i+1Xj+1 = δijIk, 0 ≤ i, j ≤ N.

Proof. This result is shown in [58, 59]. A proof of a generalization to the nonsymmetric
setting is provided in Theorem 1.4.5.

One can show that, under the assumptions following (1.4.8), the matrix polynomials
satisfy the recurrence relation (1.3.8), which is analogous to (1.4.7).

We now state an important characterization of the eigenvalues and eigenvectors of
the matrix JN in (1.4.9) and (1.4.8). This result is part of [39, Theorem 1.1]. It is is
reported in [58, 59].

Theorem 1.4.4. The eigenvalues of JN are the zeros of det[pN (λ)]. Furthermore,
defining PN by (1.3.9), the unit (right) eigenvector y(N)

r of JN corresponding to the
eigenvalue θ(N)

r is given by y(N)
r = PTN (θ

(N)
r)u

(N)
r , where u(N)

r consists of the first k
components of y(N)

r . Moreover, pTN (θ
(N)
r)u

(N)
r = 0.

Proof. A proof of this result can be found in [39]. Theorem 1.4.6 below and its proof
provide a generalization to the nonsymmetric setting.

10 CHAPTER 1. PRELIMINARIES

1.4.6 The Nonsymmetric Block Lanczos Algorithm

Assume that the matrices V1,W1 ∈ Rm×k are used as starting block-vectors and
that they satisfy V T1 W1 = Ik, and let V0∆T

0 = W0ΓT0 = 0 ∈ Rm×k. The following
recurrence relations described by Bai, Day and Ye [8] determine the first N steps of
the nonsymmetric block Lanczos method:

Ωj = WT
j

(
AVj − Vj−1∆T

j−1
)
,

Rj = AVj − VjΩj − Vj−1∆T
j−1,

Sj = ATWj −WjΩ
T
j −Wj−1ΓTj−1,

QRRR = Rj , QSRS = Sj ,

WΣV T = QTSQR,

Vj+1 = QRV Σ−1/2, Wj+1 = QSWΣ−1/2,

Γj = Σ1/2V TRR, ∆j = Σ1/2WTRS .

j = 1, . . . , N, (1.4.12)

Here QRRR = Rj and QSRS = Sj are QR factorizations, where QR, QS ∈ Rm×k have
orthonormal columns and RR, RS ∈ Rk×k are upper triangular. The factorization
WΣV T = QTSQR is a singular value decomposition of the right-hand side matrix. The
recursions (1.4.12) can be summarized as

A [V1, . . . , VN] = [V1, . . . , VN] JN + VN+1ΓNE
T
N ,

AT [W1, . . . ,WN] = [W1, . . . ,WN] JTN +WN+1∆NE
T
N ,

(1.4.13)

where

JN :=

Ω1 ∆T

1

Γ1 Ω2 ∆T
2

.
ΓN−2 ΩN−1 ∆T

N−1
ΓN−1 ΩN

 ∈ RkN×kN (1.4.14)

The recursion formulas (1.4.12) provide one of many possible implementations of
the nonsymmetric block Lanczos method; see [8] for a discussion on the advantages
of this particular implementation. We say that the nonsymmetric block Lanczos
method breaks down at step j if STj Rj is (numerically) singular. The problem of
breakdown is more complicated for the nonsymmetric block Lanczos method than for
its symmetric counterpart. While breakdown of the symmetric block Lanczos method
can always be remedied by the introduction of one or several new vectors, this is not
the case for the nonsymmetric block Lanczos method. Instead, the recursions may
have to be terminated. This situation is referred to as serious breakdown. A sufficient
condition for serious breakdown at step j is that the matrix STj Rj is singular, and both
matrices Sj and Rj are of full rank. Bai, Day and Ye [8] provide a thorough discussion
on breakdown of the recursions (1.4.12) and show that serious breakdown can be
circumvented by restarting the nonsymmetric block Lanczos method after introducing
an appropriate additional vector in the initial block-vectors W1 and V1 (increasing the
block-size by 1).

When no breakdown occurs during the recursions (1.4.12), the matrices Γj and ∆j

are nonsingular for 1 ≤ j ≤ N . We may assume that the initial block-vectors W1 and
V1 have been suitably augmented to avoid breakdown.

1.4. KRYLOV SUBSPACES AND DECOMPOSITION ALGORITHMS 11

By construction, the block-vectors Wi and Vi are biorthogonal, i.e., they satisfy

V Ti Wj = δijIk.

One can show by induction that

Vi+1 =

i∑
j=0

AjV1C
(i)
j ,

Wi+1 =

i∑
j=0

(
AT
)j
W1D

(i)
j ,

0 ≤ i ≤ N,

for suitably chosen matrices C(i)
j , D

(i)
j ∈ Rk×k.

Define the matrix polynomials pi and qi by

pi(λ) :=

i∑
j=0

λjC
(i)
j ,

qi(λ) :=

i∑
j=0

λjD
(i)
j ,

0 ≤ i ≤ N. (1.4.15)

We now show that these polynomials are biorthogonal with respect to the bilinear form

I(f, g) :=

m∑
i=1

fH(λ̄i)αiβ
H
i g(λi), (1.4.16)

with

[α1, . . . ,αm] = WT
1 Q ∈ Ck×m,

[β1, . . . ,βm] =
(
Q−1V1

)H ∈ Ck×m,
(1.4.17)

where A = QΛQ−1. The following is a generalization of [58, Theorem 4.4] and of
Theorem 1.4.3.

Theorem 1.4.5. Let I be defined by (1.4.16). Then the polynomials (1.4.15) satisfy

I(qi, pj) = WT
i+1Vj+1 = δijIk, 0 ≤ i, j ≤ N.

12 CHAPTER 1. PRELIMINARIES

Proof. We have for 0 ≤ i, j ≤ N that

δijIk = WT
i+1Vj+1 =

(
i∑

s=0

(
AT
)s
W1D

(i)
s

)T (j∑
t=0

AtV1C
(j)
t

)

=

i∑
s=0

j∑
t=0

(
D(i)
s

)T
WT

1 A
s+tV1C

(j)
t

=

i∑
s=0

j∑
t=0

(
D(i)
s

)T
I(λs+t)C

(j)
t (1.4.18)

=

i∑
s=0

j∑
t=0

(
D(i)
s

)T
I
(
λ̄s, λt

)
C

(j)
t (1.4.19)

=

i∑
s=0

j∑
t=0

I
(
λ̄sD(i)

s , λtC
(j)
t

)
= I

(
i∑

s=0

λ̄sD(i)
s ,

j∑
t=0

λtC
(j)
t

)
= I(qi, pj),

where I in (1.4.18) and (1.4.19) is defined as

If =:

m∑
i=1

f(λi)αiβ
H
i (1.4.20)

and (1.4.16), respectively, with αi and βi defined in (1.4.17).

One can show that, under the assumptions following (1.4.14), the matrix polynomials
pj and qi satisfy the recurrence relations

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)∆T
j−1,

λqj−1(λ) = qj(λ)∆j + qj−1(λ)ΩTj + qj−2(λ)ΓTj−1,

p0(λ) := Ik, q0(λ) := Ik, p−1(λ) := Ok, q−1(λ) := Ok,

(1.4.21)

with the matrix recursion coefficients ∆j , Γj , and Ωj defined by the nonsymmetric
Lanczos recursions (1.4.12). Letting

PN (λ) := [p0(λ), . . . , pN−1(λ)] ∈ Rk×kN ,
QN (λ) := [q0(λ), . . . , qN−1(λ)] ∈ Rk×kN ,

(1.4.22)

the recurrence relations (1.4.21) can be expressed as

λPN (λ) = PN (λ)JN + pN (λ)ΓNE
T
N ,

λQN (λ) = QN (λ)JTN + qN (λ)∆NE
T
N ,

(1.4.23)

where JN is defined in (1.4.14).
We are in a position to describe properties of the eigenvalues and eigenvectors

of the block tridiagonal matrix JN in (1.4.14). This extends Theorem 1.4.4 to the
nonsymmetric setting.

1.5. BILINEAR FORMS AND QUADRATURE RULES 13

Theorem 1.4.6. Let the matrix JN be defined by (1.4.14) and let PN and QN be given
by (1.4.22) with the polynomials pi and qi from (1.4.15). Then the following properties
hold:

(1) The eigenvalues of JN are the zeros of both det[pN (λ)] and det[qN (λ)].

(2) The unit right eigenvector y(N)
r of JN corresponding to the eigenvalue θ(N)

r is
given by QTN (θ

(N)
r)u

(N)
r , where u(N)

r consists of the first k components of y(N)
r .

Moreover, qTN (θ
(N)
r)u

(N)
r = 0.

(3) The unit right eigenvector z(N)
r of JTN corresponding to the eigenvalue θ(N)

r is
given by PTN (θ

(N)
r)v

(N)
r , where v(N)

r consists of the first k components of z(N)
r .

Further, pTN (θ
(N)
r)v

(N)
r = 0.

Proof. Our proof is inspired by the proof of [39, Theorem 1.1]. We establish the
relation between the zeros of det[qN (λ)] and the eigenvalues of JN in (1), as well as
(2). The remainder of the proof follows similarly and, therefore, is omitted.

Suppose that JNy = θy for y 6= 0, and write yT = [yT1 , . . . ,y
T
N], where yi ∈ Ck

for 1 ≤ i ≤ N . Notice that

Ω1y1 + ∆T
1 y2 = θy1,

...

Γi−1yi−1 + Ωiyi + ∆T
i yi+1 = θyi,

...
ΓN−1yN−1 + ΩNyN = θyN .

Since Ωi, Γi, ∆i are the matrix recurrence coefficients for the polynomials qi, we obtain
by induction that

yi+1 = qTi (θ)y1, 0 ≤ i ≤ N − 1,

0 = qTN (θ)y1,

where we have used that the matrices ∆i are invertible for 1 ≤ i ≤ N . Since y 6= 0, it
follows that y1 6= 0 and, therefore, det[qN (θ)] = 0. This also establishes (2).

It remains to show that every zero of det[qN (θ)] is an eigenvalue of JN . Suppose
that det[qN (θ)] = 0. Then there is a vector u ∈ CNk\{0} such that uT qN (θ) = 0.
By (1.4.23), this implies that

JNQ
T
N (θ)u = θQTN (θ)u.

Since q0(θ) ≡ Ik, the vector QTN (θ)u is nonzero and is, thus, a right eigenvector of
JN associated with the eigenvalue θ. This establishes part (1) regarding det[qN (θ)].

1.5 Bilinear Forms and Quadrature Rules
There are many equivalent ways of defining a matrix function. We will use the one

involving the Jordan canonical form (1.1.4). For a deeper discussion see [77].

14 CHAPTER 1. PRELIMINARIES

Definition 1.5.1 (Matrix functions). Let f be defined on the spectrum of A ∈ Cn×n
and let A have the Jordan canonical form (1.1.4). Then

f(A) =: Zf(J)Z−1 = Z diag (f(Jk))Z−1, (1.5.1)

where

f(Jk) =

f(λk) f ′(λk) . . . f(mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

Remark 1.5.1. If A is diagonalizable, then A = ZJZ−1 is the eigendecomposition of
the matrix A, that is J = diag (λi) and Z contain the eigenvalues and the eigenvectors
of A, respectively. From Definition 1.5.1 we have

f(A) =: Zf(J)Z−1 = Z diag (f(λi))Z
−1.

Let ω be a measure on the interval [a, b] and f a function whose Stieltjes integral
and all the moments exist.

Definition 1.5.2 (Quadrature formula). A quadrature rule is a relation∫ b

a

f(λ) dω =

N∑
j=1

wjf(tj) +R[f].

The values tj and wj are the nodes and the weights of the quadrature rule, respectively.
The rule is said to be of exact degree d if R[p] = 0 for all polynomials p of degree d and
there are some polynomials q of degree d+ 1 for which R[q] = 0.

Approximating the function f with an interpolating polynomial, we can obtain
quadrature rules of degree N − 1. In this case the quadrature formula is said to be
interpolatory.

In this thesis we consider the approximation of a Stieltjes integral by Gauss type
quadrature rules. The characteristic of these formulae is that the nodes are the roots
of the orthogonal polynomial pN given by the three-term recursive formula (1.3.4) and
the weights are computed in order to have an interpolatory formula.

Definition 1.5.3. The general formula of a Gauss type quadrature rule is given by

I(f) =

∫ b

a

f(λ)dω(λ) =

N∑
j=1

wjf(tj) +

M∑
k=1

vkf(zk) +R[f], (1.5.2)

where weights [wj]
N
j=1, [vk]Mk=1 and nodes [tj]

N
j=1 are to be determined, while nodes

[zk]Mk=1 are prescribed.

If M = 0, this leads to the Gauss rule. If M = 1 and z1 = a or z1 = b, we have the
Gauss–Radau rule. If M = 2 and z1 = a and z2 = b, this is the Gauss–Lobatto rule.

The remainder term R[f] cannot generally be explicitly computed. If the measure
ω is a positive nondecreasing function and if f is smooth enough, then

R[f] =
f (2N+M)(η)

(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)

 N∏
j=1

(λ− tj)

2

dω(λ), a < η < b.

1.5. BILINEAR FORMS AND QUADRATURE RULES 15

1.5.1 The Gauss rule
Theorem 1.5.1. Let JN be the leading principal submatrix of order N of the ma-
trix (1.3.5). Then the nodes tGj of the Gauss quadrature formula are the eigenvalues
θ
(N)
i of JN and the weights wGj are the squares of the first components of its normalized

eigenvectors ω(N)
i .

Proof. See [59].

Theorem 1.5.2. Suppose that f is such that f (2n)(ξ) > 0, ∀n and ∀ξ, a < ξ < b, and
let

GNf =

N∑
i=1

f(θ
(N)
i)ω

(N)
i , (1.5.3)

where θ(N)
i and ω(N)

i are given by Theorem 1.5.1. Then the Gauss rule is exact for
polynomials of degree less than or equal 2N − 1 and

GNf ≤ I(f),

that is, the Gauss rule is a lower bound for the Stieltjes integral.

The following theorem states the connection between the Gauss quadrature formula
and Lanczos algorithm presented in Subsection 1.4.1.

Theorem 1.5.3. The Gauss rule (1.5.3) can be written as

GNf = eT1 f(TN)e1, (1.5.4)

where TN is the tridiagonal matrix in (1.4.2).

Proof. See [58, 59] for a proof.

1.5.2 The Gauss–Radau rule
The Gauss–Radau rule is given by the general formula (1.5.2) when M = 1. In

order to compute the rule we need to extend the matrix TN in such a way that it has
the prescribed node as an eigenvalue. Suppose that z1 = b, that is the right end of the
integration interval. We wish to construct pN+1 such that pN+1(a) = 0.

From the recursion (1.3.4) we have

0 = βN+1pN+1(b) = (b− αN+1)pN (b)− βNpN−1(b)

that gives

α̂N+1 = b− βN
pN−1(b)

pN (b)
.

Then the tridiagonal matrix

T̂N+1 =

[
TN βN+1

βN+1 α̂N+1

]
(1.5.5)

has the prescribed node b as an eigenvalue. As for the Gauss rule, the nodes are the
eigenvalues and the weights are the squares of the first components of the eigenvectors.
The remainder term for the Gauss–Radau rules is given by

R[f] =
f (2N+1)(η)

(2N + 1)!

∫ b

a

(λ− z1)

 N∏
j=1

(λ− tj)

2

dω(λ), a < η < b. (1.5.6)

16 CHAPTER 1. PRELIMINARIES

Theorem 1.5.4. Let f be such that f (2n+1)(ξ) > 0, ∀n and ∀ξ, a < ξ < b, and let

ĜbN+1f =

N∑
i=1

f(tbi)w
b
i + f(b)vb1,

ĜaN+1f =

N∑
i=1

f(tai)wai + f(a)va1 ,

(1.5.7)

with the nodes and the weights computed prescribing b or a, respectively, as an eigenvalue.
Then the Gauss–Radau rule is exact for polynomials of degree less than or equal to 2N
and

ĜaN+1f ≤ I(f) ≤ ĜbN+1f.

Proof. The proof follows easily form the reminder formula (1.5.6).

1.5.3 The Anti–Gauss rule
The anti-Gauss quadrature rules for the approximation of I(f) was introduced by

Laurie [87]. The idea is to construct a quadrature rule whose error is equal but of
opposite sign to the error of the Gauss rule. What makes the anti-Gauss rule attractive
is that it can be applied when no useful information with regard to the sign of the
quadrature error can be gleaned from a remainder formula.

The (N + 1)-point anti-Gauss quadrature rule HN+1 associated with the Gauss
rule GN is characterized by

(I −HN+1)p = −(I − GN)p ∀p ∈ P2N+1, (1.5.8)

where P2N+1 denotes the set of all polynomials of degree at most 2N + 1 (with scalar
coefficients). Thus, when f ∈ P2N+1, the pair of quadrature rules GNf and HN+1f
yield upper and lower bounds for I(f). In fact,

GNf = HN+1f = I(f) forf ∈ P2N−1.

For more general functions f , the pair of quadrature rules GNf and HN+1f provide
upper and lower bounds for I(f) when the coefficients in an expansion of f in terms of
orthonormal polynomials with regard to the measure dω decay sufficiently rapidly in
magnitude; see [25] and the end of Subsection 1.5.9. This condition is difficult to verify
computationally; however, computed examples in [25] show that pairs of Gauss and
anti-Gauss quadrature rules indeed yield upper and lower bounds for many integrands
that are analytic in a large enough region that contains the interval of integration.

The property (1.5.8) is independent of a remainder formula for Gauss quadrature
and gives that the error of the Gauss rule can be estimated as

1

2
(HN+1f − GNf)

Using the anti-Gauss rule, the integral (1.5.2) can be approximated by

I(f) ≈ 1

2
(HN+1f + GNf) .

From (1.5.8) follows that
HN+1p = 2I(p)− GNp,

1.5. BILINEAR FORMS AND QUADRATURE RULES 17

for all polynomials p of degree 2N + 1. If we define the functional If = 2I(f)− GNf ,
then HN+1f is a Gauss rule with N + 1 nodes for If . We can define a sequence of
orthogonal polynomials p̃j , j = 0, . . . , N + 1, and a tridiagonal matrix J̃N+1 such that
a three-term recursive formula (similar to (1.3.4)) holds. In [25, 87] it has been shown
that p̃j = pj , j = 0, . . . , N and that

J̃N+1 =

[
JN

√
2βN√

2βN αN+1

]
.

As for the Gauss rule, the N + 1 nodes are the eigenvalues of J̃N+1 and the weights
are the squares of the first components of the eigenvectors and so

HN+1f = eT1 f(J̃N+1)e1.

Remark 1.5.2. As pointed out in [59], J̃N+1 is a low-rank modification of JN+1.

1.5.4 The Symmetric Block Gauss quadrature rule
Consider the computation of an approximation of the integral

I(f) =

∫
f(λ) dα(λ), (1.5.9)

where α : R→ Rk×k is a discrete matrix-valued distribution with jumps αiαTi at the
eigenvalues λi of A.

We showed in Subsection 1.4.5 that there is a sequence of polynomials pj that
are orthonormal with respect to a bilinear form defined by dα and have k × k matrix
coefficients. The polynomials satisfy a three-term recurrence relation of the form

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)ΓTj−1, j = 1, 2, . . . ,

p0(λ) := Ik, p−1(λ) := Ok,
(1.5.10)

where Ok denotes the k × k zero matrix. For each j, the recursion coefficients Γj and
Ωj are k × k matrices with real entries. Moreover, Ωj is symmetric and Γj can be
chosen to be upper triangular; see Section 1.4.5. The pj are orthonormal with respect
to a matrix-valued bilinear form defined by the measure dα; see Theorem 1.4.3. Let

λPN (λ) = PN (λ)JN + pN (λ)ΓNE
T
N ,

be the recurrence relation given by (1.3.10).
Introduce the spectral factorization JN = YNΘNY

T
N , where

YN = [y
(N)
1 , . . . ,y

(N)
kN] ∈ RkN×kN , ΘN = diag

[
θ
(N)
1 , . . . , θ

(N)
kN

]
∈ RkN×kN ,

where the matrix YN is orthogonal and the eigenvalues are ordered according to
θ
(N)
1 ≤ · · · ≤ θ(N)

kN . Consider the expression

GNf :=

kN∑
i=1

f(θ
(N)
i)u

(N)
i

(
u
(N)
i

)T
, (1.5.11)

where each vector u(N)
i ∈ Rk consists of the first k elements of y(N)

i . It is shown in
[58, 59] that GN is a Gauss quadrature rule with respect to a matrix-valued bilinear
form defined by the measure dα, i.e.,

GNf = I(f) ∀f ∈ P2N−1;

18 CHAPTER 1. PRELIMINARIES

related results are discussed in [120]. An alternative and more concise proof of this
result is provided in Subsection 1.5.9. We refer to GN as an N -block Gauss quadrature
rule associated with a bilinear form determined by the matrix measure dα. This
quadrature rule allows the matrix representation

GNf =

kN∑
i=1

f(θ
(N)
i)u

(N)
i

(
u
(N)
i

)T
=
[
u
(N)
1 , . . . ,u

(N)
kN

]
f(ΘN)

[
u
(N)
1 , . . . ,u

(N)
kN

]T
= ET1 YNf(ΘN)Y TNE1 = ET1 f(JN)E1, (1.5.12)

which shows that for certain functions f , such as f(x) = exp(x) and f(x) = 1/(1− cx),
where c is a suitable constant, the block Gauss rule GN can be evaluated efficiently via
the right-hand side of (1.5.12).

It is convenient to extend GN to allow matrix-valued functions f and g that can
be represented by a series with k × k matrix coefficients with real entries. For later
convenience we define the quantity

GN (f, g) :=

kN∑
i=1

fT (θ
(N)
i)u

(N)
i

(
u
(N)
i

)T
g(θ

(N)
i). (1.5.13)

1.5.5 The Nonsymmetric Block Gauss quadrature rule
Assume that the matrix A ∈ Rm×m is diagonalizable and introduce the spectral

factorization A = QΛQ−1, where Q ∈ Cm×m is nonsingular and Λ = diag [λ1, . . . , λm].
When A 6= AT , the eigenvalues λi may be complex-valued.

We showed in Subsection 1.4.6 that there are two sequences of polynomials pj and
qj , j = 0, 1, . . . , with k × k matrix coefficients, that are biorthogonal with respect to
a bilinear form determined by the matrix-valued function I in (1.4.20) and satisfy
recurrence relations

λPN (λ) = PN (λ)JN + pN (λ)ΓNE
T
N ,

λQN (λ) = QN (λ)JTN + qN (λ)∆NE
T
N ,

(1.5.14)

where JN is a block-tridiagonal matrix determined by N steps of the nonsymmetric
block Lanczos method described in [8] and discussed in Subsection 1.4.6. We remark
that the polynomials pj and qj are considered for theoretical purposes only; they are
never explicitly stored or utilized in the computations.

We assume that JN is diagonalizable and write JN = YNΘNY
−1
N , where

YN = [y
(N)
1 , . . . ,y

(N)
kN] ∈ CkN×kN , ΘN = diag

[
θ
(N)
1 , . . . , θ

(N)
kN

]
∈ CkN×kN .

Letting ZN := [z
(N)
1 , . . . ,z

(N)
kN] = Y −HN , we obtain

JN = YNΘNZ
H
N , JTNZN = ZN Θ̄N ,

where the bar denotes complex conjugation. Since the matrices A, V , W have real
entries only, so does JN and, therefore, JT = JH .

Consider the quadrature rule

GNf :=

kN∑
i=1

f(θ
(N)
i)u

(N)
i

(
v
(N)
i

)H
(1.5.15)

1.5. BILINEAR FORMS AND QUADRATURE RULES 19

with respect to a bilinear form determined by I defined by (1.4.20). Each vector
u
(N)
i ∈ Ck consists of the first k elements of the (right) eigenvector y(N)

i of JN , and
each vector v(N)

i ∈ Ck is made up of the first k elements of the (right) eigenvector
z
(N)
i of JTN . We will show in Subsection 1.5.9 that

GNf = If, ∀f ∈ P2N−1.

For this reason, we refer to GN as an N -block nonsymmetric Gauss quadrature rule
associated with I. As for the symmetric case considered above, this quadrature rule
can be expressed as

GNf = ET1 f(JN)E1, (1.5.16)
where the matrix JN is given by (1.4.14).

As above, we extend I and GN to allow matrix-valued functions f and g that can
be represented by a series with k × k matrix coefficients. Thus, we define

I(f, g) :=

m∑
i=1

fH(λ̄i)αiβ
H
i g(λi), (1.5.17)

GN (f, g) :=

kN∑
i=1

fH(θ̄
(N)
i)u

(N)
i

(
v
(N)
i

)H
g(θ

(N)
i). (1.5.18)

1.5.6 The Symmetric Block Anti-Gauss quadrature rule
Proceeding similarly as Laurie [87] for the case of a real-valued positive measure

(cf. (1.5.8)) we define the (N + 1)-block anti-Gauss quadrature rule HN+1 to be an
(N + 1)-block quadrature rule such that

(I −HN+1) f = − (I − GN) f, f ∈ P2N+1. (1.5.19)

Since (1.5.19) implies that

HN+1f = (2I − GN) f, f ∈ P2N+1, (1.5.20)

it follows that HN+1 is the (ordinary) (N+1)-block Gauss quadrature rule with respect
to the bilinear form determined by the matrix-valued function 2I − GN . We note that
the average rule

AN+1 :=
1

2
(HN+1 + GN) (1.5.21)

is exact for all polynomials of degree up to and including 2N + 1.
Similarly as above, there is a sequence of orthonormal polynomials p̃j , with k × k

matrix coefficients, such that

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)Γ̃Tj−1, j = 1, 2, . . . ,

p̃0(λ) := Ik, p̃−1(λ) := Ok,
(1.5.22)

where the orthonormality is with respect to a bilinear form defined by the matrix-valued
measure induced by the function 2I − GN .

We will show how to determine the symmetric block tridiagonal matrix

J̃N+1 =

Ω̃1 Γ̃T1
Γ̃1 Ω̃2 Γ̃T2

.
Γ̃N−1 Ω̃N Γ̃TN

Γ̃N Ω̃N+1

 ∈ Rk(N+1)×k(N+1) (1.5.23)

20 CHAPTER 1. PRELIMINARIES

associated with the anti-Gauss rule HN+1 with almost no work from the matrix JN+1

related to the (N + 1)-block Gauss quadrature rule GN+1 defined by a bilinear form
determined by the matrix measure dα. Analogously to (1.5.12), the (N + 1)-block
anti-Gauss quadrature rule (1.5.20) allows the matrix representation

HN+1f = ET1 f(J̃N+1)E1. (1.5.24)

The matrix J̃N+1, defined by (1.5.23) and associated with the (N + 1)-block anti-
Gauss quadrature rule (1.5.20), can be obtained, with almost no work, from the matrix
JN+1 defined by (1.3.11), with N replaced by N + 1, associated with the (N + 1)-block
Gauss quadrature rule determined by (1.5.11) with N replaced by N + 1.

It follows from (1.5.10) that the coefficient matrices Ωi and Γi associated with the
block Gauss rule (1.5.11), with N replaced by N + 1, are given by

Ωi = I(pi−1, λpi−1), Γi = I(pi, λpi−1).

Similarly, we obtain from (1.5.22) that the coefficients Ω̃i and Γ̃i associated with the
block anti-Gauss rule (1.5.20) satisfy

Ω̃i = (2I − GN) (p̃i−1, λp̃i−1) , Γ̃i = (2I − GN) (p̃i, λp̃i−1) .

Therefore, the recursions (1.5.10) and (1.5.22), together with (1.5.20) and Corol-
lary 1.5.1, imply that

Ω̃i = Ωi, 1 ≤ i ≤ N,
Γ̃i = Γi, 1 ≤ i ≤ N − 1,

p̃i = pi, 0 ≤ i ≤ N − 1.

It follows that

p̃N Γ̃N = λIkp̃N−1 − p̃N−1Ω̃N − p̃N−2Γ̃TN−1

= λIkpN−1 − pN−1ΩN − pN−2ΓTN−1 = pNΓN .
(1.5.25)

Hence,

Γ̃N = (2I − GN) (p̃N , λp̃N−1) = 2I (p̃N , λp̃N−1)− GN (p̃N , λp̃N−1)

= 2
(

ΓN Γ̃−1N

)T
I (pN , λpN−1) = 2

(
ΓN Γ̃−1N

)T
ΓN ,

where GN (p̃N , λp̃N−1) = 0, because in view of Theorem 1.4.4, we have

p̃TN (θ(N)
r)u(N)

r =
(

ΓN Γ̃−1N

)T
pTN (θ(N)

r)u(N)
r = 0, 1 ≤ r ≤ kN.

We conclude that Γ̃TN Γ̃N = 2ΓTNΓN . Recall that the matrices ΓN and Γ̃N are assumed
to be invertible and are chosen to have positive diagonal entries. Therefore,

Γ̃N =
√

2ΓN , (1.5.26)

because the symmetric positive definite matrix 2ΓTNΓN has a unique Cholesky factor-
ization CTC with an upper-triangular factor C whose diagonal is strictly positive.

We turn to the entry Ω̃N+1. It follows from (1.5.26) that ΓN Γ̃−1N =
(
1/
√

2
)
Ik,

which, in view of (1.5.25), implies that p̃N =
(
1/
√

2
)
pN . Therefore,

Ω̃N+1 = (2I − GN) (p̃N , λp̃N) = I (pN , λpN) = ΩN+1.

In conclusion, the matrix J̃N+1 associated with the (N + 1)-block anti-Gauss rule
can be obtained from the matrix JN+1 associated with the (N + 1)-block Gauss rule
by multiplying ΓN by

√
2.

1.5. BILINEAR FORMS AND QUADRATURE RULES 21

1.5.7 The Nonsymmetric Block Anti-Gauss quadrature rule
Similarly as in the symmetric case, we seek to determine a matrix-valued (N + 1)-

block anti-Gauss quadrature rule HN+1 such that

(I −HN+1) f = − (I − GN) f, f ∈ P2N+1. (1.5.27)

This relation implies, analogously to the discussion following (1.5.19), that HN+1 is
an (N + 1)-block Gauss quadrature rule with respect to a bilinear form determined
by the matrix-valued function 2I − GN . The average rule (1.5.21) with GN and HN+1

defined by (1.5.15) and (1.5.27), respectively, is exact for all p ∈ P2N+1.
Analogously to the discussion above, there are sequences of polynomials p̃j and q̃j ,

j = 0, 1, . . ., with real k× k matrix coefficients, that are biorthogonal with respect to a
bilinear form determined by the matrix-valued function 2I −GN and satisfy recurrence
relations of the form

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)∆̃T
j−1,

λq̃j−1(λ) = q̃j(λ)∆̃j + q̃j−1(λ)Ω̃Tj + q̃j−2(λ)Γ̃Tj−1,

p̃0(λ) := Ik, q̃0(λ) := Ik, p̃−1(λ) := Ok, q̃−1(λ) := Ok,

(1.5.28)

for j = 1, 2,
We will show how to determine the associated matrix of matrix recursion coefficients

J̃N+1 =

Ω̃1 ∆̃T

1

Γ̃1 Ω̃2 ∆̃T
2

.
Γ̃N−1 Ω̃N ∆̃T

N

Γ̃N Ω̃N+1

 ∈ Rk(N+1)×k(N+1), (1.5.29)

with almost no work, from the matrix (1.4.14) with N replaced by N + 1. The
(N + 1)-block nonsymmetric anti-Gauss rule allows the matrix representation

HN+1f = ET1 f(J̃N+1)E1, (1.5.30)

analogous to (1.5.24).
As in the symmetric case, the matrix J̃N+1 given by (1.5.29) and associated with

the nonsymmetric (N+1)-block anti-Gauss rule defined by (1.5.27)) can be determined,
with almost no work, from the matrix JN+1, given by (1.4.14) with N replaced by
N + 1, associated with the (N + 1)-block nonsymmetric Gauss rule (1.5.15) with N
replaced by N + 1.

We obtain from (1.4.21) and (1.5.28) that the coefficients Ωi, Γi, and ∆i asso-
ciated with nonsymmetric block Gauss rules and the coefficients Ω̃i, Γ̃i, and ∆̃i of
nonsymmetric block anti-Gauss rules are given by

Ωi = I(qi−1, λpi−1), Ω̃i = (2I − GN) (q̃i−1, λp̃i−1),

Γi = I(qi, λpi−1), Γ̃i = (2I − GN) (q̃i, λp̃i−1),

∆T
i = I(qi−1, λpi), ∆̃T

i = (2I − GN) (q̃i−1, λp̃i),

where I and GN are defined by (1.5.17) and (1.5.18), respectively. Hence, the recur-
sions (1.4.21) and (1.5.28), together with (1.5.27) and Corollary 1.5.2, yield

Ω̃i = Ωi, 1 ≤ i ≤ N,
Γ̃i = Γi, ∆̃i = ∆i, 1 ≤ i ≤ N − 1,

p̃i = pi, q̃i = qi, 0 ≤ i ≤ N − 1,

22 CHAPTER 1. PRELIMINARIES

from which we conclude that

p̃N Γ̃N = λp̃N−1 − p̃N−1Ω̃N − p̃N−2∆̃T
N−1

= λpN−1 − pN−1ΩN − pN−2∆T
N−1 = pNΓN ,

q̃N ∆̃N = λq̃N−1 − q̃N−1Ω̃TN − q̃N−2Γ̃TN−1

= λqN−1 − qN−1ΩTN − qN−2ΓTN−1 = qN∆N .

(1.5.31)

Thus,

Γ̃N = (2I − GN) (q̃N , λp̃N−1) = 2I (q̃N , λp̃N−1)− GN (q̃N , λp̃N−1)

= 2
(

∆N ∆̃−1N

)T
I (qN , λpN−1) = 2

(
∆N ∆̃−1N

)T
ΓN ,

where we have used that GN (q̃N , λp̃N−1) = 0. This follows from the fact that

q̃TN (θ(N)
r)u(N)

r =
(

∆N ∆̃−1N

)T
qTN (θ(N)

r)u(N)
r = 0, 1 ≤ r ≤ kN,

which is a consequence of Theorem 1.4.6. Therefore, ∆̃T
N Γ̃N = 2∆T

NΓN . There is some
freedom in choosing the blocks Γ̃N and ∆̃N . We will choose

Γ̃N =
√

2ΓN , ∆̃N =
√

2∆N . (1.5.32)

To show that Ω̃N+1 = ΩN+1, we first observe that in view of (1.5.32) we have

ΓN Γ̃−1N = ∆N ∆̃−1N = (1/
√

2)Ik,

which by (1.5.31) implies that p̃N =
(
1/
√

2
)
pN and q̃N =

(
1/
√

2
)
qN . Therefore,

Ω̃N+1 = (2I − GN) (q̃N , λp̃N) = I (qN , λpN) = ΩN+1.

Thus, similarly as in the symmetric case, the matrix J̃N+1 given by (1.5.29)) can
be obtained from the matrix JN+1 associated with the nonsymmetric (N + 1)-block
Gauss rule by multiplying the last off-diagonal blocks ΓN and ∆N by

√
2.

1.5.8 Bilinear forms

Given A ∈ Rn×n we can define a bilinear form as a relation of the kind

uT f(A)v, u,v ∈ Rn. (1.5.33)

Let us first suppose that A is symmetric and v = u, with ‖u‖ = 1. Then, using
the spectral decomposition (1.1.1), the expression can be written as a Stieltjes integral

uT f(A)u =

n∑
i=1

f(λi)ω
2
i =

∫
f(t)dω(t), (1.5.34)

where ω is a piece-wise constant distribution function with jumps at the eigenvalues
λi of A. As shown in Subsection 1.5.1–1.5.2, a lower bound for the integral can be
computed using a k-point Gauss quadrature rule (1.5.3) and an upper bound using a
(k + 1)-point Gauss–Radau quadrature rule (1.5.7).

1.5. BILINEAR FORMS AND QUADRATURE RULES 23

If the Lanczos method breaks down, that is, if βk+1 in (1.4.2) vanishes, then the
spectrum of Tk is a subset of the spectrum of A and the Gauss rule (1.5.4) yields the
exact value of the bilinear form (1.5.33).

Pairs of Gauss and Gauss-Radau quadrature rules can be applied to compute
bounds for expressions of the form (1.5.33) for any functions that are analytic on the
convex hull of support of the measure and whose derivatives are of constant sign on
this set. The situation when u 6= w can be handled by writing (1.5.33) in the form

uT f(A)w =
1

4

(
(u + w)T f(A)(u + w)− (u−w)T f(A)(u−w)

)
. (1.5.35)

We now discuss how to compute upper and lower bounds for bilinear form of the
kind

uT f(
√
AAT)v, or uT f(

√
ATA)v, u,v ∈ Rn, (1.5.36)

with the aid of Gauss quadrature rules. The approach is based on the partial Golub–
Kahan bidiagonalization of the matrix A. A thorough discussion of this approach can
be found in [24].

As above, the bilinear form (1.5.36) can be seen as a Stieltjes integral

uT f(
√
AAT)v =

∫
f(
√
t)dω(t), (1.5.37)

where ω is a piecewise constant step function with jumps at the eigenvalues σ2
j of AAT .

The integral is over the support of the measure, i.e., over the interval [σ2
n, σ

2
1]. The

identity (1.5.37) is obtained by substituting the spectral factorization of AAT into the
left-hand side. It is natural to approximate (1.5.37) by using the small tridiagonal
matrix (1.4.6). Golub and Meurant [58, 59] observed that uT f(

√
AAT)v is an `-point

Gauss quadrature rule for the approximation of (1.5.37); see also [24]. If all derivatives
of the function f(t) are positive for t ≥ 0, then the remainder term for Gauss quadrature
yields

uT f(
√
AAT)v − uT f(

√
T`)v =

1

(2`)!

(
d2`

dt2`
f(
√
θ)

)∫ ∏̀
j=1

(t− θ(`)j)2dω(t), (1.5.38)

where σ2
n < θ

(`)
1 < θ

(`)
2 < · · · < θ

(`)
` < σ2

1 are the nodes of the quadrature rule and
σ2
n < θ < σ2

1 ; see, e.g., Gautschi [53]. It follows that

uT f(
√
AAT)v − uT f(

√
T`)v > 0.

Consequently, the Gauss rule provides a lower bound for (1.5.37). Moreover, it is fairly
easy to show that the lower bound is strictly increasing with `; see [84] for details.

The remainder term for an (`+ 1)-point Gauss–Radau quadrature rule with ` “free”
nodes and one fixed node at σ2

1 is given by

1

(2`+ 1)!

(
d2`+1

dt2`+1
f(
√
θ)

)∫
(t− σ2

1)
∏̀
j=1

(t− θ̂(`)j)2dω(t),

where σ2
n < θ̂

(`)
1 < θ̂

(`)
2 < · · · < θ̂

(`)
` < σ2

1 denote the free nodes and σ2
n < θ < σ2

1 ;
see [53]. It is clear that the remainder term is negative, i.e.,

uT f(
√
AAT)v − uT f(

√
T̂`+1)v < 0.

24 CHAPTER 1. PRELIMINARIES

It follows that the Gauss–Radau rule with a fixed node at σ2
1 provides an upper bound

for (1.5.37). It can be shown that the upper bound is strictly decreasing with `; see [84].
The (` + 1)-point Gauss–Radau quadrature rule with a fixed node at σ2

1 can be
expressed by a symmetric tridiagonal matrix T̂`+1 ∈ R(`+1)×(`+1) whose elements,
except for the last diagonal entry, are those of B`+1,`B

T
`+1,`. The last diagonal entry

of T̂`+1 is determined so that the matrix has the eigenvalue σ2
1 . This entry can be

computed in only O(`) arithmetic floating point operations; see [58, 59] for details.
Let w1 and w2 be linearly independent vectors in Rn. Then

wT
1 f(
√
AAT)w2 =

1

4
(w1 + w2)T f(

√
AAT)(w1 + w2)

− 1

4
(w1 −w2)T f(

√
AAT)(w1 −w2).

(1.5.39)

In the rare event that the recursion formulas for Golub–Kahan bidiagonalization
break down, the Gauss quadrature rule gives the exact value (in the absence of round-off
errors).

1.5.9 Block methods
This section discusses the inexpensive computation of bounds or estimates of bounds

for expressions of the form
WT f(A)W, (1.5.40)

where W ∈ Rm×k has orthonormal columns with 1 ≤ k � m. We are also interested
in the computation of estimates of bounds for more general expressions

WT f(A)V, (1.5.41)

where the large matrix A ∈ Rm×m may be nonsymmetric and W,V ∈ Rm×k satisfy
V TW = Ik.

Golub and Meurant [58, 59] discuss how the application of a few steps of the
symmetric block Lanczos method to a symmetric matrix A with initial block vector
W yields an approximation of (1.5.40), and show that this approximation can be
interpreted as a Gauss-type quadrature rule with respect to a discrete matrix-valued
measure. In the special case when the block-size k = 1, the symmetric block Lanczos
method simplifies to the standard symmetric Lanczos method. We showed in Sub-
section 1.5.1 that if k = 1 and A is symmetric and the function f has derivatives of
constant sign in the convex hull of the spectrum of A, that pairs of suitable Gauss
and Gauss–Radau rules yield upper and lower bounds for (1.5.40). Unfortunately,
these quadrature rules are not guaranteed to yield upper and lower bounds when the
pertinent derivatives of f change sign in the convex hull of the spectrum of A, and
neither are block versions (with block-size k > 1) of the Gauss-type quadrature rules
mentioned above.

The matrix function (1.5.41) with a possibly nonsymmetric matrix A can be
approximated by a function of a smaller matrix by application of a few steps of the
nonsymmetric block Lanczos method with initial block vectors V andW . The reduction
can be interpreted as a Gauss-type quadrature rule. However, generally this rule is not
guaranteed to furnish upper or lower bounds for the elements of (1.5.41).

If the matrix A ∈ Rm×m is symmetric, then the expression (1.5.40) can be written
as a Stieltjes integral introducing the spectral factorization

A = QΛQT , (1.5.42)

1.5. BILINEAR FORMS AND QUADRATURE RULES 25

where Q ∈ Rm×m is orthogonal and Λ = diag [λ1, . . . , λm]. The eigenvalues are
assumed to be ordered according to λ1 ≤ · · · ≤ λm. Substituting the spectral factor-
ization (1.5.42) into (1.5.40) yields

WT f(A)W = W̃f(Λ)W̃T =

m∑
i=1

f(λi)αiα
T
i =

∫
f(λ)dα(λ) =: If, (1.5.43)

where W̃ = [α1, . . . ,αm] = WTQ ∈ Rk×m and α : R → Rk×k is a discrete matrix-
valued distribution with jumps αiαTi at the eigenvalues λi of A.

We show that the quadrature rule GN defined by (1.5.11) when A = AT is exact for
all polynomials in P2N−1. Our proof is formulated entirely in terms of linear algebra
and is shorter than existing proofs. The result was established in [58] and at about
the same time extended in [120] to a more general (not necessarily discrete) class of
matrix measures.

Theorem 1.5.5. Let the function I be defined by (1.5.9) and the associated quadrature
rule GN by (1.5.11). Then GNf = If for all f ∈ P2N−1.

Proof. We first recall that the polynomials in the sets Pj have scalar coefficients. For
fixed N , one can show by induction on the degree of p that

p(A)X1 = X(N)p(JN)E1, p ∈ PN−1,

where X(N) := [X1, . . . , XN], where Xi are computed via the Symmetric Block Lanczos
algorithm (1.4.8). Moreover,(

X(N)
)T

q(A)X1 = q(JN)E1, q ∈ PN .

Let f ∈ P2N−1. We may factor f = pq, where p ∈ PN−1 and q ∈ PN . Recalling that
X1 = W , we obtain

If = WT f(A)W =
[
XT

1 p(A)
]
q(A)X1

=

[
ET1 p(JN)

(
X(N)

)T]
q(A)X1 = ET1 p(JN)

[(
X(N)

)T
q(A)X1

]
= ET1 p(JN) [q(JN)E1] = ET1 f(JN)E1 = GNf.

The following theorem is a generalization of Theorem 1.5.5. This result is also
shown in [120].

Corollary 1.5.1. Let p(λ) and q(λ) be polynomials with k×k matrix coefficients, and
let I and GN be defined by (1.4.11) and (1.5.13), respectively. Then GN (p, q) = I(p, q)
when deg p+ deg q ≤ 2N − 1.

Proof. The proof is related to the proof of Theorem 1.4.5. Let

p(λ) =

i∑
s=0

λsCs, q(λ) =

j∑
t=0

λtDt,

26 CHAPTER 1. PRELIMINARIES

with i+ j ≤ 2N − 1. By Theorem 1.5.5, we have

GN (p, q) = GN

(
i∑

s=0

λsCs,

j∑
t=0

λtDt

)
=

i∑
s=0

j∑
t=0

CTs GN
(
λs, λt

)
Dm

=

i∑
s=0

j∑
t=0

CTs GN
(
λs+t

)
Dt =

i∑
s=0

j∑
t=0

CTs I
(
λs+t

)
Dt

=

i∑
s=0

j∑
t=0

CTs I
(
λs, λt

)
Dt =

i∑
s=0

j∑
t=0

I
(
λsCs, λ

tDt

)
= I

(
i∑

s=0

λsCs,

j∑
t=0

λtDt

)
= I (p, q) .

We establish results related to functions (1.5.41) that are analogous to those of the
form (1.5.40).

Assume that A ∈ Rm×m is diagonalizable and introduce the spectral factorization
A = QΛQ−1, where Q ∈ Cm×m is nonsingular and Λ = diag [λ1, . . . , λm]. When
A 6= AT , the eigenvalues λi may be complex-valued. Letting

W̃ = [α1, . . . ,αm] = WTQ ∈ Ck×m, Ṽ = [β1, . . . ,βm] =
(
Q−1V

)H ∈ Ck×m,

we obtain

WT f(A)V = W̃f(Λ)Ṽ H =

m∑
i=1

f(λi)αiβ
H
i =: If, (1.5.44)

where the superscript H denotes transposition and complex conjugation.

Theorem 1.5.6. Let the function I be defined by (1.4.20) and the associated quadrature
rule GN by (1.5.15). Then GNf = If for all f ∈ P2N−1.

Proof. The proof is similar to that of Theorem 1.5.5. Thus, we first show by induction
on the degree of p that for fixed N ,

p(AT)W1 = W (N)p(JTN)E1, p ∈ PN−1,(
W (N)

)T
q(A)V1 = q(JN)E1, q ∈ PN ,

where W (N) := [W1, . . . ,WN].
Let f ∈ P2N−1. Factoring f = pq, where p ∈ PN−1 and q ∈ PN , yields similarly as

in the proof of Theorem 1.5.5 that

If = WT
1 p(A)q(A)V1 = ET1 p(JN)q(JN)E1 = ET1 f(JN)E1 = GNf.

Corollary 1.5.2. Let p(λ) and q(λ) be polynomials with k × k matrix coefficients,
and let I(p, q) and GN (p, q) be defined by (1.5.17) and (1.5.18), respectively. Then
GN (p, q) = I(p, q) holds when deg p+ deg q ≤ 2N − 1.

Proof. The proof is similar to that of Corollary 1.5.1.

1.6. INVERSE PROBLEMS 27

We conclude this section with some comments on why pairs of N -block Gauss
rules (1.5.11) and (N + 1)-block anti-Gauss rules (1.5.24) may provide elementwise
upper and lower bounds for (1.5.9) when the integrand is analytic in a sufficiently large
region in the complex plane that contains the support of the measure dα. Assume for
notational simplicity that there are infinitely many orthogonal polynomials (1.5.10)
and that f admits a representation of the form

f(x) =

∞∑
i=0

Cipi(x),

where the coefficients Ci are k × k matrices. Assuming that I(f, f) is finite, one can
show that the matrices Ci must converge to zero as i increases. Moreover, we have

If = C0,

GNf = C0 +

∞∑
i=2N

CiGNpi = C0 + C2NGNp2N + C2N+1GNp2N+1 +

∞∑
i=2N+2

CiGNpi,

HN+1f = C0 +

∞∑
i=2N

CiHN+1pi

= C0 + C2NHN+1p2N + C2N+1HN+1p2N+1 +

∞∑
i=2N+2

CiHN+1pi

= C0 − C2NGNp2N − C2N+1GNp2N+1 +

∞∑
i=2N+2

CiHN+1pi,

where we have used (1.5.20). Now, if the coefficient matrices Ci decay in norm
sufficiently rapidly with increasing i, then the approximations

GNf − If ≈ C2NGNp2N + C2N+1GNp2N+1,

HN+1f − If ≈ −C2NGNp2N − C2N+1GNp2N+1

suggest that the componentwise errors of the quadrature rules GNf and HN+1f are
roughly equal in magnitude and of opposite sign. The norm of the matrices Ci decays
quickly to zero when i increases if f is analytic in a large simply connected region in
the complex plane that contains the support of the measure dα and has its boundary
far away from the support. A similar argument can be given regarding the computation
of bounds for (1.4.20) via (1.5.15) and (1.5.30). Thus, for integrands for which an
expansion in terms of biorthogonal polynomials converges quickly, pairs of N -block
Gauss and (N + 1)-block anti-Gauss quadrature rules typically provide entrywise upper
and lower bounds.

1.6 Inverse Problems
In an inverse problem one is interested in obtaining general information on the

internal structure of a physical system starting from measured data. In this sense, an
inverse problem is the inverse of a forward problem in which one measures an output
knowing the input. The relation between the unknown parameters and the measured
data is given by a mathematical model that describes the system. Some examples
include tomography, image restoration, remote sensing, signal processing, and so on.

28 CHAPTER 1. PRELIMINARIES

The first distinction that has to be made is between linear and nonlinear inverse
problems, depending on the relationship between the parameters we want to determine
and the data. In the first case, we can represent the problem by the equation d = F (x),
where F is a nonlinear operator. In the second case, F is a linear operator, i.e., a
matrix, and the equation becomes d = Gx. In order to deal with an inverse problem
properly, we need to reduce the influence of errors in the observations. This is usually
done using more measurements than unknown parameters in the model. This approach
gives rise to an overdetermined system of equations, that is, in general, F : Rn → Rm
or G ∈ Rm×n, in the nonlinear and linear case, respectively, with m > n. When,
on the contrary, there are more unknowns than measured data, the system is said
to be underdetermined, that is m < n. Problems of this kind are called ill-posed.
This concept, introduced by Jacques Hadamard [66], is the opposite of the notion of
well-posedness and states that a problem is ill-posed if the solution does not exist or is
not unique or is not a continuous function of the data. In this case, a possible approach
consists of solving the least squares problem

min
x
‖r(x)‖22 = min

x
‖F (x)− d‖22, (1.6.1)

where r(x) is the residual vector. The solutions, if any, are called least squares
solutions. Among these, the one with minimal norm is called normal solution. The
ways of solving least squares problems are different depending of the fact that they are
linear or nonlinear.

1.6.1 Linear least squares problems
The classical approach to minimize the norm of the residual is to solve the normal

equations, that is
min
x
‖Gx− d‖22 ⇐⇒ GTGx = GTd. (1.6.2)

This can be seen computing the gradient of (1.6.2) and imposing that x is a critical
point. The solution is then given by

x = G†d,

where G† is the Moore–Penrose pseudoinverse of G [16]; if m ≥ n and G has full rank,
then G† = (GTG)−1GT and the system can be solved with the aid of the Cholesky or
the QR factorization; see [16].

1.6.2 Nonlinear least squares problems
Methods for solving such problems are iterative and at each step we need to solve

a related linear least square problem.
The vector x∗ is a local minimizer of (1.6.1) if and only if it is a stationary point,

i.e., if f ′(x∗) = 0, where f ′(x) is the gradient of the function f , whose jth component
is

[f ′(σ)]j =
∂f(x)

∂xj
=

m∑
i=1

ri(x)
∂ri(x)

∂xj
, j = 1, . . . , n; (1.6.3)

see, e.g., [16] for a complete treatment.
If f is differentiable and smooth enough, then the Taylor approximation

f ′(x+ s) = f ′(x) + f ′′(x)s +O(‖s‖2) ' f ′(x) + f ′′(x)s

1.6. INVERSE PROBLEMS 29

is valid for ‖s‖ sufficiently small, where

[f ′′(x)]jk =
∂2f(x)

∂xj∂xk
=

m∑
i=1

(
∂ri(x)

∂xj

∂ri(x)

∂xk
+ ri(x)

∂2ri(x)

∂xj∂xk

)
(1.6.4)

is the Hessian of the function f .
Newton’s method chooses the iterative step s` by imposing that x∗ is a stationary

point of Taylor approximation, i.e., by solving the linear system

f ′′(x`)s` = −f ′(x`). (1.6.5)

The next iterate is then computed as x`+1 = x` + s`. The analytical expression of the
Hessian f ′′(x) is not always available; whenever it is, its computation often implies a
large computational cost. To overcome this problem, one possibility is to resort to the
Gauss–Newton method, which is based on substituting (1.6.5) by the least squares
minimization of a linear approximation of r(x+ s).

Let r be Fréchet differentiable [117] and xk denote the current approximation, then
we can write

r(xk+1) ' r(xk) + J(xk)sk,

where xk+1 = xk + sk and J(x) is the Jacobian of r(x), defined by

[J(x)]ij =
∂ri(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n. (1.6.6)

At each step k, sk is the solution of the linear least squares problem

min
s∈Rn

‖r(xk) + Jks‖, (1.6.7)

where Jk = J(xk) or some approximation.
Problem (1.6.7) is equivalent to the normal equation

JTk Jks = −JTk r(xk), (1.6.8)

from which we obtain the following iterative method

xk+1 = xk + sk = xk − J†k r(xk). (1.6.9)

Using this notation, the gradient (1.6.3) and the Hessian (1.6.4) of f(x) can be
written as

f ′(x) = J(x)T r(x),

f ′′(x) = J(x)TJ(x) +

m∑
i=1

ri(x)Hi(x),
(1.6.10)

where

[Hi(x)]jk =
∂2ri(x)

∂xj∂xk

is the Hessian of the ith residual ri(x). Then, the Gauss–Newton method (1.6.9)
can be seen as a special case of Newton’s method, obtained by neglecting the term∑m
i=1 ri(x)Hi(x) from (1.6.10). This term is small if either each ri(σ) is mildly

nonlinear at xk, or the residuals ri(xk), i = 1, ...,m, are small. When the residuals
ri(xk) are small, or when the problem is consistent (r(x∗) = 0), the Gauss–Newton

30 CHAPTER 1. PRELIMINARIES

method is expected to behave similarly to Newton’s method. In particular, the local
convergence rate will be quadratic for both methods. If the above conditions are not
satisfied, the Gauss–Newton method may not converge. A discussion on the local
convergence of Gauss–Newton method can be found in [112].

To ensure convergence, the damped Gauss–Newton method replaces the ap-
proximation (1.6.9) by

xk+1 = xk + αksk, (1.6.11)

where αk is a step length to be determined. Two ways to choose αk are:

• The Armijo–Goldstein principle [105], which selects αk as the largest number in
the sequence 2−i, i = 0, 1, . . . , for which the following inequality holds

‖r(xk)‖2 − ‖r(xk + αksk)‖2 ≥ 1

2
αk‖Jksk‖2.

where
−Jksk = PJkr(xk) = JkJ

†
k r(xk)

is the orthogonal projection on the range of Jk.

• choose αk to be the solution of the minimization problem

min
α
‖r(xk + αsk)‖2.

1.6.3 Regularization Methods

The difficulty in the approach described in the previous subsection is that the data
are affected by noise. If the problem is ill-posed, then finding a solution can be very
difficult. In this scenario, one can think that only ill-posed problems are the ones hard
to solve. Unfortunately, even if a problem is well-posed, it can be ill-conditioned, that
is, a small perturbation on the data d causes a large perturbation on the solution
x. The measure of how the error propagates is given by the condition number of the
mathematical model and it is an intrinsic property of the problem, that is, it does
not depend on the way of solving it. If the problem is linear, the condition number is
defined as the ratio between the largest and the smallest singular value of the matrix
G. In this thesis we do not make use of the condition number of a nonlinear operator.
For a general definition see [128, Part III].

Ill-conditioned problems belong to one of the following classes:

Rank-deficient problems: In this kind of problems there is a gap between the large
and the small singular values. In this case, even if the columns of G are linearly
independent from the mathematical point of view, the presence of errors causes
that they are almost linearly independent. In this situation, instead of the rank
of the matrix, the notion of numerical rank is more useful. This measures the
number of columns of G that are practically linearly independent with respect to
some error level.

Discrete ill-posed problems: These problems arise form the discretization of ill-
posed problems and they are characterized by the fact that the singular values of
the matrix G decay gradually to zero. Therefore, there is no gap in the singular
values spectrum.

1.6. INVERSE PROBLEMS 31

In both cases, the typical approach is to substitute the ill-conditioned problem
with a well-conditioned one, which approximates the original problem, and solve it.
This way to proceed is known as regularization. We briefly report the most famous
regularization methods. For a detailed discussion see [69].

Regularization methods can be divided in two classes: direct methods, which
generally involve a decomposition of the matrix G, and iterative methods, which use
the matrix G only via matrix-vector multiplications with G and GT .

Tikhonov regularization: For discrete ill-posed problems its general formulation is

min
x∈Rn

{‖Gx− d‖2 + µ2‖Mx‖2}, (1.6.12)

where µ is the regularization parameter and M is the regularization matrix. The
parameter µ controls the balance between the norm of regularization term ‖Mx‖2
and the residual norm. The matrix M is typically either the identity matrix I or
a t× n discrete approximation of a derivative operator.
For example D1 and D2 defined as

D1 =

1 −1
.

1 −1

 ∈ R(n−1)×n

D2 =

1 −2 1
.

1 −2 1

 ∈ R(n−2)×n

(1.6.13)

are discrete approximations to the first and second derivative operators.
If N (G) ∩N (M) = {0}, taht is, if the null spaces of G and M intersect trivially,
then the Tikhonov solution is unique and is given by

xT = (GTG+ µ2MTM)−1GTd.

The Tikhonov solution can be computed both via a direct method or an iterative
one.

TSVD: This regularization technique is based on a low-rank approximation of the
matrix G. The best rank ` approximation (` ≤ rank (G) = p) to G according to
the Euclidean norm can be easily obtained by the SVD decomposition G = UΓV T ;
see Theorem 1.2.1. This procedure allows us to replace the ill-conditioned matrix
G with a well-conditioned rank-deficient matrix G`. The corresponding solution
x̂ is known as the truncated SVD (TSVD) solution [71] and it can be expressed
as

x̂(`) = G†`r =
∑̀
i=1

uTi r

γi
vi, (1.6.14)

where ` = 1, . . . , p is the regularization parameter, γi are the singular values
(γ1 ≥ · · · ≥ γ`), the singular vectors ui and vi are the orthogonal columns of U
and V , respectively, and r is the residual vector.
To introduce a regularization matrix M ∈ Rt×n (t ≤ n) we need the Generalized
Singular Value Decomposition (GSVD) [107]. The GSVD of the matrix pair
(G,M) is the factorization

G = UΣJZ
−1, M = V ΣMZ

−1, (1.6.15)

32 CHAPTER 1. PRELIMINARIES

where ΣJ , ΣM are diagonal matrices, U , V are orthogonal matrices, and Z is
nonsingular.

The general form of the diagonal matrices ΣJ and ΣM in (1.6.15), having the
same size of J and M , is more complicated than we need, so we analyze two
cases we will use in the third chapter. In the case m ≥ n = p, the two diagonal
matrices are given by

ΣJ =

0 0
C 0
0 In−t

 , ΣM =
[
S 0

]
,

where In−t is the identity matrix of size n− t and

C = diag(c1, . . . , ct), S = diag(s1, . . . , st),

with c2i + s2i = 1. The diagonal elements are ordered such that the generalized
singular values γi = ci/si are nondecreasing with i = 1, . . . , t, that is

0 ≤ c1 ≤ · · · ≤ ct ≤ 1, 1 ≥ s1 ≥ · · · ≥ st > 0.

When p = m < n, we have

ΣJ =

[
0 C 0
0 0 In−t

]
, ΣM =

[
In−2m 0 0

0 S 0

]
,

where C and S are diagonal matrices of size m− n+ t. Requiring this number
to be positive poses a constraint on the size of M .

The truncated GSVD (TGSVD) solution x̃` is then defined as

x̃
(`)
` =

p∑
i=p−`+1

uT2m−p+ir

ci
zn−p+i +

p∑
i=p+1

(uT2m−p+ir) zn−p+i, (1.6.16)

where ` = 0, 1, . . . , p is the regularization parameter, p = t if m ≥ n, and
p = m− n+ t if m < n.

CG: This method has been originally designed for solve large sparse linear systems with
symmetric positive definite coefficient matrix. Our interest lies in its application
to normal equations (1.6.2) whose coefficient matrix GTG is symmetric positive
semidefinite. It has been observed [67] that the CG algorithm has an intrinsic
regularizing effect when applied to the normal equations. Among the different
implementations of this algorithm, the most stable has been shown to be the
CGLS due to Hestenes and Stiefel [76]. It is initialized with the starting vector
x(0), r(0) = Gx(0) − d and c(0) = GT r(0) and proceeds as follows:

1. ηk = ‖GT r(k−1)‖22/‖Gc(k−1)‖22,
2. x(k) = x(k−1) + ηkc

(k−1),
3. r(k) = r(k−1) − ηkGc(k−1),
4. ξk = ‖GT r(k)‖22/‖GT r(k−1)‖22,
5. c(k) = GT r(k) + ξkc

(k−1).

Here x(k) and r(k) are the solution and the residual vector at step k, respectively.

1.6. INVERSE PROBLEMS 33

LSQR: When the CGLS algorithm is implemented via the Golub-Kahan bidiagonal-
ization algorithm described in Subsection 1.4.4, the resulting algorithm is called
LSQR. After k steps of the Golub-Kahan algorithm with starting vector q1 = d,
the solution x(k) ∈ Rn is defined as

x(k) = Pky
(k) = β1PkB

†
k+1,ke1,

that is, y(k) ∈ Rk is the solution of the least squares problem

min ‖Bk+1,ky
(k) − β1e1‖2,

where Bk+1,k is computed via (1.4.4), β1 = ‖d‖ and e1 is the first vector of the
canonical base of size k + 1.

1.6.4 Choice of the regularization parameter
In the previous subsection we saw different ways to regularize ill-conditioned

problems. All these regularization methods require a good choice of the regularization
parameter in order to work properly. There are different ways to choose the values for
the parameters µ, ` or k of the previous Subsection and they can be divided in methods
which assume the knowledge of the error ‖e‖ and those for which this information is
not required.

Among those of the first kind, the discrepancy principle due to Morozov is the
most famous one [102]. If the problem is consistent, that is, Gx = d, the discrepancy
principle chooses the reguralization parameter µ such that

‖Gxµ − d‖ = κe, with ‖e‖2 ≤ κe,

where κe is an priori upper bound for the error. If the regularization parameter is
discrete, then the smallest value for which ‖Gx` − d‖ ≤ κe can be chosen.

If an accurate bound for ‖e‖ is not available, the discrepancy principle cannot be
applied. A large number of methods for determining a regularization parameter in
such a case have been introduced for linear inverse problems [69]. They are known as
heuristic because it is not possible to prove convergence results for them, in the strict
sense of the definition of a regularization method; see [41, Chapter 4]. Among these we
will briefly describe the Generalized Cross Validation(GCV) and the L-curve criterion.

GCV: It is based on statistical considerations [57, 131]. In particular, in this method
we choose the regularization parameter µ which minimizes the GCV function

G =
‖Gxµ − d‖22

(trace (Im −G(µ)))2
,

where G(µ), called the influence matrix, is such that G(µ)d = Gxµ.

L-curve: Let us consider the curve

{log ‖Gxµ − d‖, log ‖Mxµ‖} . (1.6.17)

This is called L-curve because it exhibits a typical L-shape in many discrete
ill-posed problems. The L-curve criterion seeks to determine the regularization
parameter by detecting the index µ of the point of the curve closer to the corner

34 CHAPTER 1. PRELIMINARIES

of the “L”. This choice produces a solution for which both the norm and the
residual are fairly small. There are several papers showing examples in which
the L-curve method systematically fails; see, e.g., [68, 130]. Nevertheless, it has
been shown by numerical experiments that it provides a good estimation of the
optimal regularization parameter in many inverse problems of applicative interest
[72, 114].

Various methods have been proposed to determine the corner of the L-curve. The
L-corner method considers a sequence of pruned L-curves, obtained by removing
an increasing number of points, and constructs a list of candidate “vertices”
produced by two different selection algorithms. The corner is chosen from this list
by a procedure which compares the norms and the residuals of the corresponding
solutions [72]. It is currently implemented in [70].

Other ways to determine the corner are the restricted Regińska method [113, 114],
the residual L-curve [114, 115], and the hybrid quasi-optimality criterion [102,
114]. A new approach, based on the comparison of regularized solutions computed
by both TSVD and the Tikhonov method, has been recently proposed in [78].

2. Complex networks

2.1 Graphs and Complex networks
Definition 2.1.1. A graph (or a network) G is a pair (V,E), where V is a finite
set and E ⊆ V ×V . The elements of the set V are called vertices or nodes and those
of the set E are called edges or arcs.

A complex network is a graph that satisfies particular properties related to its
topology. In this thesis we do not take into account random graphs in which the nodes
are connected randomly, nor complete graphs in which each node is connected to all
other nodes. Figure 2.1 shows two examples of this kind of graph.

Figure 2.1: Two examples of graphs that are not complex networks. On the left side a
random graph and on the right side a complete graph.

Two vertices are said to be adjacent if there is an edge connecting them. An edge
is incident to the vertices that connects. The number of nodes adjacent to one node is
the degree of that node. The set E is said to be symmetric if (i, j) ∈ E ⇐⇒ (j, i) ∈ E.
In this case the network is said to be undirected, directed otherwise. From this it
follows that in a directed network edges have an orientation. An out-edge at a node is
an edge starting from that node and an in-edge is an edge that arrives at that node.
A walk of length k is a sequence of vertices v1, v2, . . . , vk such that there is an edge
between vertex vi and vertex vi+1 for i = 1, 2, . . . , k − 1. Vertices and edges may be
repeated. An oriented walk is a walk in which every edge of the sequence is oriented
from vertex vi to vertex vi+1. A closed walk is a walk in which the last node of the
sequence coincides with the first node. A path is a walk with all vertices distinct.
Finally, a loop is a closed walk of length one. The notion of path is at the base of the
concept of connectedness.

35

36 CHAPTER 2. COMPLEX NETWORKS

Definition 2.1.2. An undirected network is connected if there is a path connecting
any two nodes. A directed network is strongly connected if there is an oriented path
that connects any pair of nodes, weakly connected if the edges in the path do not
follow the same orientation.

In a directed graph, an alternating walk of length k starting from an out-edge at
node v1 and ending at node vk+1 is a list of k + 1 nodes such that there exists an edge
from vi to vi+1 if i is odd and an edge from vi+1 to vi if i is even. Analogously, an
alternating walk of length k, starting with an in-edge at node v1 and ending at node
vk+1 is a list of k + 1 nodes such that there exists an edge from vi+1 to vi if i is odd
and an edge from vi to vi+1 if i is even

A graph is said to be simple if it is undirected and does not contain loops and
multiple edges and is weighted if each edge (i, j) has a weight wi,j . Even if weighted
networks are useful and common in real world, we do not consider them in this thesis.

Definition 2.1.3 (Adjacency matrix). The adjacency matrix A of a unweighted simple
graph G is defined as

[A]i,j =

{
1 if there is an edge from node i to node j
0 otherwise

(2.1.1)

The adjacency matrix is symmetric if and only if G is undirected.

From the definition of adjacency matrix it is easy to see that for ` ≥ 1, the (i, j)
entry of A` gives the number of walks of length ` starting at node i and ending at node
j.

As we will see in the next Section, the adjacency matrix can be used to investigate
properties of the network. In real world there are different kind of interactions between
entities that can be modelized and analyzed with the aid of the complex networks
theory. In the past decades, many different models of networks have been introduced
to this aim. We will briefly describe the most important ones.

Strongly clustered network One characteristic of real world network is the presence
of many triangles, that is, closed walks of length three. This behavior is evident
in social networks taking for example into account the friendship as a relation
between nodes. In this case, the probability that a friend of my friend is also my
friend is high, giving rise to a triangle in the network. The average clustering
coefficient is an indicator of the presence of such triangles within the network and
is defined as the mean, computed over all the nodes, of the clustering coefficients
of each node, that is:

C =
1

n

n∑
i=1

Ci where Ci =
of triangles based on node i

of possible triangles based on node i
.

Scale-free network Generally, if we consider a network with n nodes generated at
random connecting two nodes with probability p, then the probability P (k) that
a particular node has degree k follows a binomial distribution

P (k) =

(
n− 1

k

)
pk(1− p)n−1−k.

However, as we pointed out at the beginning of this Section, random networks
are not interesting when we want to model real world interactions. A more useful

2.2. CENTRALITY INDICES AND RANK OF THE NODES 37

model is the scale-free network [9] in which the probability P (k) follows a power-
law distribution P (k) ∼ k−γ , where typically 2 < γ < 3. This special behavior
of degree distribution appears when a new node in a network is preferentially
attached to nodes with high degree. For this reason, this kind of network is also
known as preferential attachment or the rich-get-richer models.

Small world network The small world network is a graph in which the distance L,
that is, the shortest path, between two nodes chosen at random grows proportion-
ally to the logarithm of the number of nodes n, i.e., L ∝ log n. The characteristic
of this kind of networks is that every node can be visited with a small number
of steps. A model has been introduced by Watts and Strogatz [134]: starting
from a regular network we choose a node at random and rewire an edge with
probability p. This allows us to obtain a network in which both the clustering
coefficient C is higher than in the random model and the distance L is lower
than in the regular model. The rewiring process is shown in Figure 2.2.

Figure 2.2: Representation of the Watts-Strogatz rewiring process.

2.2 Centrality indices and rank of the nodes
Given a large graph, it can be useful to extract numerical quantities that describe

interesting global properties of the graph, such as the overall importance of a particular
node within the network, or the ease of traveling from one node to another. In an
undirected network, the degree of a node i, which is the number of nodes connected
to that node, provides a rough measure of the importance of the node. However, this
quantity fails to take into consideration the importance of the nodes connected to
node i, e.g., how well-connected they are. Analogously, a rough measure of the ease
of traveling from node i to node j is the length of the shortest path connecting these
nodes. However, this measure fails to take into consideration the possibility that a
somewhat longer path may be useful. For example, during rush hour many commuters
resort to longer routes to reduce their exposure to traffic. Similarly, the expected time
required by a virus to travel from Alice to Bob decreases as the number of their mutual
friends increases, and decreases further as the number of friendships between mutual

38 CHAPTER 2. COMPLEX NETWORKS

friends increases. Even if Alice and Bob are friends, i.e., a path of length one exists
between them, the virus may be transmitted via one or more mutual friends along a
path of length larger than one.

The following observation establishes an important link between graph theory and
linear algebra, a connection that has been exploited by Estrada and his collaborators
in their quest for alternatives to the concepts of degree and shortest path; see, e.g.,
[44–49]. Given a function

f(A) =

∞∑
`=0

c`A
` (2.2.1)

with nonnegative coefficients c` chosen to guarantee convergence, the quantity [f(A)]ij
can be interpreted as a measure of the overall ease of traveling from node i to node
j within the network. The term c0Im has no specific meaning and is introduced for
convenience. We may think of the coefficients c` as weights. They are chosen to
decrease as ` increases in order to penalize the contributions of long walks and to
secure convergence of the sum (2.2.1). The choice c` = 1/`! yields

f(A) = exp(A) (2.2.2)

and is discussed by Estrada and Higham [46]. Another popular choice are coefficients
that yield functions of the form

f(A) = (I − cA)−1, (2.2.3)

where c is a coefficient small enough so that the representation (2.2.1) exists; see [19,
46].

Estrada and his collaborators have defined the following quantities, relevant to
both directed and undirected graphs:

• The f -communicability [46] from node j to node i, given by [f(A)]ij , quantifies
the ease of traveling from node i to node j.

• The f -communicability betweenness [47] of node r is given by

1

(m− 1)(m− 2)

∑
i 6=r

∑
j 6=r
j 6=i

[f(A)]ij − [f(Ar)]ij
[f(A)]ij

, (2.2.4)

where Ar is the adjacency matrix of the graph obtained by removing from G
all edges involving node r. This is a measure of the amount of communication
passing through node r.

• The average f -communicability from node r is defined by

1

m− 1
eTr f(A)cr,

where er = [0, . . . , 0, 1, 0, . . . , 0]T is the rth axis vector, c = [1, 1, . . . , 1]T is the
vector with all entries equal to one, and cr = c− er. This quantity is defined in
[45] for f(A) = exp(A).

The above quantities are applied to symmetric matrices in [45–47], but they are
also of interest for nonsymmetric adjacency matrices, which correspond to directed

2.3. UNDIRECTED NETWORKS 39

graphs, as well. In the case of a directed or undirected graph, the f -communicability
from node i to itself, i.e.,

[f(A)]ii = eTi f(A)ei, (2.2.5)

is referred to as the f -subgraph centrality of node i; see [46, 48, 49]. Further quantities
relevant for undirected graphs are discussed in [11]. The following quantities also would
appear to be of interest:

• The f -starting convenience of node i, given by

m
eTi f(A)c

cT f(A)c
,

quantifies the ease of traveling from node i to anywhere in the network. This is
the sum of the communicabilities from node i to all other nodes, scaled so that
the average of the quantity over all nodes is one.

• The f -ending convenience of node i, given by

m
cT f(A)ei
cT f(A)c

,

quantifies the ease of traveling to node i from anywhere in the network. This
is the sum of the communicabilities from all other nodes to node i, scaled so
that the average of the quantity over all nodes is one. The f -ending convenience
agrees with the f -starting convenience when the graph G is undirected.

• The alternative f -communicability betweenness of node r is given by

cTr f(A)cr − cTr f(Ar)cr
cTr f(A)cr

. (2.2.6)

This quantity is related to (2.2.4), but differs from the latter in that it takes
into consideration the effect of removing node r on the diagonal elements of
f(A), i.e., it takes into account the importance of node r as an intermediate
step in closed walks. The scaling is also different from (2.2.4), as the summation
for the latter quantity includes the relative change in each value [f(A)]ij (with
i 6= r, j 6= r, i 6= j) caused by the removal of all edges involving node r, whereas
all corresponding terms in (2.2.6) are divided by the same number. A reason
for introducing (2.2.6) is that, different from (2.2.4), it can be conveniently
approximated by (block) Gauss-type quadrature rules. By construction, both
quantities (2.2.4) and (2.2.6) are between 0 and 1.

We generally suppress the prefix “f -” in the above quantities when the function f is
clear from the context.

2.3 Undirected networks
Let G be an undirected and unweighted graph without loops or multiple edges. We

assume that n, the number of nodes of G, is large and that the number of edges is
much smaller than n2. Networks that can be represented by this kind of graph arise in
many scientific and industrial applications, including genetics, epidemiology, energy
distribution, and telecommunications; see [13, 43, 46, 103].

40 CHAPTER 2. COMPLEX NETWORKS

Note that the quantities defined in Section 2.2 are of the form

uT f(A)w (2.3.1)

with u and w different or the same vector. In many applications, u is the jth axis
vector ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn.

When the adjacency matrix A is large, i.e., when the graph G has many nodes,
direct evaluation of f(A) generally is not feasible. Benzi and Boito [10] applied pairs
of Gauss and Gauss-Radau rules to compute upper and lower bounds for selected
entries of f(A). This work is based on the connection between the symmetric Lanczos
process, orthogonal polynomials, and Gauss-type quadrature, explored by Golub and
his collaborators in many publications; see Golub and Meurant [59] for details and
references. A brief review of this technique has been provided before in Section 1.5. An
application of pairs of block Gauss-type quadrature rules to simultaneously determine
approximate upper and lower bounds for several entries of f(A) is described in [50].

The main drawback of quadrature-based methods is that the computational effort
is proportional to the number of desired bounds. Quadrature-based methods are
attractive to use when bounds for only a few quantities (2.3.1) are to be computed.
However, these methods can be expensive to use when bounds for many expressions are
to be evaluated. This situation arises, for instance, when we would like to determine
one or a few nodes with the largest f -subgraph centrality in a large graph, because this
requires the computation of upper and lower bounds for all diagonal entries of f(A).

In the next Section, we describe how to bound quantities of the form (2.3.1) by
using a low-rank approximation of the adjacency matrix A.

2.3.1 Use of low-rank approximation
We derive bounds for expressions of the kind uT f(A)w, with ‖u‖ = ‖w‖ = 1,

in terms of a partial spectral factorization of A. The function f is assumed to be
nondecreasing and nonnegative on the spectrum of A. This is true, for example, for
the functions (2.2.2) and (2.2.3).

Introduce the spectral factorization

A = V ΛV T ,

where the eigenvector matrix V = [v1,v2, . . . ,vn] ∈ Rn×n is orthogonal and the
eigenvalues in the diagonal matrix Λ = diag [λ1, λ2, . . . , λn] ∈ Rn×n, are ordered
according to λ1 ≥ λ2 ≥ · · · ≥ λn. By definition,

f(A) = V f(Λ)V T =

n∑
k=1

f(λk)vkv
T
k , (2.3.2)

so that

fu,w(A) := uT f(A)w =

n∑
k=1

f(λk)ũkw̃k,

where ũk = uTvk and w̃k = wTvk.
Let the first N eigenpairs {λk,vk}Nk=1 of A be known. Then fu,w(A) can be

approximated by

uT f(A)w ≈ F (N)
u,w :=

N∑
k=1

f(λk)ũkw̃k. (2.3.3)

2.3. UNDIRECTED NETWORKS 41

The following result shows how upper and lower bounds for fu,w(A) can be determined
with the aid of the first N eigenpairs of A.

Theorem 2.3.1. Let the function f be nondecreasing and nonnegative on the spectrum
of A and let F (N)

u,w be defined by (2.3.3). Let λ1 ≥ λ2 ≥ · · · ≥ λN be the N largest
eigenvalues of A and let v1,v2, . . . ,vN be associated orthonormal eigenvectors. Then
we have

L(N)
u,w ≤ fu,w(A) ≤ U (N)

u,w , (2.3.4)

where

L(N)
u,w := F (N)

u,w − f(λN)

(
1−

N∑
k=1

ũ2k

)1/2(
1−

N∑
k=1

w̃2
k

)1/2

,

U (N)
u,w := F (N)

u,w + f(λN)

(
1−

N∑
k=1

ũ2k

)1/2(
1−

N∑
k=1

w̃2
k

)1/2

.

Proof. The Cauchy inequality yields∣∣∣fu,w(A)− F (N)
u,w

∣∣∣ =

∣∣∣∣∣
n∑

k=N+1

f(λk)ũkw̃k

∣∣∣∣∣ ≤ f(λN)

n∑
k=N+1

|ũk| |w̃k|

≤ f(λN)

(
n∑

k=N+1

ũ2k

)1/2(n∑
k=N+1

w̃2
k

)1/2

= f(λN)

(
1−

N∑
k=1

ũ2k

)1/2(
1−

N∑
k=1

w̃2
k

)1/2

,

from which (2.3.4) follows.

Corollary 2.3.1. Assume that the conditions of Theorem 2.3.1 hold and let u = w.
Then

F (N)
u,u ≤ fu,u(A) ≤ U (N)

u,u . (2.3.5)

Proof. We have

0 ≤ fu,u(A)− F (N)
u,u =

n∑
k=N+1

f(λk)ũ2k ≤ f(λN)

n∑
k=N+1

ũ2k = f(λN)

(
1−

N∑
k=1

ũ2k

)
,

which implies (2.3.5).

Corollary 2.3.2. Let the conditions of Theorem 2.3.1 hold. Then the bounds (2.3.4)
satisfy, ∣∣∣fu,w(A)− F (N+1)

u,w

∣∣∣ ≤ ∣∣∣fu,w(A)− F (N)
u,w

∣∣∣ (2.3.6)

and
L
(N)
u,w − F (N)

u,w ≤ L
(N+1)
u,w − F (N+1)

u,w ≤ 0,

U
(N)
u,w − F (N)

u,w ≥ U
(N+1)
u,w − F (N+1)

u,w ≥ 0,
(2.3.7)

for 1 ≤ N < n. For the bounds (2.3.5), we have

F (N)
u,u ≤ F (N+1)

u,u , U (N)
u,u ≥ U (N+1)

u,u , 1 ≤ N < n. (2.3.8)

42 CHAPTER 2. COMPLEX NETWORKS

Proof. The monotonic behavior of N → F
(N)
u,u is a consequence of the nonnegativity of

f on the spectrum of A, and the monotonic behavior of N → U
(N)
u,u follows from the

fact that f is a nondecreasing function. The inequalities (2.3.6) and (2.3.7) can be
shown similarly.

In the following we will show how to determine a set of nodes with the largest
f -subgraph centrality [f(A)]ii = eTi f(A)ei of a large network. The same arguments
can be applied to find the most important nodes with respect other centrality measures.
The inequalities (2.3.5) and (2.3.8) are important in this context. For notational
convenience, we refer to the lower and upper bounds F (N)

u,u and U (N)
u,u in (2.3.5) as L(N)

ii

and U (N)
ii when u = ei.

The bounds (2.3.4) and (2.3.6) are relevant when we seek to determine pairs of nodes
with the largest f -communicability. Letting u = ei, w = c/‖c‖ = n−1/2[1, 1, . . . , 1]T ,
and multiplying all the bounds by ‖c‖ =

√
n, we can apply them to the f -starting

convenience.

Determining important nodes by partial spectral factorization This section
describes how knowledge of the N leading eigenpairs {λk,vk}Nk=1 of A and the bounds
(2.3.5) with u = ei can be used to determine a subset of nodes that contains the nodes
with the largest f -subgraph centrality [f(A)]ii. We refer to the nodes with the largest
f -subgraph centrality as the most important nodes. The function f is required to be
nondecreasing and nonnegative. We will comment on special computational issues that
arise when f is the exponential function.

Let L(N)
ii and U (N)

ii be the lower and upper bounds defined after Corollary 2.3.2,
and let L(N)

m denote the mth largest lower bound L(N)
ii . Introduce the index sets

S(N)
m =

{
i : U

(N)
ii ≥ L(N)

m

}
, N = 1, 2, . . . , n.

It is not hard to see that if i 6∈ S(N)
m , then node i cannot be in the subset of the m

nodes with the largest f -subgraph centrality. Moreover, any node whose index is an
element of S(N)

m can be in this subset.
Let |S(N)

m | denote the cardinality of S(N)
m . The following relations are useful in the

sequel.

Corollary 2.3.3.

S(n)
m ⊆ S(n−1)

m ⊆ · · · ⊆ S(1)
m and |S(n)

m | ≥ m. (2.3.9)

The set S(N)
m contains the indices for a subset of nodes that contains the set of the

m most important nodes. In particular, when |S(N)
m | = m, the set S(N)

m contains the
indices for the m most important nodes.

Proof. By the definition of the sets S(N)
m , each set contains at least m indices. The

relations (2.3.9) now follow from (2.3.8) with u = ei for 1 ≤ i ≤ n. The observation
about the situation when |S(N)

m | = m is a consequence of the fact that the set S(N)
m

contains the indices for the m nodes with the largest f -subgraph centrality.

Remark 2.3.1. The lower bound L(N)
ii defined after Corollary 2.3.2 usually converges

to [f(A)]ii much faster than the corresponding upper bound U
(N)
ii as N increases.

Therefore, for N fixed, L(N)
ii typically is a better approximation of [f(A)]ii than 1

2 (L
(N)
ii +

2.3. UNDIRECTED NETWORKS 43

U
(N)
ii). This is due to the fact that the lower bound is a truncation of the expansion

(2.3.2), cf. (2.3.3) and (2.3.5), while the upper bound is obtained from the lower bound
by adding a sufficiently large and computable quantity.

Remark 2.3.2. A particular ordering of the lower bounds L(N)
ii , i ∈ S(N)

m , does not
have to correspond to the same ordering of the f-subgraph centralities [f(A)]ii, i.e.,
an inequality L(N)

ii > L
(N)
jj for j ∈ S(N)

m \{i} does not imply that the ith node has the
largest f -subgraph centrality.

We now turn to some computational issues. Evaluation of the bounds (2.3.4) and
(2.3.5) requires the computation of f(λN). This may result in overflow when the graph
contains many nodes and f is the exponential function (2.2.2). For instance, when
the computations are carried out in “double precision arithmetic”, i.e., with about 16
significant decimal digits, we obtain overflow when evaluating exp(x) for x & 710. This
difficulty can be circumvented by replacing A by A−µI, where I is the identity matrix
and µ is an estimate of the largest eigenvalue of A. We then seek to approximate
[f(A− µI)]ii instead of [f(A)]ii, where we note that

[f(A)]ii = exp(µ) [f(A− µI)]ii.

Since A ∈ Rn×n is an adjacency matrix for an unweighted undirected graph without
loops, its spectral radius is bounded by n − 1. We therefore may use µ = n − 1.
However, since we determine a partial spectral factorization {λk,vk}Nk=1 of A, the
largest eigenvalue λ1 of A is available. Therefore, we let µ = λ1 in the computed
examples reported in Section 2.3.2.

Another computational difficulty to overcome is that we do not know in advance
how the dimension N of the leading invariant subspace {λk,vk}Nk=1 of A should be
chosen in order to obtain useful bounds (2.3.4) or (2.3.5). We will use the restarted
block Lanczos method irbleigs described in [3, 4] to compute invariant subspaces in
the examples of Section 2.3.2. This method computes the leading invariant subspace
{λk,vk}qk=1 of A of user-chosen dimension q. The method applies Leja shifts to damp
unwanted eigenvector components in the block Krylov subspaces generated. These shifts
are constructed in the same manner as Leja points, which are suitable interpolation
points when approximating analytic functions by an interpolating polynomial in a
region in the complex plane. If the computed bounds (2.3.4) or (2.3.5) are not
tight enough, e.g., if |S(q)

m | is larger than m, then we restart the computations with
irbleigs to determine the next q eigenpairs {λk,vk}2qk=q+1 of A to obtain the leading
invariant subspace span{v1,v2, . . . ,v2q} of A. This can be done by passing the already
available q eigenvectors {vk}qk=1 of A to irbleigs using the option opts.eigvec. If
|S(N)
m | = m, for N ≤ 2q, then we are done, otherwise we compute the next q eigenpairs
{λk,vk}3qk=2q+1 of A with irbleigs, and so on. The approach outlined requires that
all already computed eigenvectors be stored when determining the next batch of q
eigenvectors. This method for determining an invariant subspace of desired dimension
is attractive when the computer used allows storage of an orthonormal basis for the
already computed subspace. A comparison of irbleigs and the MATLAB function
eigs, which is based on ARPACK [88], is reported in [4] and shows the former method
to be competitive. The use of irbleigs is particularly advantageous when only
few auxiliary vectors can be stored. This often is the case for large-scale problems.
Moreover, irbleigs is a block method, while eigs implements a standard restarted
Lanczos method. Block methods may perform more efficiently on many computers;
see, e.g., Gallivan et al. [52].

44 CHAPTER 2. COMPLEX NETWORKS

When the adjacency matrix is very large and the dimension N of a leading invariant
subspace {λk,vk}Nk=1 such that |S(N)

m | = m is fairly large, the storage requirements
for a basis for this subspace may be problematic. We describe an approach to handle
this situation. Note that the evaluation of the bounds (2.3.4) and (2.3.5) does not
require simultaneous access to all computed eigenvectors. We therefore may reduce
the storage requirements by limiting the number of eigenvectors passed to irbleigs.
This can be achieved by calling irbleigs with the option opts.sigma as follows. This
option determines eigenvalues of A close to a specified value. We choose this value to
be the smallest eigenvalue of the invariant subspace already computed. The option
opts.eigvec is used to pass available eigenvectors associated with eigenvalues closest
to the smallest computed eigenvalue. The number of eigenvectors passed, Mmax, is
close to the largest possible number of eigenvectors that fits into fast computer memory.
For definiteness, assume that q new eigenpairs with eigenvalues smaller than the
smallest of the already computed eigenvalues are desired. Then this approach typically
gives some new eigenpairs which are used to update the bounds (2.3.4) and (2.3.5).
Also a few previously already computed eigenpairs may be recomputed. The outlined
computations only require storage of Mmax + q eigenvectors. The memory requirement
therefore is modest also when N is fairly large. However, typically this approach
requires more matrix-vector product evaluations with A than when all computed
eigenvectors are stored.

We may compute more and more eigenpairs of A until N is such that

|S(N)
m | = m. (2.3.10)

This stopping criterion is referred to as the strong convergence condition. By Corollary
2.3.3, the set S(N)

m contains the indices of the m nodes with the largest f -subgraph
centrality.

The criterion (2.3.10) for choosing N is useful if the required value of N is not too
large. We introduce the weak convergence criterion to be used for problems for which
the large size of N required to satisfy (2.3.10) makes it impractical to compute the
associated bounds (2.3.5) with u = ei. The weak convergence criterion is well suited
for use with the hybrid algorithm for determining the most important nodes that we
will describe in the following. This criterion is designed to stop increasing N when the
lower bounds L(N)

ii do not increase significantly with N . Specifically, we stop increasing
N , when the average increment of the lower bounds L(N)

ii , 1 ≤ i ≤ n, is small when
including the Nth eigenpair {λN ,vN} in the bounds. The average contribution of this
eigenpair to the bounds L(N)

ii , 1 ≤ i ≤ n, is

1

n

n∑
i=1

f(λN)v2i,N =
1

n
f(λN),

and we stop increasing N when

1

n
f(λN) ≤ τ · L(N)

m (2.3.11)

for a user-specified tolerance τ . We use τ = 10−3 in the computed examples. Note
that when this criterion is satisfied, but not (2.3.10), the nodes with index in S(N)

m

and with the largest lowest bounds L(N)
ii are not guaranteed to be the nodes with the

largest f -subgraph centrality.

2.3. UNDIRECTED NETWORKS 45

The weak convergence criterion (2.3.11) may yield a set S(N)
m with many more

indices than m. In particular, we may not want to compute accurate bounds for the
f -subgraph centrality using the approach of Section 1.5 for all nodes with index in
S
(N)
m . We therefore describe how to determine a smaller index set J , which is likely

to contain the indices of the m nodes with the largest f -subgraph centrality. Since
L
(N)
ii generally is a better approximation of [f(A)]ii than U

(N)
ii (cf. Remark 2.3.1), we

discard from the set S(N)
m indices for which L(N)

ii is much smaller than L(N)
m . Thus, for

a user-chosen parameter ρ > 0, we include in the set J all indices i ∈ S(N)
m such that

L(N)
m − L(N)

ii < ρ · L(N)
m . (2.3.12)

In the computed examples, we use ρ = 10−1.
The following algorithm describes the determination of the dimension N of the

leading subspace and of the index set S(N)
m . The function f is the exponential function

(2.2.2). This function may be replaced by some other nonnegative nondecreasing
function such as (2.2.3). The algorithm requires the adjacency matrix A, its order n,
and the number of nodes with largest f -subgraph centrality desired, m. We remark
that the adjacency matrix A does not have to be explicitly stored, only a function for
evaluating matrix-block-vector products with A is required. In addition, the following
parameters have to be provided:

• Nmax, maximal number of iterations performed;

• q, number of eigenvalues computed at each irbleigs call;

• Mmax, maximal number of eigenvector kept in memory;

• τ , tolerance used to detect weak convergence;

• ρ, tolerance used to construct an extended list of nodes in the case of weak
convergence; cf. (2.3.12).

We comment on the computations of part one of the algorithm below.
Algorithm 1 first initializes the vectors `, u, and s, whose components, at each

iteration N , are given by

`i = L
(N)
ii , ui = U

(N)
ii , si =

N∑
k=1

v2ik.

Then, irbleigs is called to compute the first batch of q eigenpairs and the main loop is
entered. The Boolean variable “flag” is used to detect either strong or weak convergence.
The parameter Nmax specifies the maximal number of iterations, i.e., the maximal
number of times the loop made up of lines 7–29 is executed. We found it beneficial to
introduce the auxiliary parameter N to keep track of how many eigenvectors from the
current batch are being used. When N = q, a new batch of eigenpairs is computed.

The bounds (2.3.5) with u = ei are computed in lines 8–13; the vector of indices σ
contains a permutation which yields the lower bounds `i in decreasing order. In line 16
the set S(N)

m is constructed; subsequently the exit condition is checked. Lines 18–28
give a new batch of eigenpairs. Either one of the two kinds of restarts discussed above
may be applied. If N is smaller than Mmax, then we compute the next q eigenpairs
and orthogonalize the new eigenvectors against the available eigenspace. If, instead,

46 CHAPTER 2. COMPLEX NETWORKS

N ≥Mmax, then we seek to determine the q eigenvalues close to the smallest available
eigenvalue λN , and we select those that are smaller than λN .

Algorithm 2 describes the continued computations. The computations of the
algorithm are commented on below. Lines 30–42 of the algorithm determine whether
weak or strong convergence has been achieved. The variable “info” contains this
information. A list of the desired nodes N is formed in lines 43–46, where the subgraph
centralities also are updated, keeping in mind the spectrum shift at line 9 of Algorithm
1. We remark that the MATLAB implementation of Algorithm 2 contains some features
not described in the algorithm. For instance, we only apply the correction due to the
spectrum shift when this does not cause overflow.

The hybrid method The hybrid method first computes a partial spectral factor-
ization of the adjacency matrix A and applies it to determine which nodes might be
the most interesting ones with respect to the criterion chosen. The discussion above
exposes the situation when we would like to determine the nodes of a large network

Algorithm 1 Low-rank approximation, part 1
1: Input: matrix A of size n, number m of nodes to be identified,
2: tuning constants: Nmax, q, Mmax, τ , ρ
3: for i = 1 to n do `i, si = 0 end
4: call irbleigs to compute {λi,vi}qi=1 such that λi ≥ λi+1

5: if spectrum shift is active then µ = λ1 else µ = 0 end
6: N = 0, N = 0, flag = true
7: while flag and (N < min{Nmax, n}) and (N < q)
8: N = N + 1, N = N + 1

9: fλ = exp(λN − µ)
10: for i = 1 to n do wi = v2iN end
11: s = s+w

12: ` = `+ fλ ·w
13: u = `+ fλ(1− s)

14: let σ = [σ1, . . . , σn] be an index permutation such that `σi ≥ `σi+1

15: Lmax = `σm
16: S(N) = {i : ui ≥ Lmax}
17: flag = (|S(N)| > m) and (1

n
fλ > τ · Lmax)

18: if N = q

19: if N < Mmax

20: call irbleigs to compute {λN+i,vN+i}qi=1 such that λN+i ≥ λN+i+1

21: N = 0

22: else
23: call irbleigs to compute e-values ν1 ≥ ν2 ≥ · · · ≥ νq closest to λN
24: r = argmini |νi − λN |
25: λN+i = νr+i, i = 1, . . . , q − r; vN+i are associated eigenvectors
26: N = r

27: end if
28: end if
29: end while

2.3. UNDIRECTED NETWORKS 47

Algorithm 2 Low-rank approximation, part 2
30: if flag
31: j = |S(N)| −m
32: info = 2 % no convergence
33: else
34: if |S(N)| > m

35: J = {i : i > m, Lmax − `σi < ρ · Lmax}
36: j = min(|J |, 100), j = max(j, 5)

37: info = 1 % weak convergence
38: else
39: j = 0

40: info = 0 % strong convergence
41: end if
42: end if
43: for i = 1 to m+ j

44: Ni = σi

45: Vi = eµ · `σi
46: end if
47: Output: list of nodes N , subgraph centralities V,
48: spectrum shift µ, iterations N , info

with the largest f -subgraph centrality. We also may be interested in determining the
nodes with the largest f -communicability. The partial spectral factorization helps
us find a set of candidate nodes that contains the nodes of interest. More accurate
upper and lower bounds for expressions of the form (2.3.1) for the candidate nodes are
then computed with the aid of Gauss quadrature rules. For example, this approach
allows us to compute the node with the largest f -subgraph centrality of a large graph
without evaluating pairs of Gauss and Gauss-Radau rules for every node of the network,
i.e., for every diagonal entry of the adjacency matrix. The evaluation of Gauss-type
rules for every diagonal entry can be expensive for large graphs. The computations
with the hybrid method typically are considerably cheaper. This is illustrated in the
following Subsection. Similarly, if we are interested in finding the nodes with the
largest f -communicability, then we use (1.5.35) and compute more accurate upper and
lower bounds for the candidate nodes with Gauss and Gauss-Radau rules.

2.3.2 Numerical experiments

This section presents a few examples that illustrate the performance of the methods
presented in this thesis. All computations were conducted in MATLAB version 7.11
(R2010b) 64-bit for Linux, in double precision arithmetic, on an Intel Core i7-860
computer, with 8 Gb RAM. The function f is the exponential function (2.2.2).

The examples fall into three categories. The first set consists of synthetic networks
which recently have been used by many authors to test the performance of computational
methods. These examples are not based on real data, but reproduce typical properties of
complex networks, e.g., small world effect, power law degree distribution, etc.; see [124].
They allow us to choose the dimension of the network as well as the probability
value upon which they depend. The second set consists of five networks that arise in

48 CHAPTER 2. COMPLEX NETWORKS

real-world applications and have publicly available data sets. Finally, we analyze a new
application, which is gaining an increasing interest in software engineering, namely
networks describing the dependency between modules in large software projects.

Synthetic networks In the initial examples, we considered nine classes of random
symmetric adjacency matrices that were generated with the functions erdrey, geo,
gilbert, kleinberg, lockandkey, pref, renga, smallw, and sticky in the MATLAB package
CONTEST by Taylor and Higham [124]. For instance, the function geo [111] generates
a random symmetric adjacency matrix A as follows: after determining n randomly
distributed points xi on the unit square, an edge is inserted between nodes i and j if
‖xi − xj‖ < r, where by default r =

√
1.44/n; see [124] for details on the adjacency

matrices produced by the functions. The parameters for each of these functions are
chosen to be their default values. Figure 2.3 shows the sparsity pattern of a typical
adjacency matrix of order 1000× 1000 for each kind of graph generated, as well as the
number of nonzero entries of each matrix. In all computed examples, we choose the
parameters q = 20, Nmax = 300, and Mmax = 200 for Algorithms 1 and 2.

0 500 1000

0

500

1000

nz = 7098

erdrey

0 500 1000

0

500

1000

nz = 4494

geo

0 500 1000

0

500

1000

nz = 7278

gilbert

0 500 1000

0

500

1000

nz = 6062

kleinberg

0 500 1000

0

500

1000

nz = 13604

lockandkey

0 500 1000

0

500

1000

nz = 4060

pref

0 500 1000

0

500

1000

nz = 20484

renga

0 500 1000

0

500

1000

nz = 4370

smallw

0 500 1000

0

500

1000

nz = 1632

sticky

Figure 2.3: The sparsity pattern of a typical 1000× 1000 matrix for each one of the nine
kinds of random adjacency matrices used in the computed examples. The
parameter nz shows the number of nonzero entries of each matrix.

Our first experiment is concerned with determining the node of a graph with the

2.3. UNDIRECTED NETWORKS 49

largest subgraph centrality, or a small set of nodes containing this node. We refer to
the node with the largest subgraph centrality as the most important node. For each
type of adjacency matrix, we used the bounds (2.3.5) with u = ei for 1 ≤ i ≤ n to
determine sets of M = 2k nodes that contain the most important node of the graph
for k = 0, 1 . . . , 9. Table 2.1 reports, for each type of adjacency matrix and for each
value of M , the average and standard deviation of the number of eigenpairs required
to achieve |S(N)| ≤M for a sample of 100 randomly generated adjacency matrices of
each kind.

Table 2.1: Mean and standard deviation (sdev) for nine classes of random adjacency matrices
of order n = 1024 of the number N of eigenpairs required to achieve |S(N)| ≤M
for M = 2k, 0 ≤ k ≤ 9. The sample size is 100 matrices of each kind.

test matrix M 512 256 128 64 32 16 8 4 2 1

erdrey mean 65 69 75 82 92 104 121 147 187 261
sdev 12 13 15 18 21 25 32 45 63 128

geo mean 11 11 11 12 13 17 24 37 97 228
sdev 6 6 6 7 9 12 14 22 194 350

gilbert mean 65 69 75 83 93 106 125 151 200 287
sdev 13 14 16 19 23 29 40 52 92 170

kleinberg mean 113 121 130 140 152 167 185 212 263 337
sdev 10 11 14 17 20 27 35 49 94 139

lockandkey mean 2 2 2 2 2 2 2 2 3 12
sdev 0 0 0 0 0 0 0 1 4 27

pref mean 2 2 2 2 2 2 2 2 2 2
sdev 0 0 0 0 0 0 0 0 0 2

renga mean 17 17 18 18 19 20 20 21 23 25
sdev 1 1 1 1 1 1 1 2 2 4

smallw mean 224 227 243 245 248 266 312 342 406 607
sdev 18 19 25 25 26 47 98 134 196 273

sticky mean 2 2 2 2 2 2 2 2 3 4
sdev 1 1 1 1 1 1 1 2 3 6

For the matrix classes lockandkey, pref, renga, and sticky, the most important node
in the network is correctly identified using only a fairly small number of eigenpairs; on
average 12, 2, 25, and 4, respectively. For this kind of adjacency matrix, the approach
of Section 2.3.1 provides a powerful method for determining the most important node
or set of nodes in a large graph and for estimating subgraph centralities. The method
also can be used to bound communicabilities of interest.

Turning to the adjacency matrices for graphs of the type geo, by the partial spectral
factorization method we were able to determine a set of four nodes that contained the
most important node using a modest number of eigenpairs, on the average 37 eigenpairs
were needed. However, successful identification of the most important node required on
average the much larger number of 228 eigenpairs. We made similar observations for
adjacency matrices of the types erdrey, gilbert, kleinberg, and smallw. This illustrates
that the low-rank approximation approach of Section 2.3.1 might not be able to identify
the most important node(s) with a fairly small computational effort. However, the
low-rank approximation approach may be useful for generating a short list of candidate
nodes whose subgraph centralities can be accurately determined by Gauss quadrature.

50 CHAPTER 2. COMPLEX NETWORKS

Table 2.2: Results obtained by the low-rank approximation method with termination due
to strong or weak convergence. The table shows the number of failures, the
number N of eigenpairs required to satisfy the specified termination criterion,
the execution time in seconds, and in case of weak convergence the cardinality of
the list N of candidate nodes. Each test was repeated 10 times with 4096× 4096
adjacency matrices.

strong convergence weak convergence
test matrix fail N time N time |N |

erdrey 3 304 4.2e+01 54 2.7e+00 10
geo 1 198 1.2e+01 4 2.3e-01 10

gilbert 4 345 5.0e+01 50 2.8e+00 10
kleinberg 9 346 4.1e+01 150 9.7e+00 11

lockandkey 0 35 3.4e+00 2 5.1e-01 8
pref 0 6 2.6e-01 2 2.8e-01 10
renga 0 112 2.0e+00 45 8.6e-01 13
smallw 9 451 7.7e+01 288 4.8e+01 1654
sticky 1 4 2.8e-01 2 2.6e-01 8

Table 2.2 shows the performance of the low-rank approximation method (Algo-
rithms 1 and 2) when applied to test matrices of order n = 4096 from CONTEST.
Each type of matrix was randomly generated 10 times. We wanted to identify the
five most important nodes in the correct order. In the first set of experiments, we
terminated the computations when the strong convergence criterion, |S(N)

5 | = 5, was
satisfied. By Corollary 2.3.3, the five indices of S(N)

5 are for the five nodes with largest
f -subgraph centrality. The column “fail” reports the number of times the relative size
of the lower bounds L(N)

ii does not convey the correct relative size of the f -subgraph
centrality of the nodes. Table 2.2 also shows the number N of eigenpairs required
to satisfy the strong convergence criterion and the computation time required. Both
the value of N and the computation time are averages over 10 runs with each kind of
matrix. The timings are for irbleigs with convergence tolerance 1 · 10−3. This tolerance
is used in all computations for this section.

The last three columns of Table 2.2 are obtained when terminating the low-rank
approximation method with the weak convergence criterion (2.3.11). The columns
display, in order, the number of eigenpairs computed, the execution time, and the
number of candidate nodes included in the resulting list N . The table shows that
for many of the graphs, a large number of eigenpairs is required to satisfy the strong
convergence criterion, while the low-rank method for all graphs succeeds in determining
a small list of candidate nodes in fairly short time, with the possible exception of the
smallw graphs. The latter graphs cause particular problems when using the low-rank
method. A possible reason is the fact that almost all the nodes of a typical smallw
network have quantized subgraph centralities, in the sense that each value is very close
to another one among a small number of possible values. This leads to a situation when
a large number N of eigenpairs is required to satisfy the strong or weak convergence
criteria. This is illustrated in Figure 2.4, which displays the eigenvalues and the
subgraph centralities for the nodes of three test networks with 512 nodes each. It is
immediate to observe that the eigenvalue decay alone is not sufficient to predict the
speed of convergence of the algorithm.

Columns 2 and 3 of Table 2.3 indicate the number of matrix-vector product

2.3. UNDIRECTED NETWORKS 51

100 200 300 400 500

−3

−2

−1

0

1

2

3

4

100 200 300 400 500

−5

0

5

10

15

20

100 200 300 400 500

−6

−4

−2

0

2

4

6

100 200 300 400 500

8

9

10

11

12

13

14

15

16

17

18

19

100 200 300 400 500

2

4

6

8

10

12

14

16

18
x 10

6

100 200 300 400 500

100

200

300

400

500

600

700

800

Figure 2.4: From right to left: Eigenvalue distribution (top) and subgraph centralities
(bottom) for the networks smallw, renga, and sticky with n = 512 nodes.

evaluations and the computational time (in seconds) required when determining the
five nodes with the largest f -subgraph centrality for graphs with n = 4096 nodes of
the type indicated, by evaluating pairs of Gauss and Gauss-Radau quadrature rules as
described in Section 1.5. A matrix-vector product with a block vector with k columns
is counted as k matrix-vector product evaluations. The performance of the hybrid
method described in Section 2.3.1 is shown in columns 4 and 5. The hybrid method
can be seen to require fewer matrix-vector product evaluations and shorter execution
time. The number of matrix-vector products and the execution times are averages over
10 runs with randomly generated graphs of the appropriate kind. Table 2.3 compares
these approaches with two classical methods, namely the evaluation of the matrix
exponential using the MATLAB function expm, which is based on Padé approximation
and complete spectral factorization with spectral shift of the adjacency matrix using
the MATLAB function eig. All methods compared in Table 2.3 correctly identified
the five most important nodes of each network. The table shows the Gauss quadrature
approach to be faster than expm and eig and the hybrid method to be the fastest,
except for the smallw network. The execution times for the Gauss quadrature and
hybrid algorithms, as well as for expm, change significantly with the network. We note
that the Gauss quadrature and hybrid algorithms require far less storage space than
the expm function, which needs to allocate up to six matrices of the same size as the
input matrix.

We also applied the hybrid method to smaller networks of the same kind as used

52 CHAPTER 2. COMPLEX NETWORKS

Table 2.3: Comparison of Gauss quadrature and the hybrid algorithm. Each test is repeated
10 times with n = 4096. For each kind of adjacency matrix, we report the average
number of matrix-vector product evaluations required (mvp) and the average
execution time in seconds.

Gauss Hybrid expm eig
test matrix mvp time mvp time time time

erdrey 28663 1.5e+01 4875 3.0e+00 5.5e+02 1.7e+02
geo 19913 9.6e+00 496 2.3e-01 7.6e+01 1.5e+02

gilbert 28663 1.5e+01 4558 2.7e+00 5.6e+02 1.7e+02
kleinberg 22343 1.1e+01 11710 1.0e+01 2.7e+01 1.7e+02
lockandkey 32766 2.0e+01 1054 5.6e-01 5.2e+02 1.7e+02

pref 36607 1.8e+01 587 2.7e-01 4.6e+02 1.6e+02
renga 36087 2.2e+01 1591 9.5e-01 9.7e+01 1.6e+02
smallw 19266 8.6e+00 77979 5.5e+01 9.5e+00 1.6e+02
sticky 21792 1.0e+01 650 2.9e-01 1.3e+02 1.5e+02

for Table 2.3. Specifically, we generated networks with 512, 1024, and 2048 nodes.
The hybrid method successfully determined the five nodes with the largest f -subgraph
centrality for these graphs.

Having at our disposal a set of synthetic examples whose size can be chosen at
will, makes it possible to investigate the scalability of the methods considered. We
let n = 100, 200, . . . , 2000 and, for each of the CONTEST networks, we measured the
execution time corresponding to the four algorithms of Table 2.3. There are essentially
four classes of results, depicted in Figure 2.5. Most of the examples behave similarly
to the lockandkey network: the expm function is convenient only for small sizes and it
is generally slower than the approach based on eigenvalues (eig). Gauss quadrature is
faster than the first two methods when n gets large enough. The hybrid method is the
fastest for almost all large and small networks.

In the kleinberg example the performance of the four methods is quite similar, but
still the hybrid approach is slightly faster. In the renga network the expm function is
faster than eig and Gauss quadrature, but all of them are slower than hybrid. Similar
results hold for geo. The smallw results are totally different from the others: the hybrid
method behaves like eig, and expm is the fastest method.

The block Lanczos method implemented by the MATLAB function irbleigs
requires a user to select block-size. Figure 2.6 shows the influence of the block-size
k on the execution time required by the hybrid method. The figure displays timings
for block-sizes k = 1, 2, . . . , 10, for a particular realization of four kinds of adjacency
matrices of order 4096. The effect of the block-size on the execution time is further
illustrated in Table 2.4, where the performance of the hybrid method for block-size
k = 1 is compared with the results in Table 2.3, obtained for block-size k = 5. We
observed in our experiments that for most matrices the execution times were the
smallest for block-size of about 5 or 6, and only in a few cases the computation was
faster for k = 1; see the matrix smallw in Figure 2.6 and Table 2.4. For this reason, we
used block-size k = 5 in the computed examples reported above.

Real-world networks The following examples come from real-world applications.
The first network (2114 nodes, 4480 edges) describes the protein interaction network
for yeast: each edge represents an interaction between two proteins [81, 123]. The data

2.3. UNDIRECTED NETWORKS 53

500 1000 1500 2000

10
−2

10
−1

10
0

10
1

10
2

lockandkey

500 1000 1500 2000

10
−2

10
−1

10
0

10
1

10
2

kleinberg

500 1000 1500 2000

10
−2

10
−1

10
0

10
1

10
2

renga

500 1000 1500 2000

10
−2

10
−1

10
0

10
1

10
2

smallw

expm

eig

Gauss

hybrid

Figure 2.5: Execution time for the algorithms considered when the size of the network
varies.

set was originally included in the Notre Dame Networks Database and is now available
at [109]. The eigenvalue distribution of the adjacency matrix is shown in Figure 2.7,
left.

The second network (4941 nodes, 13188 edges) is an undirected unweighted rep-
resentation of the topology of the western states power grid of the United States,
compiled by Watts and Strogatz [134], and is now available at [98]. Figure 2.7, right,
reports the eigenvalues of the adjacency matrix.

The third example is a symmetrized snapshot of the structure of the Internet at
the level of autonomous systems (22963 nodes, 96872 edges), reconstructed from BGP
(Border Gateway Protocol) tables posted by the University of Oregon Route Views
Project. This snapshot was created by Newman from data for July 22, 2006, and is
available at [98].

The fourth example is the collaboration network of scientists posting preprints on
the condensed matter archive at www.arxiv.org [104], and consists of 40421 nodes and
351304 edges. This version is based on preprints posted to the archive between January
1, 1995 and March 31, 2005. The original network is weighted, here we consider an
unweighted version. The data set is available at [98].

The fifth and largest example describes all the user-to-user links (friendship) from
the Facebook New Orleans networks. Each edge between two users means that the
second user appeared in the first user’s friend list. The network (63731 nodes, 1545686
edges) was studied in [129], and the data set is available at [125]. We symmetrized the
adjacency matrix since the friendship relation in Facebook is reflexive.

Table 2.5 shows, for each of the above networks, the results obtained by low rank

www.arxiv.org

54 CHAPTER 2. COMPLEX NETWORKS

1 2 3 4 5 6 7 8 9 10
10

−1

10
0

10
1

10
2

kleinberg

lockandkey .

renga

smallw

Figure 2.6: Hybrid algorithm: execution time versus block-size for four classes of adjacency
matrices, n = 4096.

500 1000 1500 2000

−6

−4

−2

0

2

4

6

500 1000 1500 2000 2500 3000 3500 4000 4500

−4

−2

0

2

4

6

Figure 2.7: Eigenvalues of the adjacency matrix of the yeast (left) and power (right) networks.

approximation, either with a strong or weak convergence test, when identifying the five
most important nodes. In the two smaller examples the strong convergence criterion
requires a large number of eigenpairs, but the weak convergence test is satisfied when
the candidate list contains just 10 nodes. On the contrary, only 2 eigenpairs suffice to
identify the five most important nodes of the three largest networks. We do not specify
a value in the column labeled “fail” of Table 2.5 for the largest networks, because
we cannot evaluate expm in reasonable time when n > 104 and compare with the
ordering obtained when using this function. However, we note that both the strong
and weak convergence of Algorithms 1 and 2, as well as Gauss quadrature and the
hybrid algorithms, produce the same five nodes in the same order.

In Table 2.6, the number of matrix-vector product evaluations and the execution

2.3. UNDIRECTED NETWORKS 55

Table 2.4: Comparison between hybrid algorithms with block-size k = 5 and k = 1. Each
test is repeated 10 times, with n = 4096.

Hybrid, k = 5 Hybrid, k = 1 expm eig
test matrix mvp time mvp time time time

erdrey 4875 3.0e+00 2190 1.7e+00 5.5e+02 1.7e+02
geo 496 2.3e-01 1044 7.1e-01 7.6e+01 1.5e+02

gilbert 4558 2.7e+00 2181 1.6e+00 5.6e+02 1.7e+02
kleinberg 11710 1.0e+01 2271 1.6e+00 2.7e+01 1.7e+02
lockandkey 1054 5.6e-01 2106 1.7e+00 5.2e+02 1.7e+02

pref 587 2.7e-01 856 5.6e-01 4.6e+02 1.6e+02
renga 1591 9.5e-01 2208 1.7e+00 9.7e+01 1.6e+02
smallw 77979 5.5e+01 2271 1.4e+00 9.5e+00 1.6e+02
sticky 650 2.9e-01 662 4.2e-01 1.3e+02 1.5e+02

Table 2.5: Results obtained by the low-rank approximation algorithm with both strong and
weak convergence criteria. The table reports the number of failures, the number
N of eigenpairs required to reach convergence, the execution time, and, in case
of weak convergence, the cardinality of the list N of candidate nodes.

strong convergence weak convergence
network nodes edges fail N time N time |N |
yeast 2114 4480 0 66 1.5e+00 7 1.2e-01 10
power 4941 13188 0 230 3.4e+01 3 5.8e-01 10
internet 22963 96872 – 2 1.6e+00 2 1.7e+00 5

collaborations 40421 351304 – 2 3.8e+00 2 3.6e+00 5
facebook 63731 1545686 – 2 1.5e+01 2 1.4e+01 5

time corresponding to Gauss quadrature, the hybrid method, expm, and eig, are
compared. The computations required for the Gauss quadrature method and for
the MATLAB functions expm and eig can be seen to be quite time-consuming for
large matrix sizes. Results for expm and eig for the largest networks therefore are
not reported when n > 104. The results achieved with the hybrid method are very
encouraging and illustrate the possibility of applying hybrid methods to large-scale
problems.

Software networks One of the main issues in modern software engineering is to
apply certain metrics to software packages in order to gain information about their
properties. Concas et al. [27, 28] associated a graph to a software package and
study the connection between properties of the graph and the occurrence of bugs
during the package development. We considered the software package Netbeans
(http://www.netbeans.org/), an integrated development environment. This choice
is motivated by the fact that for this package several versions of the source code are
available and so is complete information about the localization of bugs in different
versions and software modules. The Netbeans system is written in Java and its classes
are contained in source files referred to as compilation units (CU). A CU generally

http://www.netbeans.org/

56 CHAPTER 2. COMPLEX NETWORKS

Table 2.6: Comparison of Gauss quadrature and hybrid algorithms. For each matrix, we
report the number of matrix-vector product evaluations (mvp) and the execution
time in seconds.

Gauss Hybrid expm eig
network nodes mvp time mvp time time time
yeast 2114 9028 3.0e+00 367 1.4e-01 1.2e+01 1.5e+01
power 4941 23317 1.5e+01 759 6.4e-01 3.3e+01 2.6e+02
internet 22963 236345 3.8e+02 679 2.4e+00 – –

collaborations 40421 431146 1.2e+03 835 4.5e+00 – –
facebook 63731 801960 7.9e+03 859 1.2e+01 – –

contains just one class, but may occasionally contain two or more classes. A software
network is a graph in which the CUs are nodes and the directed edges correspond to a
CU referencing another one. The resulting network is directed, not connected, and has
self-edges, i.e., there may be edges connecting a node to itself. The network is quite
large, with 44581 nodes and 189646 links.

0 1 2 3 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 189646

0 1 2 3 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 373524

Figure 2.8: The sparsity pattern of the Netbeans network: original adjacency matrix (left),
symmetrized version (right). The parameter nz shows the number of nonzero
entries of each matrix.

Following [27, 28], we symmetrize the adjacency matrix by considering each edge
without orientation. This allows us to test the performance of the algorithms discussed
above and to perform an initial analysis of the network. The sparsity pattern of the
original Netbeans network and the symmetrized version is displayed in Figure 2.8.

Tables 2.7 and 2.8 present results for several subnetworks of Netbeans as well as
for the entire network. Each subnetwork corresponds to a subsystem of the whole
software package. Our task was to determine the five most important nodes of the
entire network as well as of each subnetwork. It is quite remarkable that only 2 to 5
iterations with Algorithms 1 and 2 suffice to satisfy the strong convergence criterion

2.3. UNDIRECTED NETWORKS 57

and only 2 iterations are needed to satisfy the weak convergence criterion. It is also
interesting that Algorithms 1 and 2 require about the same number of iterations N
for each subnetwork as well as for the entire network. As explained above, we did not
apply the expm and eig functions to matrices of order larger than 104.

Table 2.7: Results obtained by the low-rank approximation algorithm with both strong and
weak convergence criteria. The table reports the number of failures, the number
N of eigenpairs required to reach convergence, the execution time, and, in case
of weak convergence, the cardinality of the list N of candidate nodes.

strong convergence weak convergence
network nodes edges fail N time N time |N |
profiler 1231 4161 0 2 3.3e-01 2 1.1e-01 5
j2ee 2100 4642 0 3 1.1e-01 2 1.5e-01 10
uml 3462 13130 0 2 1.6e-01 2 2.1e-01 5

enterprise 13548 15604 – 5 6.5e-01 2 7.3e-01 10
netbeans 44581 189646 – 2 4.9e+00 2 4.3e+00 5

Table 2.8: Comparison of Gauss quadrature and hybrid algorithms. For each matrix, we
report the number of matrix-vector product evaluations (mvp) and the execution
time in seconds.

Gauss Hybrid expm eig
network nodes mvp time mvp time time time
profiler 1231 10265 3.0e+00 429 1.1e-01 1.3e+01 3.7e+00
j2ee 2100 15654 4.9e+00 386 1.1e-01 2.7e+01 1.6e+01
uml 3462 33541 1.7e+01 655 2.7e-01 2.8e+02 8.1e+01

enterprise 13548 55136 4.1e+01 640 8.3e-01 – –
netbeans 44581 450078 1.3e+03 679 3.7e+00 – –

Using available information about bugs in the CUs and the computed values for
the f -subgraph centrality and starting convenience gives Table 2.9. The entries of
the top table represent the number of CUs without and with bugs, with subgraph
centrality either smaller or larger than the average. The bottom table reports similar
information for the starting convenience. The tables yield the chi-square test statistic
χ2 = 2997 and χ2 = 3503, respectively. Both values are much larger than the critical
value χ2

α = 7.88 from the chi-square distribution for α = 5 · 10−3. Since we are testing
the hypothesis of stochastic independence, we are led to accept, with probability 99.5%,
the hypothesis that the presence of bugs in a CU depends on both the subgraph
centrality and the starting convenience. The results of Table 2.9 suggests that there is
a low probability to find bugs in CUs characterized by a low value of the computed
metrics. This example illustrates that the hybrid method can be applied to large-scale
problems. Both the storage and execution time of the method are fairly small.

Application of block algorithms The main advantage of the approach described
above is that it yields bounds for (2.3.1). However, the computational effort required

58 CHAPTER 2. COMPLEX NETWORKS

Table 2.9: Contingency table reporting the frequency of bugs with respects to either subgraph
centrality or starting convenience.

subgraph centrality
bugs smaller than average larger than average
no 33563 4501
yes 4004 2513

starting convenience
bugs smaller than average larger than average
no 30028 8035
yes 3053 3465

may be much larger than when block methods are used. Suppose that bounds are
desired for each element of the leading k × k submatrix of f(A), i.e., of

If = WT f(A)W

with W = [e1, . . . , ek]. Using the approach of this section requires k(k + 1)/2 partial
Lanczos decompositions with w = ei for 1 ≤ i ≤ k and w = (ei + ej)/

√
2 for

1 ≤ i < j ≤ k. Approximations of these bounds can be computed by the block methods
described in Section 1.4.5. They require the evaluation of a single partial block Lanczos
decomposition with block-size k. If the Lanczos method with block-size one requires
about the same number of steps as the block Lanczos method with block-size k, then
the count of matrix-vector products scales with k for the block method, while it scales
with k2 when the block-size is one. Here we count the product of the matrix A with a
block-vector with k columns as k matrix-vector products.

In the following, we illustrate the application of block Gauss and anti-Gauss
quadrature rules to the estimation of certain functions of symmetric or nonsymmetric
adjacency matrices. All computations were carried out with MATLAB version 8.1
(R2013a) 64-bit for Linux, in double precision arithmetic, on an Intel Core i7-860
computer with 8 GB RAM. The following numerical examples illustrate the performance
of block Gauss and block anti-Gauss quadrature rules when applied to integrate the
exponential function. The matrices for most examples are adjacency matrices for
undirected networks that arise in real-world applications and are publicly available.

We will approximate If by

FN := AN+1f =
1

2
(GNf +HN+1f) ; (2.3.13)

cf. (1.5.21). Seeking to determine each entry of If with an approximate relative
tolerance τ , we terminate the symmetric block Lanczos methods at iteration N , where
N is the smallest integer such that

TN :=
1

2

‖GNf −HN+1f‖max

‖FN‖max
< τ, (2.3.14)

with ‖B‖max := max1≤i,j≤k |Bij |, and then accept (2.3.13) as our approximation of
If . In all experiments of this section, we let τ = 10−3.

2.3. UNDIRECTED NETWORKS 59

Assume that

min{[GNf]ij , [HN+1f]ij} ≤ [If]ij ≤ max{[GNf]ij , [HN+1f]ij}.

Then

|[FN − If]ij | =

∣∣∣∣∣
[

1

2
GNf −

1

2
If
]
ij

+

[
1

2
HN+1f −

1

2
If
]
ij

∣∣∣∣∣
≤ 1

2
|[GNf − If]ij |+

1

2
|[HN+1f − If]ij |

=
1

2
|[GNf −HN+1f]ij |.

Therefore, if [GNf]ij and [HN+1f]ij bracket [If]ij for all 1 ≤ i, j ≤ k, then (2.3.14)
implies that

GN :=
‖FN − If‖max

‖FN‖max
< τ, (2.3.15)

i.e., FN approximates If elementwise with a relative error bounded by about τ .
We have not experienced breakdown in any of the reported computations. However,

breakdowns have been observed in some examples when the block size is larger than 5.
We present some examples that show the performance of block Gauss and anti-

Gauss quadrature rules associated with the symmetric block Lanczos method. This
method is applied to seven real-world undirected unweighted networks, some of which
have been investigated numerically in [51]. The networks have the following properties:

Email (1133 nodes, 10902 edges) is a representation of e-mail interchanges between
members of the University Rovira i Virgili (Tarragona), described in [65]. The
data set is available at Alex Arena’s web page [1].

Autobahn (1168 nodes, 2486 edges) describes the German highway system network.
The nodes are German locations and the edges are highways connecting them. It
is available at [14].

Yeast (2114 nodes, 4480 edges) describes the protein interaction network for yeast.
Each edge represents an interaction between two proteins [81, 123]. The data
set was originally included in the Notre Dame Networks Database, and it is now
available at [109].

Power (4941 nodes, 13188 edges) is an undirected unweighted representation of the
topology of the western states power grid of the United States, compiled by
Watts and Strogatz [134]. The original data set was made available at the web
site of Watts at Columbia University, and now can be found at [98].

Internet (22963 nodes, 96872 edges) is a symmetrized snapshot of the structure of the
Internet at the level of autonomous systems, reconstructed from BGP (Border
Gateway Protocol) tables posted by the University of Oregon Route Views
Project. This snapshot was created by Mark Newman from data for July 22,
2006 [98].

Collaboration (40421 nodes, 351304 edges) is the collaboration network of scientists
who submitted preprints to the condensed matter archive at www.arxiv.org [104]
between January 1, 1995, and March 31, 2005. The original network is weighted,
here we consider an unweighted version [98].

60 CHAPTER 2. COMPLEX NETWORKS

Facebook (63731 nodes, 1545686 edges) is the largest example we consider. It describes
all the user-to-user links (friendships) of the Facebook New Orleans network. It
was studied in [129], and the data set is available at [125].

We are interested in computing the f -subgraph centrality of k specified nodes, as
well as the f -communicability between each pair of nodes, for a total of k(k + 1)/2
numerical quantities. We may assume that the nodes of interest are the nodes 1 through
k. We, therefore, seek to approximate If = WT f(A)W with W := [e1, . . . , ek].

To investigate whether for each N the entries [GNf]ij and [HN+1f]ij bracket the
quantity [If]ij , we applied block Gauss and anti-Gauss rules to compute the centrality
and communicability for five nodes of the first four networks. These networks are small
enough to allow the evaluation of the matrix exponential by the MATLAB function
expm. Since we cannot assume that the values returned by expm are exact, we checked
that they are almost bounded by the computed quantities, i.e., whether

L −
√
εM < [expm(A)]ij < U +

√
εM , i, j = 1, . . . , 5, (2.3.16)

where L = min{[GNf]ij , [HN+1f]ij}, U = max{[GNf]ij , [HN+1f]ij}, and εM ' 2.2 ·
10−16. These inequalities were satisfied for the first four networks, i.e., for all networks
for which we could verify them.

Table 2.10 shows the execution time for the block Gauss and anti-Gauss quadrature
rules, the scalar Gauss/Gauss–Radau quadrature rules described in Section 1.5, and
the expm function. We apply the quadrature rules to compute approximations of
If = WT exp(A)W with W = [e1, e2, e3, e4, e5] and terminate the Lanczos and block
Lanczos methods as soon as TN < 10−3. The last networks of Table 2.10 are too large
to allow the evaluation of the function expm. It can be seen that Lanczos methods can
be applied to rather large networks, and that the block Lanczos method with block-size
5 is faster than the standard Lanczos method with block-size 1.

Table 2.11 displays the number of matrix-vector product (MVP) evaluations and
the error GN defined by (2.3.15) for both the scalar and the block case. The number
of MVPs equals the number of steps of the Lanczos method when the block-size is
one, and equals the product of the number of Lanczos steps and the block-size when
the latter is larger than one. When evaluating GN , we consider the value returned by
expm to be exact. The error is only reported for the smallest networks and shows the
termination criterion always to give approximations with the desired accuracy. Since
the last three networks are too large to allow the evaluation of expm, we cannot report
the errors for them. To better illustrate the effect of the block-size on the execution
time, we let the number of columns k of W increase. For each k we approximate the
entries of WT f(A)W both by the symmetric block Lanczos method with block-size
k and by k(k + 1)/2 applications of the standard Lanczos method with block-size
one. The left panel of Figure 2.9 shows execution times, and the right panel the ratio
between the execution times for block-sizes 1 and k. The speed-up of the block method
is roughly linear as a function of the block-size.

A reason for the speed-up shown in Figure 2.9 is that both centralities and commu-
nicabilities were requested. We next investigate whether block methods are competitive
when only centralities are desired. Figure 2.10 depicts execution times for this situation.
The figure is analogous to Figure 2.9 and shows that for the computer used in our
experiments, block-size 16 yields a speed-up of a little less than a factor of 2. Thus,
also in the situation when only subgraph centralities are needed, the block method is
competitive. In particular, it may be attractive to apply block Lanczos methods in

2.4. DIRECTED NETWORKS 61

Table 2.10: Execution time, in seconds, for computing centralities of and communicabilities
between five nodes of undirected networks.

Matrix Nodes Edges expm Block-size 1 Block-size 5
Email 1133 10902 1.2e+01 1.3e-01 3.4e-02

Autobahn 1168 2486 8.2e-01 3.1e-01 2.9e-02
Yeast 2114 4480 1.0e+01 9.6e-02 3.3e-02
Power 4941 13188 2.1e+01 1.3e-01 2.7e-02
Internet 22963 96872 – 6.9e-01 1.2e-01
Collab. 40421 351384 – 1.6e+00 3.5e-01

Facebook 63731 1634180 – 4.5e+00 6.0e-01

Table 2.11: Number of MVP evaluations and size of the error GN (2.3.15) for both block-sizes
1 and 5.

Block size 1 Block size 5
Matrix Nodes Edges MVP GN MVP Steps GN
Email 1133 10902 75 2.2e-05 40 8 2.8e-06

Autobahn 1168 2486 36 1.8e-05 25 5 6.3e-07
Yeast 2114 4480 35 8.1e-05 35 7 2.6e-06
Power 4941 13188 45 5.9e-06 30 6 4.7e-07
Internet 22963 96872 95 – 35 7 –
Collab. 40421 351384 100 – 50 10 –

Facebook 63731 1634180 102 – 50 10 –

the hybrid scheme for identifying the k nodes of a network with the largest subgraph
centrality discussed above.

2.4 Directed networks
We are interested in studying large unweighted directed networks without multiple

edges and loops. This kind of network can be described with a directed graph G. The
nodes are represented by vertices of the graph and the connections between adjacent
nodes by directed edges. We assume that the number of nodes, n, is large and that the
number of edges is much smaller than n2. Networks that give rise to this kind of graph
arise in many scientific and industrial applications, including genetics, epidemiology,
energy distribution, and telecommunications; see, e.g., [13, 17, 30, 43, 46, 75, 103] and
references therein. For instance, internet search engines use graphs that describe the
connections between web pages.

For directed graphs, the size of [exp(A)]ii is not always a meaningful measure of
the importance of node i. Benzi et al. [11] illustrated this with the following example.
Let A be a Jordan block

A = [Aij] ∈ Rn×n, Aij =

{
1, j = i+ 1,

0, j 6= i+ 1.

Then [exp(A)]ii = 1 for all i, and these values do not in an obvious manner correspond

62 CHAPTER 2. COMPLEX NETWORKS

2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

Scalar computation

Block computation

5 10 15 20
0

5

10

15

20

25

30

35

40

Figure 2.9: Execution times for symmetric Lanczos methods with block-size 1 (top graph)
and for block-size k (bottom graph) as a function of k when determining
approximations of the entries of WT f(A)W . The right panel shows the ratio
between the timings.

to intuition about the importance of the nodes in the associated network; for instance,
in many applications it is meaningful to consider the first node less important than
the remaining nodes.

To remedy this difficulty, Benzi et al. [11] proposed to consider the exponential of
the matrix

A =

[
0 A
AT 0

]
(2.4.1)

when A is a nonsymmetric adjacency matrix. Here the superscript T denotes transpo-
sition. Using the singular value decomposition (SVD) of A, it is easy to see that

exp(A) =

[
cosh(

√
AAT) A s(

√
ATA)

s(
√
ATA)AT cosh(

√
ATA)

]
, (2.4.2)

where

s(t) =

{
t−1 sinh(t), t 6= 0,

1, t = 0;
(2.4.3)

see (2.4.7) below. Let M† denote the Moore–Penrose pseudoinverse of the matrix M .
Then

A s(
√
AAT) = A(

√
AAT)† sinh(

√
AAT).

The use of the matrix (2.4.1) is justified by Benzi et al. [11] by its connection to the
Hypertext Induced Topics Search (HITS) algorithm by Kleinberg [82]; see also [103,
Section 7.5]. Within the framework of this algorithm, there are two kinds of significant
nodes: hubs and authorities. Hubs are distinguished by the fact that they point to
many important nodes. The latter are referred to as authorities. Important hubs are
nodes that point to many important authorities, important authorities are pointed
to by important hubs; see also Blondel et al. [17] for a discussion on this and related
network models. We will return to the HITS algorithm in Section 2.4.2.

2.4. DIRECTED NETWORKS 63

1 2 4 8 16 32 64
10

−1

10
0

10
1

10
2

Scalar computation

Block computation

1 2 4 8 16 32 64
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 2.10: Execution times for block-size 1 (top graph) and block-size k (bottom graph)
as a function of k when computing the subgraph centralities of k nodes. The
right panel shows the ratio between the timings.

The matrix entries [(AAT)k]ij and [(ATA)k]ij count the number of alternating
walks of length 2k. Following Benzi et al. [11], we refer to

[exp(A)]ii = [cosh(
√
AAT)]ii, 1 ≤ i ≤ n,

as the hub centrality of node i, and to

[exp(A)]n+i,n+i = [cosh(
√
ATA)]ii, 1 ≤ i ≤ n,

as the authority centrality of node i. The hub communicability between the nodes i
and j, i 6= j, is defined as

[exp(A)]ij = [cosh(
√
AAT)]ij , 1 ≤ i, j ≤ n,

and the authority communicability between the nodes i and j, i 6= j, is given by

[exp(A)]n+i,n+j = [cosh(
√
ATA)]ij , 1 ≤ i, j ≤ n.

Analogously, the hub-authority communicability between the nodes i and j is defined
as

[exp(A)]i,n+j = [s(
√
AAT)A]ij = [AT s(

√
AAT)]ji = exp(A)n+j,i, 1 ≤ i, j ≤ n.

This is also the authority-hub communicability between the nodes j and i.
When the graph G has many nodes and, therefore, the adjacency matrix A is

large, direct evaluation of exp (A) generally is not feasible. Benzi et al. [11] discuss
how to apply Gauss-type quadrature rules to determine upper and lower bounds for
expressions of the form

uT exp(A)v, u,v ∈ R2n. (2.4.4)

Note that the hub and authority centralities as well as the hub-authority communica-
bility can be expressed in the form (2.4.4) for suitable vectors u and v. The possibility

64 CHAPTER 2. COMPLEX NETWORKS

of determining upper and lower bounds for expressions of the form (2.4.4) by applying
a few steps of the symmetric Lanczos method to A and interpreting the tridiagonal
matrix obtained as a Gauss quadrature rule was first observed by Golub [56]. A simple
modification of the tridiagonal matrix gives an associated Gauss–Radau rule with a
specified quadrature node. Pairs of a Gauss rule and a suitably chosen Gauss–Radau
rule provide upper and lower bounds for (2.4.4). A detailed description of this approach
and many applications can be found in the book by Golub and Meurant [59]; see
also [58]. Benzi and Boito [10] were the first to apply this technique to studying
undirected graphs.

The application of Gauss-type quadrature rules is attractive when bounds for only
a few quantities (2.4.4) are to be computed. However, when bounds for many hub
and authority centralities or hub-authority communicabilities are desired, then the
evaluation of all the Gauss and Gauss–Radau rules required can be expensive, because
the computational work is proportional to the number of bounds desired.

For instance, when we would like to determine one or a few nodes with the largest
hub centrality in a large graph, upper and lower bounds for all of the first n diagonal
entries of exp(A) have to be computed in order to be able to ascertain which node(s)
have the largest hub centrality. It is even more expensive to determine the node(s)
with the largest hub-authority communicability, because this requires the evaluation
of bounds for all the entries of exp(A) above the diagonal with indices 1 ≤ i ≤ n and
n+ 1 ≤ j ≤ 2n, i.e., of n2 − 1 expression of the form (2.4.4).

As in the symmetric case, the computational effort can be reduced using a low-rank
approximation of the adjacency matrix A. Consider for the moment the (full) SVD,

A = UΣV T =

n∑
j=1

σjujv
T
j , (2.4.5)

where the matrices U = [u1,u2, . . . ,un] ∈ Rn×n and V = [v1,v2, . . . ,vn] ∈ Rn×n are
orthogonal and the diagonal matrix

Σ = diag[σ1, σ2, . . . , σn] ∈ Rn×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

contains the singular values. We refer to the singular triplets {σi,ui,vi}Ni=1 associated
with the N ≤ n largest singular values of A as the N largest singular triplets. The
numerical examples of Section 2.4.2 illustrate that many adjacency matrices can be
approximated fairly accurately by a matrix of low rank N � n made up of the N
largest singular triplets. We use this rank-N approximation to identify a subset of
nodes that contains the desired nodes, such as the five nodes with the largest hub
centrality, and then compute improved bounds with the aid of Gauss-type quadrature
rules for the nodes in the determined subset. This hybrid approach can be much
cheaper for large graphs than only using Gauss quadrature. The latter approach,
in turn, is much cheaper than evaluating the matrix exponential exp(A). This is
illustrated in Section 2.4.2. The hybrid method generalizes the scheme proposed in
Section 2.3.1 for undirected graphs to directed ones.

2.4.1 Use of low-rank approximation
In this section, we derive bounds for expressions of the form

zT exp(A)w, z =

[
z1
z2

]
, w =

[
w1

w2

]
, z1, z2,w1,w2 ∈ Rn, (2.4.6)

2.4. DIRECTED NETWORKS 65

that are computable with a partial SVD of the adjacency matrix A. Using the SVD of
A (2.4.5), we obtain

A =

[
U 0
0 V

] [
0 Σ
Σ 0

] [
UT 0
0 V T

]
and

exp(A) =

[
U 0
0 V

]
exp

([
0 Σ
Σ 0

])[
UT 0
0 V T

]
=

[
U 0
0 V

] [
cosh(Σ) sinh(Σ)
sinh(Σ) cosh(Σ)

] [
UT 0
0 V T

]
=

[∑n
k=1 cosh(σk)uku

T
k

∑n
k=1 sinh(σk)ukv

T
k∑n

k=1 sinh(σk)vku
T
k

∑n
k=1 cosh(σk)vkv

T
k

]
.

(2.4.7)

It follows that

zT exp(A)w =

n∑
k=1

cosh(σk) [z̄kw̄k + z̃kw̃k] + sinh(σk) [z̄kw̃k + z̃kw̄k] , (2.4.8)

where
z̄k = zT1 uk, z̃k = zT2 vk,

w̄k = wT
1 uk, w̃k = wT

2 vk.
(2.4.9)

Using the N largest singular triplets, we can approximate the bilinear form (2.4.8) by

F (N)
z,w :=

N∑
k=1

cosh(σk) [z̄kw̄k + z̃kw̃k] + sinh(σk) [z̄kw̃k + z̃kw̄k] . (2.4.10)

Theorem 2.4.1. Let {σi,ui,vi}Ni=1 denote the N largest singular triplets of A. Let
the vectors z and w be split according to (2.4.6). Then we have the bounds

L(N)
z,w ≤ zT exp(A)w ≤ U (N)

z,w , (2.4.11)

with
L(N)
z,w := F (N)

z,w −G(N)
z,w ,

U (N)
z,w := F (N)

z,w +G(N)
z,w ,

(2.4.12)

where F (N)
z,w is defined by (2.4.10) and

G(N)
z,w = cosh(σN)

[
‖z̄(N)‖ ‖w̄(N)‖+ ‖z̃(N)‖ ‖w̃(N)‖

]
+ sinh(σN)

[
‖z̄(N)‖ ‖w̃(N)‖+ ‖z̃(N)‖ ‖w̄(N)‖

]
.

(2.4.13)

Here we use the notation
x(N) = [xN+1, . . . , xn]T

for any x ∈ Rn. The entries z̄k, z̃k, w̄k, w̃k of the vectors z̄(N), z̃(N), w̄(N), w̃(N) are
given by (2.4.9).

Proof. Let ck = cosh(σk) and sk = sinh(σk). The functions cosh(x) and sinh(x)
are nondecreasing and nonnegative for x ≥ 0. Therefore the Cauchy and triangle

66 CHAPTER 2. COMPLEX NETWORKS

inequalities yield

∣∣∣zT exp(A)w − F (N)
z,w

∣∣∣ =

∣∣∣∣∣
n∑

k=N+1

ck [z̄kw̄k + z̃kw̃k] + sk [z̄kw̃k + z̃kw̄k]

∣∣∣∣∣
≤ cN

n∑
k=N+1

|z̄kw̄k + z̃kw̃k|+ sN

n∑
k=N+1

|z̄kw̃k + z̃kw̄k|

≤ cN
n∑

k=N+1

(|z̄k| |w̄k|+ |z̃k| |w̃k|) + sN

n∑
k=N+1

(|z̄k| |w̃k|+ |z̃k| |w̄k|)

≤ cN

(n∑
k=N+1

z̄2k

) 1
2
(

n∑
k=N+1

w̄2
k

) 1
2

+

(
n∑

k=N+1

z̃2k

) 1
2
(

n∑
k=N+1

w̃2
k

) 1
2

+sN

(n∑
k=N+1

z̄2k

) 1
2
(

n∑
k=N+1

w̃2
k

) 1
2

+

(
n∑

k=N+1

z̃2k

) 1
2
(

n∑
k=N+1

w̄2
k

) 1
2

 ,
from which (2.4.11) follows.

We have formulated the bounds (2.4.11) so that they can be evaluated when the N
largest singular triplets of A are known; see below. It is possible to sharpen the bounds
by replacing σN by σN+1 in (2.4.13), but then knowledge of the N largest singular
triplets of A is not sufficient to compute the bounds.

Corollary 2.4.1. Let the norm of the vectors z1, z2, w1, w2 and the N largest
singular triplets of A be known. Then the bounds (2.4.11) can be evaluated explicitly.

Proof. It follows from (2.4.9) that ‖z̄‖ = ‖z1‖ and ‖z̃‖ = ‖z2‖. Therefore,

‖z̄(N)‖ =

(
‖z1‖2 −

N∑
k=1

z̄2k

) 1
2

, ‖z̃(N)‖ =

(
‖z2‖2 −

N∑
k=1

z̃2k

) 1
2

,

and similarly for the vectors ‖w̄(N)‖ and ‖w̃(N)‖. Substituting these expressions into
the right-hand side of (2.4.13) shows the desired result.

Remark 2.4.1. If either one of the two halves z1 or z2 of the vector z vanish, then
the bounds of Theorem 2.4.1 simplify. The same is true for the vector w. For example,
if z2 = 0, then

G(N)
z,w = cosh(σN) ‖z̄(N)‖ ‖w̄(N)‖+ sinh(σN) ‖z̄(N)‖ ‖w̃(N)‖.

Corollary 2.4.2. Assume that the conditions of Theorem 2.4.1 hold. Then

F (N)
z,z ≤ zT exp(A)z ≤ U (N)

z,z . (2.4.14)

Proof. For each k every pair of terms in the right-hand side of (2.4.8) is nonnegative.
This is a consequence of cosh(σ) > sinh(σ) ≥ 0 for σ ≥ 0 and z̄2k+z̃2k+2z̄kz̃k = (z̄k+z̃k)2.
Therefore F (N)

z,z is a lower bound. The upper bound is established by Theorem 2.4.1.

2.4. DIRECTED NETWORKS 67

Corollary 2.4.3. Let the conditions of Theorem 2.4.1 hold. Then the bounds (2.4.11)
satisfy

L
(N)
z,w − F (N)

z,w ≤ L
(N+1)
z,w − F (N+1)

z,w ≤ 0,

U
(N)
z,w − F (N)

z,w ≥ U
(N+1)
z,w − F (N+1)

z,w ≥ 0,
(2.4.15)

for 1 ≤ N < n. Under the assumptions of Corollary 2.4.2, the bounds (2.4.14) satisfy

F (N)
z,w ≤ F (N+1)

z,w , U (N)
z,w ≥ U (N+1)

z,w , 1 ≤ N < n. (2.4.16)

Proof. The inequality ‖x(N)‖ ≥ ‖x(N+1)‖ yields

G(N)
z,w = F (N)

z,w − L(N)
z,w

= cosh(σN)
[
‖z̄(N)‖ ‖w̄(N)‖+ ‖z̃(N)‖ ‖w̃(N)‖

]
+ sinh(σN)

[
‖z̄(N)‖ ‖w̃(N)‖+ ‖z̃(N)‖ ‖w̄(N)‖

]
≥ cosh(σN+1)

[
‖z̄(N+1)‖ ‖w̄(N+1)‖+ ‖z̃(N+1)‖ ‖w̃(N+1)‖

]
+ sinh(σN+1)

[
‖z̄(N+1)‖ ‖w̃(N+1)‖+ ‖z̃(N+1)‖ ‖w̄(N+1)‖

]
= G(N+1)

z,w .

The inequalities (2.4.15) are a consequence of F (N)
z,w − L(N)

z,w = U
(N)
z,w − F (N)

z,w , and the
inequalities (2.4.16) follow from the fact that cosh(x) and sinh(x) are nonnegative and
nondecreasing functions for x ≥ 0.

The above bounds are of particular interest when the vectors z and w are axis
vectors. We therefore provide expressions for this situation. Also, the case when w1

has all entries equal is considered. Let ei = [0, . . . , 0, 1, 0, . . . , 0]T denote the ith axis
vector of appropriate dimension. When z = ei and w = ej , we can write

[exp(A)]ij =

∑n
k=1 cosh(σk)uikujk, 1 ≤ i, j ≤ n,∑n
k=1 sinh(σk)uikvj−n,k, 1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n,∑n
k=1 sinh(σk)vi−n,kuj,k, n+ 1 ≤ i ≤ 2n, 1 ≤ j ≤ n,∑n
k=1 cosh(σk)vi−n,kvj−n,k, n+ 1 ≤ i, j ≤ 2n,

where uk = [u1k, u2k, . . . , unk]T and vk = [v1k, v2k, . . . , vnk]T are the kth left and right
singular vectors of A, respectively.

Letting z = w = ei, i = 1, . . . , n, yields hub centralities, and z = w = ei,
i = n+ 1, . . . , 2n, gives authority centralities. We obtain the bounds

F
(N)
ii ≤

[
eA
]
ii
≤ U (N)

ii , 1 ≤ i ≤ 2n, (2.4.17)

where

F
(N)
ii :=

{∑N
k=1 cosh(σk)u2ik, 1 ≤ i ≤ n,∑N
k=1 cosh(σk)v2i−n,k, n+ 1 ≤ i ≤ 2n,

U
(N)
ii := F

(N)
ii +

cosh(σN)
(
U (N)
i

)2
, 1 ≤ i ≤ n,

cosh(σN)
(
V(N)
i−n

)2
, n+ 1 ≤ i ≤ 2n,

68 CHAPTER 2. COMPLEX NETWORKS

and

U (N)
r =

(
1−

N∑
k=1

u2rk

) 1
2

, V(N)
r =

(
1−

N∑
k=1

v2rk

) 1
2

.

Letting z = ei and w = ej , i, j = 1, . . . , n, i 6= j, determines hub communicabilities,
and the choice z = ei and w = ej , i, j = n + 1, . . . , 2n, i 6= j, gives authority
communicabilities. We have the bounds

L
(N)
ij ≤ [exp(A)]ij ≤ U

(N)
ij , i 6= j, (2.4.18)

where L(N)
ij = F

(N)
ij −G(N)

ij and U (N)
ij = F

(N)
ij +G

(N)
ij , with

F
(N)
ij :=

{∑N
k=1 cosh(σk)uikujk, 1 ≤ i, j ≤ n,∑N
k=1 cosh(σk)vi−n,kvj−n,k, n+ 1 ≤ i, j ≤ 2n,

G
(N)
ij :=

{
cosh(σN)U (N)

i U (N)
j , 1 ≤ i, j ≤ n,

cosh(σN)V(N)
i−nV

(N)
j−n, n+ 1 ≤ i, j ≤ 2n.

Setting z = ei, i = 1, . . . , n, w1 = n−
1
2 [1, . . . , 1]T , and w2 = 0, we can write

n−
1
2

n∑
j=1

[exp(A)]ij = n−
1
2

n∑
k=1

cosh(σk)uik

n∑
j=1

ujk, i = 1, . . . , n, (2.4.19)

which is a measure of the importance of a node as a hub. This concept is connected
to the total subgraph communicability for a node of an undirected network, defined
in [12], and to the f -starting convenience for a node of a directed network, introduced
in [50]. We have

L(N)
z,w ≤ n−

1
2

n∑
j=1

[exp(A)]ij ≤ U
(N)
z,w , (2.4.20)

where the bounds are given by (2.4.12), with

F (N)
z,w := n−

1
2

N∑
k=1

cosh(σk)uik

n∑
j=1

ujk,

G(N)
z,w := n−

1
2 cosh(σN)U (N)

i

(
n−

N∑
k=1

(
n∑
j=1

ujk

)2) 1
2

.

Analogously, setting z1 = 0, z2 = n−
1
2 [1, . . . , 1]T , and w = ej , j = n+ 1, . . . , 2n,

we obtain

n−
1
2

2n∑
i=n+1

[exp(A)]ij = n−
1
2

n∑
k=1

cosh(σk)vj−n,k

n∑
i=1

vik, j = n+ 1, . . . , 2n,

which is a measure of the importance of a node as an authority; see also the definition
of f -ending convenience in [50]. We have

L(N)
z,w ≤ n−

1
2

2n∑
i=n+1

[exp(A)]ij ≤ U
(N)
z,w ,

2.4. DIRECTED NETWORKS 69

where the bounds are given by (2.4.12), with

F (N)
z,w := n−

1
2

N∑
k=1

cosh(σk)vj−n,k

N∑
i=1

vik,

G(N)
z,w := n−

1
2 cosh(σN)V(N)

j−n

(
n−

N∑
k=1

(
n∑
i=1

vik

)2) 1
2

.

We conclude this section with two observations. It suffices that the function f
be nondecreasing and nonnegative on the spectrum of A in order to establish upper
and lower bounds for zT f(A)w for given vectors z and w. This is discussed in [51].
The fact that f is the exponential function yields the particular structure exhibited in
(2.4.7). Moreover, the situation z 6= w also can be dealt with by using the relation

zT exp(A)w =
1

4
(z + w)T exp(A)(z + w)− 1

4
(z−w)T exp(A)(z−w). (2.4.21)

Thus, we can apply Corollary 2.4.2 to determine upper and lower bounds for the left-
hand side expression. Computed examples of Section 2.4.2 illustrate the performance
of the bounds of this section.

Determining important nodes by partial singular value decomposition. Now
we describe how knowledge of the N leading singular triplets {σk,uk,vk}Nk=1 of A and
the bounds (2.4.17) can be used to determine two subsets of nodes that contain the
nodes with the largest hub centrality [cosh(

√
AAT)]ii and the nodes with the largest

authority centrality [cosh(
√
ATA)]ii, respectively. The approach is analogous to the

one applied in Section 2.3 to determine a low-rank approximant of a large symmetric
adjacency matrix. However, several aspects of the method are different due to the fact
that the adjacency matrices considered in this Section are not symmetric.

Let F (N)
ii and U (N)

ii be the lower and upper bounds (2.4.17), respectively, and let
L(N)
H,m denote the mth largest lower bound F (N)

ii for 1 ≤ i ≤ n. Introduce the index sets

S
(N)
H,m =

{
i : 1 ≤ i ≤ n and U (N)

ii ≥ L(N)
H,m

}
, N = 1, 2, . . . , n. (2.4.22)

This set is of interest when ranking nodes according to their hub centrality.
Let L(N)

A,m denote the mth largest lower bound F (N)
ii for n+ 1 ≤ i ≤ 2n and consider

the index sets

S
(N)
A,m =

{
i : n+ 1 ≤ i ≤ 2n and U (N)

ii ≥ L(N)
A,m

}
, N = 1, 2, . . . , n. (2.4.23)

We use this set to determine nodes with the largest authority centrality.
The computations required to determine the most important hubs and the most

important authorities are similar. We therefore can treat both computations simulta-
neously and omit the subscripts H and A for the sets (2.4.22) and (2.4.23). It is not
hard to see that if i 6∈ S(N)

m , then node i cannot be in the subset of the m nodes with
the largest centrality. Moreover, any node whose index is an element of S(N)

m can be in
this subset. Let |S(N)

m | denote the cardinality of S(N)
m . The following inequalities are

useful in our computations.

70 CHAPTER 2. COMPLEX NETWORKS

Corollary 2.4.4.

S(n)
m ⊆ S(n−1)

m ⊆ · · · ⊆ S(1)
m and |S(n)

m | ≥ m. (2.4.24)

The set S(N)
m contains the indices for a subset of nodes that contains the set of the

m most important nodes. In particular, when |S(N)
m | = m, the set S(N)

m contains the
indices for the m most important nodes.

Proof. By the definition of the sets S(N)
m , each set contains at least m indices. The

relations (2.4.24) now follow from (2.4.16) and (2.4.17). The observation about the
situation when |S(N)

m | = m is a consequence of the fact that the set S(N)
m contains the

indices for the m nodes with the largest centrality.

Remark 2.4.2. The lower bound F
(N)
ii of (2.4.17) usually converges to [exp(A)]ii

much faster than the upper bound U (N)
ii as N increases. Therefore, for N fixed, F (N)

ii

typically is a better approximation of [exp(A)]ii than
1
2 (F

(N)
ii + U

(N)
ii).

Remark 2.4.3. The ordering of the lower bounds F (N)
ii , i ∈ S(N)

m , may be different
from the ordering of the centralities [exp(A)]ii.

We now turn to some computational issues. Evaluation of the bounds (2.4.17)
and (2.4.18) requires the computation of f(σN). This may result in overflow when
the graph contains many nodes and f is the hyperbolic sine or cosine function. For
instance, when the computations are carried out in double precision arithmetic, i.e.,
with about 16 significant decimal digits, we obtain overflow when evaluating cosh(x)
for x & 710. This difficulty can be circumvented by replacing cosh(x) by

exp(−µ) cosh(x) =
1

2
(exp(x− µ) + exp(−x− µ)),

for an appropriate value of µ. Since the largest singular triplet {σ1,u1,v1} of A is
available, we use µ = σ1 in the computed examples reported in Section 2.4.2.

Another computational difficulty to overcome is that we do not know in advance
how many of the largest singular triplets {σk,uk,vk}Nk=1 of A have to be computed
to obtain useful bounds (2.4.17) or (2.4.18). Assume for definiteness that we would
like to determine the m nodes with the largest hub centrality. We use the augmented
implicitly restarted Golub–Kahan bidiagonalization method described in [7] to compute
the largest triplets in the examples of Section 2.4.2. Our implementation of this method
is a slight modification of the MATLAB function irlba described in [7]. It differs in that
it can be restarted with singular triplets produced by previous calls to the function as
input. This modification, which we also refer to as irlba, makes it possible to compute
new singular triplets without recomputing already known triplets. In the examples of
Section 2.4.2, we determine the q = 5 largest singular triplets that have not yet been
computed by repeated calls of irlba. Thus, the first call of irlba yields the singular
triplets {σk,uk,vk}qk=1. If |S

(q)
m | > m, then we call irlba again to determine the next

q singular triplets {σk,uk,vk}2qk=q+1. If |S(N)
m | = m for some N ≤ 2q, then we are

done; otherwise we compute the next q singular triplets {σk,uk,vk}3qk=2q+1 of A with
irlba, and so on. This approach to computing the N largest singular triplets of A only
requires storage of the already computed triplets and a residual vector when the next
batch of q singular triplets is to be computed.

2.4. DIRECTED NETWORKS 71

The above method for determining singular triplets is attractive when the computer
at hand allows storage of all already computed singular triplets. However, when the
adjacency matrix is very large and fairly many singular triplets {σk,uk,vk}Nk=1 are
required for |S(N)

m | = m to hold, the use of a method that requires less computer storage
may be preferable. We now outline such a method. Note that the bounds (2.4.17)
and (2.4.18) can be updated when a new batch of q singular triplets has been computed.
Therefore, the evaluation of the bounds (2.4.17) and (2.4.18) does not require simultane-
ous access to all computed singular triplets. Hence, we may reduce the storage demand
by using an augmented implicitly restarted Golub–Kahan bidiagonalization method
that does not require access to all already computed singular triplets to determine
the next batch of q singular triplets. The algorithm irblb described in [6] has this
property. It uses Leja shifts to determine an acceleration polynomial that dampens
singular values outside a region of interest. When calling irblb, the smallest computed
singular value σN is passed as a parameter. The algorithm then seeks to determine the
q singular values that are closest to σN and the corresponding singular vectors. This
method requires fairly little temporary storage. The memory requirement therefore
is much smaller than for the irlba-based computations described above when a large
number, N , of singular triplets is needed to secure that |S(N)

m | = m. We remark that
the use of irblb may require more matrix-vector product evaluations with A and AT
than irlba, because a few of the already computed singular triplets might be recomputed
at a subsequent call of irblb. Our computational experience indicates that for many
real-world networks the required size of N is quite small and, therefore, irlba generally
can be used also for large networks.

In the above discussion, we determined more and more singular triplets of A until
their number N is such that

|S(N)
m | = m. (2.4.25)

We refer to this stopping rule as the strong convergence criterion. By Corollary 2.4.4,
the set S(N)

m contains the indices of the m nodes with the largest centrality.
The criterion (2.4.25) for choosing N is useful if the required value of N is not too

large. We introduce the weak convergence criterion to be used for problems for which
the large size of N required to satisfy (2.4.25) makes it impractical to compute the
associated bounds (2.4.17). The weak convergence criterion is well suited for use with
the hybrid algorithm described in Section 2.4.1 for determining the most important
nodes. This criterion is designed to stop increasing N when the lower bounds F (N)

ii

do not increase significantly with N . Specifically, in the case of hub centrality, we
stop increasing N when the average increment of the lower bounds F (N)

ii , 1 ≤ i ≤ n,
is small when including the Nth singular triplet {σN ,uN ,vN} in the bounds. The
average contribution of this singular triplet to the bounds F (N)

ii , 1 ≤ i ≤ n, is

1

n

n∑
i=1

f(σN)u2i,N =
1

n
f(σN),

and we stop increasing N when

1

n
f(σN) ≤ τ · L(N)

H,m (2.4.26)

for a user-specified tolerance τ . We use τ = 10−3 in the computed examples. Note
that when this criterion is satisfied, but not (2.4.25), the m nodes with indices in

72 CHAPTER 2. COMPLEX NETWORKS

S
(N)
m = S

(N)
H,m with the largest lower bounds F (N)

ii are not guaranteed to be the nodes
with the largest hub centrality.

The weak convergence criterion (2.4.26) might yield a set S(N)
H,m with many more

indices thanm, and we may not want to compute accurate bounds for the hub centrality
using the approach of Section 1.5 for all nodes with index in S

(N)
H,m. We therefore

describe how to determine a smaller index set J , which is likely to contain the indices
of the m nodes with the largest hub centrality. In view of that F (N)

ii generally is a
better approximation of [f(A)]ii than U

(N)
ii (cf. Remark 2.4.2), we discard from the

set S(N)
H,m indices for which F (N)

ii is much smaller than L(N)
H,m. Thus, for a user-chosen

parameter ρ > 0, we include in the set J all indices i ∈ S(N)
H,m such that

L(N)
H,m − F

(N)
ii < ρ · L(N)

H,m. (2.4.27)

In the computed examples, we use ρ = 10−1. We may proceed similarly to prune the
set S(N)

A,m.

Algorithms 3 and 4 describe the computation of the index sets S(N)
H,m and S(N)

A,m, as
well as the determination of a suitable value of N . The singular triplets are computed
either with the slightly modified MATLAB function irlba from [7] or with algorithm
irblb from [6]. The function f is the exponential function (2.4.2); it may be replaced
by some other nonnegative nondecreasing function.

The algorithm requires functions for the evaluation of matrix-vector products with
the adjacency matrix A and its transpose, its order n, and the desired number of nodes
m with the largest hub centrality and authority centrality. In addition, the following
parameters have to be provided:

• Nmax, maximal number of iterations performed;

• q, number of singular triplets computed at each irlba call;

• Mmax, maximal number of singular vectors kept in memory;

• τ , tolerance used to detect weak convergence;

• ρ, tolerance used to construct an extended list of nodes in case of weak convergence;
cf. (2.4.27).

Algorithm 3 first initializes the vectors `H , zH , and sH whose components at
each iteration N are given by

`Hi = F
(N)
ii , zHi = U

(N)
ii , sHi =

N∑
k=1

u2ik, i = 1, . . . , n.

The vectors `A, zA, and sA for authority centrality, are initialized similarly. Then, irlba
is called to compute the first batch of q singular triplets and the main loop is entered.
The Boolean variable “flag” is used to signal whether the strong or weak convergence
criterion is satisfied. The parameter Nmax specifies the maximal number of iterations,
i.e., the maximal number of times the loop comprised of lines 7–42 is executed. We
found it beneficial to introduce the auxiliary parameter N to keep track of how many
singular triplets from the current batch are being used. When N = q, a new batch of
singular triplets is computed.

2.4. DIRECTED NETWORKS 73

Algorithm 3 Low-rank approximation, part 1
1: Input: matrix A of size n, number m of nodes to be identified,
2: tuning constants: Nmax, q, Mmax, τ , ρ
3: for i = 1 to n do `Hi , `

A
i , s

H
i , s

A
i = 0 end

4: call irlba to compute {σi,ui,vi}qi=1 such that σi ≥ σi+1

5: if shift is active then µ = σ1 else µ = 0 end
6: N = 0, N = 0, flag = true , flagH = true , flagA = true
7: while flag and (N < min{Nmax, n}) and (N < q)
8: N = N + 1, N = N + 1

9: fσ = (exp(σN − µ) + exp(−σN − µ))/2
10: if flagH

11: for i = 1 to n do ti = u2
iN end

12: sH = sH + t

13: `H = `H + fσ · t
14: zH = `H + fσ(1− sH)

15: let ψ = [ψ1, . . . , ψn] be an index permutation such that `Hψi
≥ `Hψi+1

16: LHmax = `Hψm

17: S
(N)
H,m = {i : zHi ≥ LHmax}

18: flagH = (|S(N)
H,m| > m) and (1

n
fσ > τ · LHmax)

19: end if
20: if flagA

21: for i = 1 to n do wi = v2iN end
22: sA = sA +w

23: `A = `A + fσ ·w
24: zA = `A + fσ(1− sA)

25: let φ = [φ1, . . . , φn] be an index permutation such that `Aφi
≥ `Aφi+1

26: LAmax = `Aφm

27: S
(N)
A,m = {i : zAi ≥ LAmax}

28: flagA = (|S(N)
A,m| > m) and (1

n
fσ > τ · LAmax)

29: end if
30: flag = flagH or flagA

31: if flag and N = q

32: if N < Mmax

33: call irlba to compute {σk,uk,vk}N+q
i=N+1 such that σN+i ≥ σN+i+1

34: N = 0

35: else
36: call irblb to compute sing. values ν1 ≥ · · · ≥ νq closest to σN
37: r = argmini |νi − σN |
38: σN+i = νr+i, i = 1, . . . , q − r; {uN+i,vN+i} associated sing. vectors
39: N = r

40: end if
41: end if
42: end while

74 CHAPTER 2. COMPLEX NETWORKS

The bounds (2.4.17) are computed in lines 12–14 and 22–24. The vector of indices
ψ contains a permutation which yields the lower bounds `Hi in decreasing order. The
set S(N)

H,m is constructed at line 17, while the set S(N)
A,m is constructed in lines 20–29.

Subsequently the exit condition is checked. Lines 31–41 give a new batch of singular
triplets. Either one of the two kinds of restarts discussed above may be applied. If
N is smaller than Mmax, then we compute the next q singular triplets. If, instead,
N ≥ Mmax, then we seek to determine the q singular values close to the smallest
available singular value σN , and we select those singular triplets that have singular
values smaller than σN ; see lines 37–38.

Algorithm 4 Low-rank approximation, part 2

43: if flagH

44: j = |S(N)
H,m| −m

45: info = 2 % no convergence
46: else
47: if |S(N)

H,m| > m

48: J = {i : i > m, LHmax − `Hψi
< ρ · LHmax}

49: j = min(|J |, 100), j = max(j, 5)

50: info = 1 % weak convergence
51: else
52: j = 0

53: info = 0 % strong convergence
54: end if
55: end if
56: for i = 1 to m+ j

57: NH
i = ψi

58: VHi = eµ · `Hψi

59: end if
60: Output: list of nodes NH , hub centralities VH ,
61: spectrum shift µ, iterations N , info

Algorithm 4 describes the continued computations when the m nodes with the
largest hub centrality are desired. The m nodes with the largest authority centrality
can be computed in a similar way. Lines 43–55 of the algorithm determine whether
the strong or weak convergence criterion is satisfied. The variable “info” contains
this information. A list of the desired nodes NH is formed in lines 56–59, where the
hub centralities also are updated, keeping in mind the spectrum shift at line 9 of
Algorithm 3. We remark that the MATLAB implementation of Algorithms 3 and 4
contains some features not described here. For instance, we only apply the correction
due to the spectrum shift when this does not cause overflow.

This section described how to determine the m nodes with the largest hub centrality
and authority centrality of a large network by using the bounds (2.4.11) and (2.4.14)
with w = z. These bounds can be used in a similar way with w 6= z to compute upper
and lower bounds for hub and authority communicability. This allows us to determine
subsets of nodes with the largest hub or authority communicability; see [11, 50] for
other approaches to determine hub and authority communicability.

2.4. DIRECTED NETWORKS 75

The hybrid method The computations with the hybrid method already have been
commented on. The method first evaluates a partial singular value decomposition
of the adjacency matrix A and applies it to determine which nodes might be the
most interesting ones with respect to the criterion chosen. This is described above
for the situation when we would like to determine the nodes of a large network with
the largest hub and authority centrality. More accurate upper and lower bounds for
expressions of the form (2.4.6) for the nodes singled out are then determined with the
aid of Gauss quadrature rules. This allows us to compute the node with the largest
hub and authority centrality of a large graph without evaluating pairs of Gauss and
Gauss–Radau rules for every node of the network, i.e., for every diagonal entry of the
matrix (2.4.1). The evaluation of Gauss-type rules for every diagonal entry can be
expensive for large graphs. The computations with the hybrid method typically are
considerably cheaper. This is illustrated in the following section.

2.4.2 Numerical experiments
This section presents a few examples that illustrate the performance of the methods

discussed in the previous Section. All computations were carried out in MATLAB
version 8.1 (R2013a) 64-bit for Linux, in double precision arithmetic, on an Intel Core
i7-860 computer, with 8 Gb RAM. The function f is the exponential function (2.4.2).
We applied the methods previously discussed to eight directed unweighted networks
coming from the following real-world applications:

Airlines (235 nodes, 2101 edges) represents air traffic and is available at [55]. The
nodes represent airports and the directed edges represent flights between them.

Celegans (306 nodes, 2345 edges) is the metabolic network of Caenorhabditis ele-
gans [38], a small nematode (roundworm). The data set is available at [1].

Air500 (500 nodes, 24009 edges) is a network of worldwide flight connections between
the top 500 airports based on total passenger volume [14] during the time from
July 1, 2007, to June 30, 2008 [97].

Twitter (3556 nodes, 188712 edges) is part of the Twitter network [55]. The nodes are
users and the directed edges are mentions and re-tweets between users.

Wikivote (8297 nodes, 103689 edges) is the network of administrator elections and
vote history data: a directed edge from node i to node j indicates that user i
voted for user j [90, 91]. The data set is available at SNAP (Stanford Network
Analysis Platform) Network Data Sets [121].

PGP (10680 nodes, 24316 edges) represents the giant component of the network of users
of the Pretty-Good-Privacy algorithm for secure information interchange [18].
The data set is available at [1].

Wikipedia (49728 nodes, 941425 edges) represents the Italian Wikipedia. In this graph
the nodes are articles and the links represent references to other articles. This
data set can be downloaded from [93].

Slashdot (82168 nodes, 948464 edges) represents the Slashdot social network (February
2009). A directed edge from node i to node j indicates that user i tagged user j
as a friend or a foe [92]. The data set is available at SNAP (Stanford Network
Analysis Platform) Network Data Sets [121].

76 CHAPTER 2. COMPLEX NETWORKS

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

0 100 200 300 400 500
0

20

40

60

80

100

0 50 100 150 200 250 300
10

−150

10
−100

10
−50

10
0

10
50

0 100 200 300 400 500
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Figure 2.11: Singular values of the Celegans (left) and Air500 (right) test matrices. The
graphs in the top row are in decimal scale, while the ones at the bottom are
plotted using a semilogarithmic scale.

Figure 2.11 displays the singular values of the Celegans and Air500 test matrices,
both in decimal and semilogarithmic scales. These matrices are small enough to allow
the computation of all singular values by the MATLAB function svd. The graphs
are typical for many adjacency matrices that arise in real applications in the sense
that they are numerically rank deficient and all but a fairly small number of singular
values can be ignored when evaluating the exponential of the adjacency matrix. The
leading 100 singular values of the three largest complex networks considered in the
experiments are plotted in Figure 2.12. The singular values are computed by the irlba
routine from [7].

Table 2.12 shows for each of the above networks the results obtained by the low-rank
approximation, either with the strong or the weak convergence criterion (labeled LR
strong and LR weak, respectively), when identifying the 5 most important hubs and
the 5 most important authorities in the order of importance. At each iteration we
have two sets of candidate nodes, namely S(N)

H,5 and S(N)
A,5 , which contain the indices of

the nodes with the largest hub centrality and the indices of the nodes with the largest
authority centrality, respectively. We terminate the computations when |S(N)

H,5 | = 5

for the hub nodes and when |S(N)
A,5 | = 5 for the authority nodes. By Corollary 2.4.4,

the set S(N)
H,5 (S(N)

A,5) contains the indices of the 5 nodes with the largest hub centrality
(authority centrality). The entry of the column labeled “fail” is set to “1” when the

2.4. DIRECTED NETWORKS 77

0 50 100
5

10

15

20

25

30

0 50 100
0

100

200

300

400

0 50 100
20

40

60

80

100

120

140

Figure 2.12: Graph of the first 100 singular values of the adjacency matrices of the three
largest networks considered in the experiments. From left to right: PGP,
Wikipedia, and Slashdot.

relative sizes of the lower bounds F (N)
ii (2.4.17) are not in agreement with the exact

relative sizes of the hub centralities of the nodes; the entry is “0” when ordering of
the lower bounds agrees with the ordering of the exact hub centralities. The exact
values of the hub centralities are computed with the MATLAB function expm when
n ≤ 5 · 103 and by Gauss quadrature rules when n > 5 · 103. Column 4 of Table 2.12
shows the number N of singular triplets required to satisfy the strong convergence
criterion. The convergence tolerance for the irlba and irblb routines is set to 1 · 10−3

for all computations of this section.
Columns 5–6 of Table 2.12 are obtained when terminating the low-rank approxima-

tion method with the weak convergence criterion (2.4.26). The columns display the
number of singular triplets needed to reach convergence and the number of candidate
nodes included in the resulting index set S(N)

H,5 . The table shows that for hub nodes, the
strong convergence criterion requires the computation of at most the 5 largest singular
triplets. The weak convergence criterion results in index sets with at most 10 nodes.
The results for authority nodes, reported in columns 7–10, are very similar. The table
shows that no more than 4 triplets are needed to satisfy the strong convergence criterion
and the maximum number of candidate nodes obtained with the weak convergence
criterion is 15.

Table 2.13 reports the number of matrix-vector product evaluations (mvp) required
when determining the 5 nodes with the largest hub centrality and the 5 nodes with the
largest authority centrality. Column 3 shows the number of the number of matrix-vector
product (MVP) evaluations needed for the evaluation of pairs of Gauss and Gauss–
Radau quadrature rules as described in Section 1.5. The number of mvps required for
computing low-rank approximations using the strong and weak convergence criteria, as
described in Section 2.4.1, are displayed in columns 4–5, and the total number of mvps
demanded by the hybrid method of Section 2.4.1 is shown in column 7. All methods
compared in Table 2.13 correctly identify the 5 most important nodes of each network.
The hybrid method can be seen to require fewer matrix-vector product evaluation than
the use of Gauss quadrature rules only.

Table 2.14 compares the execution times for the approaches of Table 2.13 with the
evaluation of the matrix exponential by the MATLAB function expm, which is based

78 CHAPTER 2. COMPLEX NETWORKS

Table 2.12: Results obtained by the low-rank approximation algorithm, with both strong
and weak convergence criteria, when determining the 5 most important hubs
and authorities. The table reports the number of failures, the number N of
triplets required to reach convergence, and, in case of weak convergence, the
cardinality of the lists S(N)

H,5 and S(N)
A,5 of candidate nodes.

hubs authorities
LR strong LR weak LR strong LR weak

matrix nodes fail N N |S(N)
H,5 | fail N N |S(N)

A,5 |
Airlines 235 0 2 2 5 0 2 2 5
Celegans 306 0 5 3 10 0 3 3 5
Air500 500 0 2 2 5 0 2 2 5
Twitter 3656 0 2 2 5 0 2 2 5
Wikivote 8297 0 2 2 5 0 2 2 5
PGP 10680 0 4 2 10 0 4 2 10

Wikipedia 49728 0 2 2 5 0 2 1 15
Slashdot 82168 0 2 2 5 0 2 2 5

Table 2.13: Comparison of Gauss quadrature, low rank approximations and the hybrid
algorithm. For each adjacency matrix, we report the number of matrix-vector
product evaluations required (mvp).

Gauss LR strong LR weak hybrid
matrix nodes mvp mvp mvp fail mvp
Airlines 235 1895 30 44 0 84
Celegans 306 2722 44 44 0 104
Air500 500 4914 30 30 0 73
Twitter 3656 38105 30 30 0 84
Wikivote 8297 52871 44 30 0 74
PGP 10680 69012 44 44 0 143

Wikipedia 49728 471917 44 44 0 110
Slashdot 82168 960760 30 44 0 80

on Padé approximation. The table shows the Gauss quadrature approach to be faster
than expm, which is too slow to be practical to use for matrices of size larger than
5000× 5000. The Gauss quadrature approach is slower than the methods that compute
low-rank approximation with a partial singular value decomposition. Moreover, Gauss
quadrature and the methods that use low-rank approximations require far less storage
space than the expm function, which needs to allocate storage for up to six matrices of
the same size as the input matrix.

We note that even though low-rank approximation with the strong convergence
criterion successfully identified the most important nodes in all of our experiments,
the ordering of the lower bounds for nodes with indices in the sets S(N)

H,m and S(N)
A,m is

not guaranteed to agree with the ordering of the exact values of the hub or authority
centralities; cf. Remark 2.4.3. To secure that the correct order is determined, we apply
Gauss quadrature to refine the bounds in the hybrid method. Table 2.14 shows that
the computation time is not much larger for the hybrid method than for just computing

2.4. DIRECTED NETWORKS 79

Table 2.14: Comparison of expm, Gauss quadrature, low rank approximations and the hybrid
algorithm. For each adjacency matrix, we report the execution time in seconds.

matrix nodes expm Gauss LR strong LR weak hybrid
Airlines 235 5.0e-01 1.0 7.5e-02 6.1e-03 6.1e-02
Celegans 306 5.8e-01 1.3 6.2e-03 5.9e-03 3.4e-02
Air500 500 1.3 5.2 1.1e-01 8.5e-03 1.0e-01
Twitter 3656 1.2e+03 5.9e+01 2.2e-02 2.1e-02 1.0e-01
Wikivote 8297 – 8.0e+01 4.3e-02 2.8e-02 9.1e-02
PGP 10680 – 7.9e+01 5.5e-02 4.2e-02 1.5e-01

Wikipedia 49728 – 5.0e+03 3.1e-01 2.9e-01 1.2
Slashdot 82168 – 1.1e+04 2.7e-01 4.0e-01 8.8e-01

low-rank approximations.

Table 2.15: Results obtained by the low-rank approximation algorithm, with both strong
and weak convergence criteria, when determining the m most important hubs
and authorities with m = 1%, 5%, and 10% of the number of nodes in the
network. The table reports the number of failures, the number N of singular
triplets required to reach convergence, and, in case of weak convergence, the
cardinality of the lists S(N)

H,m and S(N)
A,m of candidate nodes.

hubs authorities
LR strong LR weak LR strong LR weak

matrix m fail N N |S(N)
H,m| fail N N |S(N)

A,m|
Wikivote 83 0 2 2 83 0 2 2 83

415 0 2 2 415 0 2 2 415
830 0 2 2 830 0 2 2 830

PGP 107 0 5 3 112 0 4 3 115
534 2 26 4 553 8 17 5 542
1068 124 143 7 1084 248 143 9 1087

Wikipedia 497 0 2 2 497 0 2 2 497
2486 0 2 2 2486 0 2 2 2486
4973 0 2 2 4973 0 2 2 4973

Slashdot 822 0 2 2 822 0 2 2 822
4108 0 2 2 4108 0 2 2 4108
8217 0 2 2 8217 0 2 2 8217

Table 2.15 investigates the performance of our low-rank approximation methods
when more than 5 hubs or authorities are to be identified. Specifically, we seek to
identify the m most important hubs and authorities of the four largest networks in
our set of test problems and choose m to be 1%, 5%, and 10% of the number of nodes
in the network. It is interesting to note that in most cases the number N of singular
triplets necessary to meet the strong and week convergence criteria does not increase
with m. In fact, the number of terms in (2.4.10) required to identify a set of nodes
does not depend on the number of nodes in the group, but on the topology of the
network. The PGP network is the only one for which the strong convergence criterion
fails when m is large. The reason for the failure is that the maximal number of terms

80 CHAPTER 2. COMPLEX NETWORKS

allowed in (2.4.10) by our code is exceeded. This may depend on many nodes having
close values of the hub or authority centralities. However, note that application of the
weak convergence criterion produces useful results. The hybrid algorithm based on the
weak convergence criterion yields the correct ordering of the m nodes with the largest
hub centrality and of the m nodes with the largest authority centrality for all values
of m. This experiment indicates that the computing time required to construct the
lists S(N)

H,m and S(N)
A,m does not vary much with m. Of course, the execution time for

the refinement phase, in which Gauss quadrature is applied to each node in the lists
S
(N)
H,m and S(N)

A,m to improve the bounds, grows linearly with m.

Table 2.16: Computation of starting conveniences by Algorithm 3-4 with the aid of the
strong convergence criterion using the bounds (2.4.20) or (2.4.21). We report the
number of singular triplets required to satisfy the strong convergence criterion
and the number of matrix-vector product evaluations.

bounds (2.4.20) bounds (2.4.21)
matrix nodes N mvp N mvp
Airlines 235 2 44 2 44
Celegans 306 5 44 6 112
Air500 500 2 30 2 30
Twitter 3656 2 44 2 44
Wikivote 8297 2 30 2 30
PGP 10680 4 44 5 44

Wikipedia 49728 2 44 2 44
Slashdot 82168 2 30 2 30

Our next example compares the performance of the bounds (2.4.20) and (2.4.21)
in the case when z 6= w. Specifically, we considered the problem of ranking the
hubs of a network according to their starting convenience; see (2.4.19). Table 2.16
is determined by applying Algorithm 3-4 in conjunction with the bounds (2.4.20) or
with bounds derived from (2.4.21) to identify the 5 most important hubs in a network
according to starting convenience. For each network we report the number N of
singular triplets required to satisfy the strong convergence criterion and the number of
matrix-vector product evaluations. It turns out that the use of the bounds (2.4.20)
and those derived from (2.4.21) is essentially equivalent, provided that the evaluation
of the two expressions in the right-hand side of (2.4.21) is implemented efficiently,
that is, by bounding both expressions simultaneously by using the computed singular
triplets. The alternative approach of applying the symmetric Lanczos process to bound
either one of the two expressions in the right-hand side of (2.4.21) separately requires
more matrix-vector product evaluations with A and AT . For two of the networks, the
bounds obtained from (2.4.21) are less tight and therefore require a larger number of
matrix-vector product evaluations. Since we compute the singular triplets in batches
of 5, this is only noticeable for the Celegans network in Table 2.16. We illustrate the
tightness of the bounds for this network in Figure 2.13. The left-hand side displays
the differences between the upper and lower bounds (2.4.20) for all the 306 nodes of
the network for the first 5 steps of the algorithm. The top graph on the left-hand side
of the figure shows the differences of the upper and lower bounds (2.4.20) for each one
of the nodes after one step of the algorithm, the next graph depicts the corresponding
differences after two steps, and so on. The bottom graph shows the differences of the
upper and lower bounds (2.4.20) for each node after 5 steps of the algorithm. The

2.4. DIRECTED NETWORKS 81

graphs on the right-hand side display the analogous bounds obtained from (2.4.21). It
is clear that the bounds (2.4.20) are tighter than the bounds obtained from (2.4.21).

50 100 150 200 250 300
10

2

10
4

10
6

10
8

50 100 150 200 250 300
10

2

10
4

10
6

10
8

Figure 2.13: Differences between upper and lower bounds during the first 5 steps of Algo-
rithm 3–4. On the left, we report the differences for the bounds (2.4.20), on
the right those resulting from (2.4.21).

Table 2.17: Differences between the ranking produced by the hub/authority centrality and
by the HITS algorithm. We report the number of nodes, among the first 100,
which are placed in a different position by the two methods, and the index of
the first different node in each ranking list.

HITS-hubs HITS-auth
matrix fail index fail index
Celegans 62 12 56 15
PGP 54 35 54 41

Wikipedia 5 34 0 0
Slashdot 6 33 0 0

We conclude this section with a comparison of our approach to the HITS algorithm
by Kleinberg [82], which is a popular method for ranking nodes in a directed network.
This algorithm gives nodes a large hub score if they point to many important nodes
(authorities), and a large authority score if they are pointed to by many important
nodes (hubs). It is easy to see that the HITS method is equivalent to only considering
the first singular triplet in (2.4.5) and rank the nodes according to the values of the
entries of the singular vectors u1 (hub score) and v1 (authority score). Therefore,
the HITS algorithm may produce rankings that are different from those obtained
by evaluating hub and authority centralities. However, Table 2.12 illustrated that
only a few singular triplets suffice to identify the most important nodes by using hub
and authority centralities. It is therefore interesting to investigate how different the
orderings determined by the HITS algorithm and by our approach are. To gain some
insight into the orderings produced, we determine the 100 nodes with the largest hub
and authority centralities, and compute the 100 most important hubs and authorities
with the HITS algorithm for our test networks. We found that the identification and
ordering of the 100 most important hubs and authorities obtained by these methods
for the networks Airlines, Air500, Twitter, and Wikivote are the same. The orderings

82 CHAPTER 2. COMPLEX NETWORKS

differ for the networks of Table 2.17. The second and fourth columns of the table show
how many nodes among the 100 nodes in each list differ; the third and fifth columns
show the index of the first node that differs in each list. The table illustrates that
the HITS algorithm does not always yield the nodes with the largest hub/authority
centrality. Moreover, when a few singular triplets of the adjacency matrix are sufficient
to determine an accurate ordering of the nodes hub and authority centralities, the
HITS algorithm does not have a significant advantage in terms of complexity over our
method.

Application of block algorithms This subsection presents computations that
illustrate the performance of block Gauss and anti-Gauss quadrature rules associated
with the nonsymmetric block Lanczos algorithm. We applied these quadrature rules to
eight directed unweighted networks coming from the following real-world applications:

Airlines (235 nodes, 2101 edges) is a representation of air traffic, available at [55]. The
nodes are airports and the directed edges are flights between them.

Celegans (306 nodes, 2345 edges) is the metabolic network of Caenorhabditis elegans
[38], a small nematode (roundworm). The data set is available at [1].

Air500 (500 nodes, 24009 edges) is the network of flight connections for the top 500
airports, based on total passenger volume, worldwide [14]. The existence of flight
connections between airports is based on flights within one year from July 1,
2007, to June 30, 2008 [97].

Twitter (3556 nodes, 188712 edges) is part of the Twitter network [55]. The nodes are
users and the directed edges are mentions and retweets between them.

T2 (9801 nodes, 87025 edges) describes a mesh for a nonlinear diffusion problem,
taken from the University of Florida Sparse Matrix Collection [126].

Wikipedia (49728 nodes, 941425 edges) is the structure of Italian Wikipedia. In this
graph the nodes are plain articles and the links represent references to other
articles. It can be downloaded from [93].

Poisson (85623 nodes, 2374949 edges) is a sparse matrix describing a problem in
computational fluid dynamics from the University of Florida Sparse Matrix
Collection [126].

Vfem (93476 nodes, 1434636 edges) is a vector finite element complex matrix from a
problem in electromagnetics [126]. When computing with this matrix, transposi-
tion is replaced by transposition and complex conjugation. Inner products also
require complex conjugation.

Thus, all matrices except for T2, Poisson, and Vfem are adjacency matrices. When
applying the nonsymmetric block Lanczos algorithm to an arbitrary dense matrix
breakdown rarely occurs. However, when A is a general large and sparse nonsymmetric
adjacency matrix and the initial vectors are axis vectors ei, and, therefore, very sparse,
chances of breakdown are high. For instance, if the matrix A only has a few nonzero
entries in each row and column, even though the matrices S1 and R1 in (1.4.12) are
likely to be of full rank, they almost surely will satisfy ST1 R1 = Ok, resulting in
serious breakdown at the first step. The reason for this difficulty is that independent

2.4. DIRECTED NETWORKS 83

high-dimensional vectors with only a few nonzero entries are likely to be orthogonal.
We remark that this problem does not occur with the symmetric block Lanczos method,
because this method requires only the matrix R1 to be of full rank. The probability of
breakdown during the first steps of the nonsymmetric Lanczos method decreases when
introducing an additional dense starting vector. This is shown by Bai, Day and Ye [8];
see below for illustrations.

Suppose that we would like to compute all communicabilities between nodes 1
through k − 1 and their centralities for a total of (k − 1)2 numerical quantities.
If we try to approximate If = WT f(A)V with W = V = [e1, . . . , ek−1] using
the nonsymmetric block Lanczos method with block-size k − 1, then breakdown is
likely to occur at an early stage of the computations. To reduce the likelihood of
breakdown, we append the vector c with all entries one to W and V . Thus, we use
W = V = [e1, . . . , ek−1, c]. Then the computations also provide bounds for the starting
and ending conveniences of the first k − 1 nodes, provided that an expansion of the
integrand in terms of biorthogonal polynomials converges sufficiently rapidly. The
desired f -communicabilities are the entries of the leading principal (k − 1)× (k − 1)
submatrix of the k × k matrix If = WT f(A)V . We remark that the block Lanczos
method is applied to an orthonormalization of the columns in V and W ; see below.

Now assume that we would like to compute certain f -communicabilities with a
small absolute error τ . Using the quantities TN , FN , and GN in (2.3.14)–(2.3.15), a
natural stopping criterion is provided by TN < τ . We show the performance of block
Gauss and anti-Gauss quadrature rules when determining approximations of the entries
of If = WT exp(A)V with W = V = [e1, . . . , e5, c] and τ = 10−3.

The initial blocks have to satisfy V TW = Ik. To accomplish this, in principle, we
could orthogonalize the columns of the matrix W defined above by a QR factorization,
but this would not necessarily change its sparsity pattern and, therefore, would likely
lead to breakdown of the nonsymmetric block Lanczos method. In fact, when A and
W are sparse, either one of matrices R1 and S1 in (1.4.12), or both, may be singular.
For this reason, we redefine the blocks W and V with the aid of the singular value
decomposition of the k × k block WTV . If WTV = UΣZT , then the matrices

W1 = WUΣ−1/2, V1 = V ZΣ−1/2

satisfy WT
1 V1 = Ik and have dense columns. The sought quantities can be determined

from
WT f(A)V = UΣ1/2(WT

1 f(A)V1)Σ1/2ZT .

To begin with, we repeated the first experiment of Subsection 2.3.2. Let the matrix
W be defined as described above. We computed approximations of [WT f(A)W]ij by
pairs of N -block Gauss and (N + 1)-block anti-Gauss rules, which were computed with
the nonsymmetric block Lanczos method, and compared the 36 entries of the resulting
matrices to the output of expm. This test was performed on the first four networks,
whose size allows the application of expm. The inequalities (2.3.16) held in all but a
small number of cases: One of the inequalities was violated for 5 (out of 36) entries
for the Celegans network and 14 of the entries for the Twitter network. The required
accuracy was attained for all examples, that is, the error GN (2.3.15) was smaller than
the stopping tolerance τ for all networks.

Table 2.18 shows the execution times (in seconds) of the MATLAB function expm
and the nonsymmetric block Lanczos method. The table also reports the number of
matrix-vector product evaluations, the number of block Lanczos steps, and the quantity
(2.3.15). Very few block Lanczos steps are needed to determine the desired quantities

84 CHAPTER 2. COMPLEX NETWORKS

with required accuracy. For the larger networks, we are unable to evaluate the function
expm and, therefore, the error GN .

Table 2.18: Execution times (in seconds) of expm and the nonsymmetric block Lanczos
method. The table also shows the number of matrix-vector product evaluations,
the number of block Lanczos steps, and the quantity (2.3.15).

expm Block Lanczos method
Matrix Nodes Edges time Time MVP Steps GN
Airlines 235 2101 2.4e-01 5.7e-02 66 6 2.8e-08
Celegans 306 2345 1.6e-01 1.7e-02 66 6 8.5e-05
Air500 500 24009 9.8e-02 3.0e-02 66 6 3.1e-08
Twitter 3656 188712 4.4e+02 7.6e-02 90 8 4.1e-13
T2 9801 87025 – 7.4e-02 42 4 –

Wikipedia 49728 941425 – 7.8e-01 90 8 –
Poisson 85623 2374949 – 6.3e-01 30 3 –
Vfem 93476 1434636 – 6.6e-01 18 2 –

3. Electromagnetic Sounding

Electromagnetic induction (EMI) techniques are often used for non-destructive
investigation of soil properties, as they are affected by electromagnetic properties of the
subsurface layers, namely the electrical conductivity σ and the magnetic permeability µ.
Knowing such parameters allows one to ascertain the presence of particular substances,
with many important applications. A ground conductivity meter is the basic instrument
for EMI. It contains two coils (a transmitter and a receiver) placed at a fixed distance.
An alternating sinusoidal current in the transmitter produces a primary magnetic field
HP , which induces small eddy currents in the subsurface. These currents produce
a secondary magnetic field HS , which is sensed by the receiver. The ratio of the
secondary to the primary magnetic fields is then used, along with the instrumental
parameters, to estimate electrical properties of the subsurface.

The coils axes can be aligned either vertically or horizontally with respect to the
ground surface, producing different measures; see Figure 3.1.

Figure 3.1: Vertical and horizontal alignment of the coils of a GCM

The instruments measure the apparent conductivity

m =
4 Im(HS/HP)

µ0ωr2
,

which coincides with the real conductivity σ under the following assumptions:

• instrument at ground level (h = 0), in vertical orientation;

• soil with uniform vacuum magnetic permeability µ0 = 4π10−7 H/m;

85

86 CHAPTER 3. ELECTROMAGNETIC SOUNDING

• soil with uniform electrical conductivity σ;

• small induction number

B =
r

δ
= r

√
1

2
µ0ωσ � 1, (3.0.1)

where r is the inter-coil distance, δ is the skin depth (attenuation of HP by a factor
e−1) and ω = 2πf , where f is the operating frequency.

In real applications the assumption of uniform soil conductivity is not realistic.
Moreover, geophysicists are particularly interested in non homogeneous soil and, in
addition, apparent conductivity gives no information on the depth localization of
inhomogeneities.

To face the problem of data inversion multiple measures are needed to recover
the distribution of conductivity with respect to depth. Among the parameters which
influence the GCM responses, we have been able to generate multiple measures letting
the orientation of the dipole change and taking measurements at different height over
the ground.

In 1980, McNeill [101] described a linear model, based on the response curves in
the vertical and horizontal positions, which relates the apparent conductivity to the
height over the ground

mV (h) =

∫ ∞
0

φV (h+ z)σ(z) dz

mH(h) =

∫ ∞
0

φH(h+ z)σ(z) dz

where σ(z) is the real conductivity,

φV (z) =
4z

(4z2 + 1)3/2
, φH(z) = 2− 4z

(4z2 + 1)1/2
,

and z is the ratio between the depth and the inter-coil distance r.
Unfortunately, the linear model is only valid for uniform magnetic permeability µ0,

small induction number B and moderate conductivity (σ . 100mS/m).

3.1 The nonlinear forward model
The nonlinear model described in [132, 133] and further analyzed and adapted to

the case of a GCM in [74], is derived from Maxwell’s equations, keeping in mind the
cylindrical symmetry of the problem, due to the magnetic field sensed by the receiver
coil being independent of the rotation of the instrument around the vertical axis.
The input quantities are the distribution of the electrical conductivity and magnetic
permeability in the subsurface, the output is the apparent conductivity at height h.
In the following, λ is a variable of integration which can be interpreted as the ratio
between a length and the skin depth δ; see (3.0.1).

Following [132, Chapter III], we assume that the soil has a layered structure with
n layers, each of thickness dk, k = 1, . . . , n, and consequently that the electromagnetic
variables are piecewise constant; see Figure 3.2. The thickness dn of the bottom layer is
assumed to be infinite. Let σk and µk be the electrical conductivity and the magnetic
permeability of the k-th layer, respectively, and let uk(λ) =

√
λ2 + iσkµkω, where

3.1. THE NONLINEAR FORWARD MODEL 87

RT

D
e

p
th

 (
z
)

H
e

ig
h

t
(h

)
d
1

d
2

d
n-1

d
n

z
1
=h
1

z
2

z
3

z
n-1

z
n

Ground surface

h
i

h
m

σ
1

σ
2

σ
n-1

σ
n

µ
1

µ
2

µ
n-1

µ
n

Halfspace

r

h
2

Figure 3.2: Schematic representation of the subsoil and of the discretization used in the
following.

i =
√
−1 is the imaginary unit. Then, the characteristic admittance of the k-th layer

is given by

Nk(λ) =
uk(λ)

iµkω
, k = 1, . . . , n. (3.1.1)

The surface admittance at the top of the k-th layer is denoted by Yk(λ) and verifies
the following recursion

Yk(λ) = Nk(λ)
Yk+1(λ) +Nk(λ) tanh(dkuk(λ))

Nk(λ) + Yk+1(λ) tanh(dkuk(λ))
, k = n− 1, . . . , 1, (3.1.2)

which is initialized by setting Yn(λ) = Nn(λ) at the lowest layer. Numerically, this is
equivalent to starting the recursion at k = n with Yn+1(λ) = 0.

Now let,

R0(λ) =
N0(λ)− Y1(λ)

N0(λ) + Y1(λ)
, (3.1.3)

where N0(λ) = λ/(iµ0ω), and

T0(h) = −δ3
∫ ∞
0

λ2e−2hλR0(λ)J0(rλ) dλ,

T2(h) = −δ2
∫ ∞
0

λe−2hλR0(λ)J1(rλ) dλ,

(3.1.4)

where J0(λ) and J1(λ) are the Bessel functions of the first kind of order 0 and 1,
respectively, and r is the inter-coil distance. We express the integrals (3.1.4) in the
variable λ, instead of in g = δλ, as in [132]. This has some impact on the numerical
computation; see Remark 3.1.1.

The results obtained by Wait in [132, page 113], adapted to the geometry of a
GCM, give the components of the magnetic field along the dipole axis

(HP)z = −C
r3
, (HS)z = −C

δ3
T0(h), (vertical dipole),

(HP)y = −C
r3
, (HS)y = − C

rδ2
T2(h), (horizontal dipole),

(3.1.5)

88 CHAPTER 3. ELECTROMAGNETIC SOUNDING

where C is a constant.
The apparent conductivity measured by a GCM can be expressed as

m =
4

µ0ωr2
Im

(
(HS)d
(HP)d

)
, (3.1.6)

where (HP)d and (HS)d are the components along the dipole axis of the primary and
secondary magnetic field, respectively. Substituting (3.1.5) in (3.1.6), we obtain the
predicted values of the apparent conductivity measurement mV (h) (vertical orientation
of coils) and mH(h) (horizontal orientation of coils) at height h above the ground

mV (h) =
4

µ0ωr2
Im(B3T0(h)), mH(h) =

4

µ0ωr2
Im(B2T2(h)),

where B is the induction number (3.0.1). Simplifying formulae, we find

mV (h) =
4r

µ0ω
H0

[
−λe−2hλ Im(R0(λ))

]
(r),

mH(h) =
4

µ0ω
H1

[
−e−2hλ Im(R0(λ))

]
(r).

(3.1.7)

Here we denote by

Hν [fh](r) =

∫ ∞
0

fh(λ)Jν(rλ)λ dλ (3.1.8)

the Hankel transform of order ν of the function fh(λ), where the height h is a fixed
parameter. In our numerical experiments we approximate Hν [fh](r) by the quadrature
formula described in [2], using the nodes and weights adopted in [74].

The model depends upon a number of parameters which influence the value of
the apparent conductivity. In particular, it is affected by the instrument orientation
(horizontal/vertical), its height h above the ground, the inter-coil distance r, and the
angular frequency ω. In view of the technical features of the GCM at our disposal, we
consider r and ω to be constant. This constraint could be easily removed.

Remark 3.1.1. The above relations (3.1.7) show that the apparent conductivity pre-
dicted by the model does not depend explicitly of the skin depth δ and the induction
number B. This has some relevance in numerical computation, as an estimate of the
value of δ is not required. To our knowledge, this is the first time that this is noted.

3.2 Solution of the inverse problem
In our analysis, we let the magnetic permeability take the same value µ0 in the

n layers. This assumption is approximately met if the ground does not contain
ferromagnetic materials. Then, we can consider the apparent conductivity as a function
of the value σk of the conductivity in each layer and of the height h and write mV (σ, h)
and mH(σ, h), where σ = (σ1, . . . , σn)T , instead of mV (h) and mH(h).

The problem of data inversion is very important in Geophysics, where one is
interested in depth localization of inhomogeneities of the soil. To this purpose, multiple
measurements are needed to recover the distribution of conductivity with respect
to depth. In order to obtain such measurements, we use the two admissible loop
orientations, that is, the alignment of the instrument coils, and assume to record
apparent conductivity at height hi, i = 1, . . . ,m, as depicted in Figure 3.2. This

3.2. SOLUTION OF THE INVERSE PROBLEM 89

generates 2m data values. The algorithm could be easily adapted to the case when
other parameters of the model are varied.

Now, let bVi and bHi be the data recorded by the GCM at height hi in the vertical
and horizontal orientation, respectively, and let us denote by ri(σ) the error in the
model prediction for the ith observation

ri(σ) =

{
bVi −mV (σ, hi), i = 1, . . . ,m,

bHi−m −mH(σ, hi−m), i = m+ 1, . . . , 2m.
(3.2.1)

Setting bV = (bV1 , . . . , b
V
m)T , mV (σ) = (mV (σ, h1), . . . ,mV (σ, hm))T , and defining

bH and mH(σ) similarly, we can write the residual vector, the measured data, and
the model predictions as

r(σ) = b−m(σ), b =

[
bV

bH

]
, m(σ) =

[
mV (σ,h)
mH(σ,h)

]
. (3.2.2)

The problem of data inversion consists of computing the conductivity σk of each
layer (k = 1, . . . , n), which determines a given data set b ∈ R2m. As customary, we
use a least squares approach by solving the nonlinear problem

min
σ∈Rn

f(σ), f(σ) =
1

2
‖r(σ)‖2 =

1

2

2m∑
i=1

r2i (σ), (3.2.3)

where ‖ · ‖ denotes the Euclidean norm and ri(σ) is defined in (3.2.1).
To estimate the computational complexity needed to evaluate r(σ) we assume

that the complex arithmetic operations are implemented according to the classical
definitions, i.e., that 2 floating point operations (flops) are required for each complex
sum, 6 for each product and 11 for each division. The count of other functions
(exponential, square roots, etc.) is given separately. If n is the number of layers, 2m the
number of data values, and q the nodes in the quadrature formula used to approximate
(3.1.8), we obtain a complexity O((45n+ 8m)q) flops plus 2nq evaluations of functions
with a complex argument, and mq with a real argument.

3.2.1 Inversion algorithm
The classical approach for solving (3.2.3) is to find a stationary point of the gradient

f ′(σ) of f(σ) by Newton’s method, as described in Subsection 1.6.2. Using the notation
of this chapter, the iterative step sk is chosen by solving the n× n linear system

f ′′(σk)sk = −f ′(σk),

where f ′′(σk) is the Hessian of f(σ). While f ′(σ) can be obtained analytically or in
an approximate way, as we will see in the next Subsection, the analytical expression of
f ′′(σ) is not available; it could be computed by further differentiating the gradient,
but this would imply a large computational cost. To overcome this difficulty we resort
to the Gauss–Newton method, which minimizes at each step the norm of a linear
approximation of the residual r(σ + s); see Subsection 1.6.2.

Let r(σ) be Fréchet differentiable [117] and σk denote the current approximation,
then we can write

r(σk+1) ' r(σk) + J(σk)sk,

where σk+1 = σk + sk and J(σ) is the 2m× n Jacobian of r(σ), defined by (1.6.6).

90 CHAPTER 3. ELECTROMAGNETIC SOUNDING

As we saw in the first chapter, at each step k, sk is the solution of the linear least
squares problem

min
s∈Rn

‖r(σk) + Jks‖, (3.2.4)

and from it we obtain the iterative method

σk+1 = σk + sk = σk − J†k r(σk), (3.2.5)

where J†k is the Moore–Penrose pseudoinverse of Jk.
When the residuals ri(σk) are small or mildly nonlinear at σk, the Gauss–Newton

method is expected to behave similarly to Newton’s method [16, Chapter 9.2.2]. We
remark that, while the physical problem is obviously consistent, this is not necessarily
true in our case, where the conductivity σ(z) is approximated by a piecewise constant
function. Furthermore, in the presence of noise in the data the problem will certainly be
inconsistent. At the same time, since we are focusing on the nonlinear case connected
to the presence of strong conductors in the subsoil, we do not take into account the
second possibility. We remark that in the case of a mildly nonlinear problem, a linear
model is available [20, 101]. If the above conditions are not satisfied, the Gauss–Newton
method may not converge.

For this reason, we replaced the approximation (3.2.5) by

σk+1 = σk + αksk, (3.2.6)

that is, using the damped Gauss–Newton method that we described in Subsection 1.6.2.
This choice of αk ensures convergence of the method, provided that σk is not a critical
point [16, Chapter 9.2.1].

The damped method allows us to include an important physical constraint in the
inversion algorithm, i.e., the positivity of the solution. In our implementation αk is
the largest step size which both satisfies the Armijo–Goldstein principle and ensures
that all the solution components are positive.

3.2.2 Computation of the Jacobian
As we saw in the previous Subsection, being able to compute or to approximate the

Jacobian matrix J(σ) of the vector function (3.2.2) is crucial for the implementation of
an effective inversion algorithm and to have information about its speed of convergence
and conditioning.

The classical approach is to resort to a finite difference approximation

∂ri(σ)

∂σj
' ri(σ + δj)− ri(σ)

δ
, i = 1, . . . , 2m, j = 1, . . . , n, (3.2.7)

where δj = δ ej = (0, . . . , 0, δ, 0, . . . , 0)T and δ is a fixed constant; see [74].
In this section we give the explicit expression of the Jacobian matrix. We will show

that the complexity of this computation is smaller than required by the finite difference
approximation (3.2.7). In the following lemma we omit, for clarity, the variable λ.

Lemma 3.2.1. The derivatives Y ′kj = ∂Yk

∂σj
, k, j = 1, . . . , n, of the surface admittances

(3.1.2) can be obtained starting from

Y ′nn =
1

2un
, Y ′nj = 0, j = 1, . . . , n− 1, (3.2.8)

3.2. SOLUTION OF THE INVERSE PROBLEM 91

and proceeding recursively for k = n− 1, n− 2, . . . , 1 by

Y ′kj = N2
k bkY

′
k+1,j , j = n, n− 1, . . . , k + 1,

Y ′kk =
ak
2uk

+
bk
2

[
N2
kdk − Yk+1

(
dkYk+1 +

1

iµkω

)]
,

Y ′kj = 0, j = k − 1, k − 2, . . . , 1,

(3.2.9)

where

ak =
Yk+1 +Nk tanh(dkuk)

Nk + Yk+1 tanh(dkuk)
, bk =

1

[Nk + Yk+1 tanh(dkuk)]2 cosh2(dkuk)
. (3.2.10)

Proof. From (3.1.1) we obtain

∂uk
∂σj

=
∂

∂σj

√
λ2 + iσkµkω =

1

2Nk
δkj ,

∂Nk
∂σj

=
∂

∂σj

uk
iµkω

=
1

2uk
δkj , (3.2.11)

where δkj is the Kronecker delta, that is, 1 if k = j and 0 otherwise. The recursion
initialization (3.2.8) follows from Yn = Nn; see Section 3.1. We have

Y ′kj =
∂Nk
∂σj

ak +Nk ·
∂Yk+1

∂σj
+ ∂Nk

∂σj
tanh(dkuk) +Nk

∂ tanh(dkuk)
∂σj

Nk + Yk+1 tanh(dkuk)

−Nkak ·
∂Nk

∂σj
+ ∂Yk+1

∂σj
tanh(dkuk) + Yk+1

∂ tanh(dkuk)
∂σj

Nk + Yk+1 tanh(dkuk)
,

with ak defined as in (3.2.10). If j 6= k, then ∂Nk

∂σj
= ∂uk

∂σj
= 0 and we obtain

Y ′kj = N2
k

∂Yk+1

∂σj

(
1− tanh2(dkuk)

)
[Nk + Yk+1 tanh(dkuk)]2

= N2
k bkY

′
k+1,j .

The last formula, with bk given by (3.2.10), avoids the cancellation in 1− tanh2(dkuk).
If j = k, after some straightforward simplifications, we get

Y ′kk =
∂Nk
∂σk

ak +
Nk

Nk + Yk+1 tanh(dkuk)

[
Y ′k+1,k(1− ak tanh(dkuk))

+
∂Nk
∂σk

(tanh(dkuk)− ak) +
dk
2

(
1− ak

Yk+1

Nk

)
(1− tanh2(dkuk))

]
.

This formula, using (3.2.10) and (3.2.11), leads to

Y ′kk =
ak
2uk

+Nkbk

[
Nk

(
Y ′k+1,k +

dk
2

)
− 1

2
Yk+1

(
dk
Nk

Yk+1 +
1

uk

)]
.

The initialization (3.2.8) implies that Y ′kj = 0 for any j < k. In particular, Y ′k+1,k = 0,
and since Nk/uk is constant one obtains the expression of Y ′kk given in (3.2.9). This
completes the proof.

Remark 3.2.1. The quantity ak in (3.2.10) appears in the right hand side of (3.1.2),
and its denominator is present also in the expression of bk. It is therefore possible to
implement jointly the recursions (3.1.2) and (3.2.9) in order to reduce the number of
floating point operations required by the computation of the Jacobian. We also note
that, since in the following Theorem 3.2.1 we only need the partial derivatives of Y1,
we can overwrite the values of Y ′k+1,j with Y

′
kj at each recursion step, so that only n

storage locations are needed for each λ value, instead of n2.

92 CHAPTER 3. ELECTROMAGNETIC SOUNDING

Theorem 3.2.1. The partial derivatives of the residual function (3.2.2) are given by

∂ri(σ)

∂σj
=

4r
µ0ω
H0

[
λe−2hiλ Im

(
∂R0(λ)
∂σj

)]
(r), i = 1, . . . ,m,

4
µ0ω
H1

[
e−2hi−mλ Im

(
∂R0(λ)
∂σj

)]
(r), i = m+ 1, . . . , 2m,

for j = 1, . . . , n. Here Hν (ν = 0, 1) denotes the Hankel transform (3.1.8), r is the
inter-coil distance, ∂R0(λ)

∂σj
is the jth component of the gradient of the function (3.1.3)

∂R0(λ)

∂σj
=

−2iµ0ωλ

(λ+ iµ0ωY1(λ))2
· ∂Y1
∂σj

,

and the partial derivatives ∂Y1

∂σj
are given by Lemma 3.2.1.

Proof. The proof follows easily from Lemma 3.2.1 and from equations (3.1.3), (3.1.7),
and (3.2.1).

Remark 3.2.2. The numerical implementation of the above formulae needs care. It
has already been noted in the proof of Lemma 3.2.1 that equations (3.2.9)–(3.2.10)
are written in order to avoid cancellations that may introduce huge errors in the
computation. Moreover, to prevent overflow in the evaluation of the term

cosh2(dkuk(λ)) = cosh2(dk
√
λ2 + iσkµkω)

in the denominator of bk, we fix a value λmax and for Re(dkuk(λ)) > λmax we let
bk = bk(λ) = 0. In our numerical experiments we adopt the value λmax = 300.

The complexity of the joint computation of r(σ) and its Jacobian, given in Theorem
3.2.1, amounts to O((3n2+8mn)q) flops, 3nq complex functions, andmnq real functions.
To approximate the Jacobian by finite differences one has to evaluate n + 1 times
r(σ), corresponding to O((45n2 + 8mn)q) flops, 2n2q complex functions, and mnq real
functions.

If the Jacobian is a square matrix, i.e., n = 2m, its computation is 7 times faster
than approximating it by finite differences. The situation improves when the dimension
of the data set is smaller than the number of layers (this is the ideal situation, as it will
be shown in Sections 3.3.1 and 3.3.2), e.g., the speedup factor is 9 for n = 4m. The
complexity issue is of concern to end users, because it is often desirable to process the
field data in real time, during the measurement campaign, using a notebook computer.

In order to further reduce the computational cost, it is possible to resort to the
Broyden update of the Jacobian [22], which can be interpreted as a generalization of
the secant method. The procedure consists of updating an initial approximation of
the Jacobian J0 = J(σ0) computed in the initial point σ0. This is realized by the
following rank-1 update

Jk = Jk−1 +
(yk − Jk−1sk)sTk

sTk sk
, k = 1, 2, . . . , (3.2.12)

where sk = σk−σk−1 and yk = r(σk)−r(σk−1). This formula makes the linearization
r(σk) + Jk(σ − σk) exact in σk−1 and guarantees the least change in the Frobenius
norm ‖Jk − Jk−1‖F . As this method works well locally [37, Chapter 8], in the sense
that the accuracy of the approximation degrades as the iteration index grows, we apply

3.2. SOLUTION OF THE INVERSE PROBLEM 93

recursion (3.2.12) for k = 1, . . . , kB − 1 and reinitialize the method with the exact
Jacobian after kB iterations. A single application of (3.2.12) takes 10mn+ 2(m+ n)
flops, to be added to the cost of the evaluation of r(σ). We will investigate the
performance of this method in Section 3.3.1.

3.2.3 Low-rank approximation as regularization method

With the aim of investigating the conditioning of problem (3.2.3), we examined
the numerical behavior of the singular values of the Jacobian matrix J = J(σ) of the
vector function r(σ). Let J = UΓV T be the singular value decomposition (SVD) [16]
of the Jacobian, where U and V are orthogonal matrices of size 2m and n, respectively,
Γ = diag(γ1, . . . , γp, 0, . . . , 0) is the diagonal matrix of the singular values, and p is the
rank of J . We recall that the condition number of J is given by γ1/γp.

0 5 10 15 20

10
−20

10
−15

10
−10

10
−5

10
0

0 5 10 15 20 25 30 35 40

10
−20

10
−15

10
−10

10
−5

10
0

n=10

n=20

n=30

n=40

Figure 3.3: SVD of the Jacobian matrix: left, average singular values and errors (n = 20);
right, average singular values for n = 10, 20, 30, 40.

Fixing n = 2m = 20, we generate randomly 1000 vectors σ ∈ R20, having compo-
nents in [0, 100]. For each of them we evaluate the corresponding Jacobian J(σ) by the
formulae given in Theorem 3.2.1 and compute its SVD. The left graph in Figure 3.3
shows the average of the singular values obtained by the above procedure and, for
each of them, its minimum and maximum value. It is clear that the deviation from
the average is small, so that the condition number of the Jacobian matrix has the
same order of magnitude in all tests. Consequently, the linearized problem is severely
ill-conditioned independently of the value of σ, and we do not expect its condition
number to change much during iteration.

The graph on the right in Figure 3.3 reports the average singular values when
n = 2m = 10, 20, 30, 40. The figure shows that the condition number is about 1014

when n = 10 and increases with the dimension. The singular values appear to be
exponentially decaying, but zero is not a singular value, that is, the problem is not
strictly rank-deficient. The decay rate of the computed singular values changes below
machine precision (2.2 · 1016), which is represented in the graph by a horizontal line.
The exact singular vales are likely to decay with a stronger rate, while the computed
ones are probably significantly perturbated by error propagation. A problem of this
kind is generally referred to as a discrete ill-posed problem [69].

A typical approach for the solution of ill-posed problems is Tikhonov regularization.
It has been applied by various author to the inversion of geophysical data; see, e.g., [20,
35, 74]. To apply Tikhonov’s method to the nonlinear problem (3.2.3), one has to solve

94 CHAPTER 3. ELECTROMAGNETIC SOUNDING

the minimization problem

min
σ∈Rn

{‖r(σ)‖2 + µ2‖Mσ‖2} (3.2.13)

for a fixed value of the parameter µ, where M is a regularization matrix which is
often chosen as the identity matrix, or a discrete approximation of the first or second
derivatives, as explained in Subsection 1.6.3. In general, choosing the regularization
parameter requires the computation of the solution σµ of (3.2.13) for many values of
µ. This can be done, for example, by the Gauss–Newton method, leading to a large
computational effort.

To reduce the complexity we consider an alternative regularization technique based
on a low-rank approximation of the Jacobian matrix, i.e., the TSVD approach described
in Subsection 1.6.3. If A` is the best rank ` approximation to the Jacobian, then the
corresponding solution to (3.2.4) can be expressed as

s(`) = −A†`r = −
∑̀
i=1

uTi r

γi
vi, (3.2.14)

where ` = 1, . . . , p is the regularization parameter, γi are the singular values, the
singular vectors ui and vi are the orthogonal columns of U and V , respectively, and
r = r(σk).

Introducing a regularization matrix M ∈ Rt×n (t ≤ n), problem (3.2.4) is usually
replaced by

min
s∈S
‖Ms‖, S = {s ∈ Rn : JTJs = −JT r}, (3.2.15)

under the assumption N (J) ∩N (M) = {0} and t > max(0, n− 2m).
As we saw, the truncated GSVD (TGSVD) solution s` to (3.2.15) is then defined as

s(`) = −
p∑

i=p−`+1

uT2m−p+ir

ci
zn−p+i −

p∑
i=p+1

(uT2m−p+ir) zn−p+i, (3.2.16)

where ` = 0, 1, . . . , p is the regularization parameter, p = t if 2m ≥ n, and p = 2m−n+t
if 2m < n. We recall that ci (i = 1, . . . , p) are the elements of ΣJ different from 0 and
1.

Our approach for constructing a smooth solution to (3.2.3) consists of regularizing
each step of the damped Gauss–Newton method (3.2.6) by either TSVD or TGSVD,
depending on the choice of M . For a fixed value of the regularization parameter `,
we substitute s in (3.2.6) by s(`) expressed by either (3.2.14) or (3.2.16). We let the
resulting method

σ
(`)
k+1 = σ

(`)
k + αks

(`)
k (3.2.17)

iterate until

‖σ(`)
k − σ

(`)
k−1‖ < τ‖σ(`)

k ‖ or k > 100 or αk < 10−5,

for a given tolerance τ . The constraint on αk is a failure condition which indicates that
the method does not converge to a positive solution. This typically happens when the
solution blows up because of ill-conditioning. We denote the solution at convergence
by σ(`). We will discuss the choice of ` in the next subsection.

3.3. NUMERICAL EXPERIMENTS 95

3.2.4 Choice of the regularization parameter
In the previous section we saw how to regularize the ill-conditioned problem (3.2.3)

with the aid of T(G)SVD. The choice of the regularization parameter is crucial in order
to obtain a good approximation σ(`) of σ.

In real-world applications experimental data are always affected by noise. To model
this situation, we assume that the data vector in the residual function (3.2.2), whose
norm is minimized in problem (3.2.3), can be expressed as b = b̂ + e, where b̂ contains
the exact data and e is the noise vector. This vector is generally assumed to have
normally distributed entries with mean zero and common variance. In real data sets
the last condition is not necessarily met.

If an accurate estimate of the norm of the error e is known, the value of ` can be
determined with the aid of the discrepancy principle [41, Section 4.3]. It consists of
determining the regularization parameter ` as the smallest index ` = `discr such that

‖b−m(σ`discr)‖ ≤ κ‖e‖. (3.2.18)

Here κ > 1 is a user-supplied constant independent of ‖e‖. In our experiments we set
κ = 1.5, since it produced the best numerical results.

We are also interested in the situation when an accurate bound for ‖e‖ is not
available and, therefore, the discrepancy principle cannot be applied.

We can then resort to the heuristic methods described in Subsection 1.6.3. In
general, it is not possible to apply all the methods developed for the linear case to a
nonlinear problem. The L-curve criterion [73], can be extended quite naturally to the
nonlinear case. The L-curve is obtained by joining the points{

log ‖r(σ(`))‖, log ‖Mσ(`)‖
}
, ` = 1, . . . , p, (3.2.19)

where r(σ(`)) = b−m(σ(`)) is the residual error associated to the approximate solution
σ(`) computed by the iterative method (3.2.17), using (3.2.16) as a regularization
method. If (3.2.14) is used instead, it is sufficient to let M = I and replace p by p.

In the following Section we will compare different ways of determining the corner
of the L-curve.

3.3 Numerical experiments

3.3.1 Synthetic data
To illustrate the performance of the inversion method described in the previous

sections, we present the results of a set of numerical experiments. Initially, we apply
our method to synthetic data sets, generated starting from a chosen conductivity
distribution and adding random noise to data. In the next section we will analyze a
real data set.

Figure 3.4 displays the three functions fr(z), r = 1, 2, 3, used in our experiments to
model the distribution of conductivity, expressed in Siemens/meter, with respect to
the depth z, measured in meters. The first one is differentiable (f1(z) = e−(z−1.2)

2

),
the second is piecewise linear, the third is a step function. All model functions imply
the presence of a strongly conductive material at a given depth. We assume that the
measurements are taken with the GCM in both vertical and horizontal orientation,
placed at height hi = (i− 1)h̄ above the ground, i = 1, . . . ,m, for a chosen height step
h̄; see (3.2.1). In our experiments h̄ ≥ 0.1 meters.

96 CHAPTER 3. ELECTROMAGNETIC SOUNDING

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

Depth (m) Depth (m)Depth (m)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

Figure 3.4: Graphs of the conductivity distribution models f1, f2, and f3. The horizontal
axis reports the depth in meters, the vertical axis the electrical conductivity in
Siemens/meter.

In this section we simulate the use of a Geonics EM38, operating at frequency
14.6 kHz, with 1m coil separation. For a chosen model function fr and a fixed number
of layers n, we let the layers thickness assume the constant value dk = d̄ = 2.5/(n− 1),
k = 1, . . . , n − 1, so that zj = (j − 1)d̄, j = 1, . . . , n; see Figure 3.2. The choice of
d̄ is motivated by the common assumption that this kind of GCM can give useful
information about the conductivity of the ground up to a depth of 2–3 meters.

We assign to each layer the conductivity σk = fr(zk). Then, we apply the nonlinear
model defined in (3.2.2) to compute the exact data vector b̂ = m(σ).

To simulate experimental errors, we determine the perturbed data vector b by
adding a noise vector to b̂. Specifically, we let the vector w have normally distributed
entries with zero mean and unitary variance, and compute

b = b̂ +
τ‖b̂‖√

2m
w. (3.3.1)

This implies that ‖b− b̂‖ ≈ τ‖b̂‖. In the computed examples we use the noise levels
τ = 10−3, 10−2. Based on our experience, the noise on experimental data is larger
than 10−1, but it can be substantially reduced, e.g., by averaging a small number of
repeated measurements.

For each data set, we solve the least squares problem (3.2.3) by the damped
Gauss–Newton method (3.2.6). The damping parameter is determined by the Armijo–
Goldstein principle, modified in order to ensure the positivity of the solution. Each
step of the iterative method is regularized by either the TSVD approach (3.2.14), or by
TGSVD (3.2.16), for a given regularization matrix M . In our experiments we use both
M = D1 and M = D2, the discrete approximations of the first and second derivatives.
These two choices for M pose a constraint on the magnitude of the slope and the
curvature of the solution, respectively. To assess the accuracy of the computation we
use the relative error

e` =
‖σ − σ(`)‖
‖σ‖

,

where σ denotes the exact solution of the problem and σ(`) its regularized solution
with parameter `, obtained by (3.2.17). The experiments were performed using Matlab
8.1 (R2013a) on an Intel Core i7/860 computer with 8Gb RAM, running Linux.

Our first experiment tries to determine the best experimental setting, that is, the
optimal number of measurements and of underground layers to be considered. At the
same time, we investigate the difference between the TSVD (3.2.14) and the TGSVD

3.3. NUMERICAL EXPERIMENTS 97

Table 3.1: Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for the TSVD solution
(M = I) and the TGSVD solution with M = D1 and M = D2. The Jacobian is
computed as in Section 3.2.2.

M = I M = D1 M = D2

example m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 4.1e-01 3.8e-01 1.8e-01 1.7e-01 2.3e-01 2.9e-01
f1 10 3.6e-01 3.7e-01 1.4e-01 1.3e-01 1.8e-01 1.6e-01

20 3.5e-01 3.5e-01 1.5e-01 1.4e-01 1.2e-01 1.3e-01
5 4.8e-01 4.6e-01 1.3e-01 1.4e-01 2.2e-01 2.6e-01

f2 10 4.3e-01 4.0e-01 1.2e-01 9.5e-02 1.3e-01 1.9e-01
20 3.9e-01 3.7e-01 1.1e-01 9.1e-02 1.5e-01 1.4e-01
5 5.7e-01 5.6e-01 3.9e-01 3.9e-01 4.2e-01 4.1e-01

f3 10 5.5e-01 5.4e-01 3.6e-01 3.4e-01 3.4e-01 3.2e-01
20 5.6e-01 5.6e-01 3.5e-01 3.4e-01 2.9e-01 3.3e-01

(3.2.16) approaches, and the effect on the solution of the regularization matrix M . For
each of the three test conductivity models, we discretize the soil by 20 or 40 layers, up to
the depth of 2.5 meters. We solve the problem after generating synthetic measurements
at 5, 10, and 20 equispaced heights up to 1.9 meters. This process is repeated for each
regularization matrix. The (exact) Jacobian is computed as described in Section 3.2.2.
Table 3.1 reports the values of the relative error eopt = min` e`, representing the best
possible performance of the method. This value is the average over 20 realizations of
the noise, with noise level τ = 10−3, 10−2.

exact

m=5

m=10

m=20

0.0 0.5 1.0 1.5 2.0 2.5

exact

m=5

m=10

m=20

0.0 0.5 1.0 1.5 2.0 2.5

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

Figure 3.5: Optimal reconstruction for the model functions f2 and f3. The number of
underground layers is n = 40, the noise level is τ = 10−3. The solid line is the
solution obtained by taking as input 5 measurements for every loop orientation
(that is, m = 5), the dashed line corresponds to m = 10, the line with bullets to
m = 20. The exact solution is represented by a dash-dotted line.

It is clear that the TSVD approach (see the column labelled as M = I in the
table) is the least accurate. The TGSVD, with either M = D1 or M = D2, gives the
best results for the three test functions. The results in Table 3.1 state that they are
essentially equivalent, and do not clearly indicate which is the best. We will show in
Section 3.3.2 that the regularization matrix M = D2 appears to produce more accurate
reconstructions starting from experimental data.

Regarding the size of the soil discretization, it seems convenient to use a large

98 CHAPTER 3. ELECTROMAGNETIC SOUNDING

number of layers, that is, n = 40. This choice does not increase significantly the
computation time. It is obviously desirable to have at our disposal a large number of
measurements; however, the results obtained with m = 5 and m = 10 are not much
worse than those computed with m = 20; 5 measurement heights are often sufficient to
give a rough approximation of the depth localization of a conductive layer. This is an
important observation, as it reduces the time needed for data acquisition.

Figure 3.5 gives an idea of the quality of the computed reconstructions for the
model functions f2 and f3, with n = 40 and noise level τ = 10−3. The exact solution is
compared to the approximations corresponding to m = 5, 10, 20. The above comments
about the influence of the number of measurements m are confirmed. It is also
remarkable that the position of the maximum is very well localized.

Table 3.2: Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for f1 (M = D2), f2
(M = D1), and f3 (M = D2). The results obtained from measurements collected
with the instrument in both vertical and horizontal orientation are compared to
those obtained with a single orientation.

f1, M = D2 f2, M = D1 f3, M = D2

orientation m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 2.3e-01 2.9e-01 1.3e-01 1.4e-01 4.2e-01 4.1e-01
both 10 1.8e-01 1.6e-01 1.2e-01 9.5e-02 3.4e-01 3.2e-01

20 1.2e-01 1.3e-01 1.1e-01 9.1e-02 2.9e-01 3.3e-01
5 3.3e-01 2.9e-01 3.5e-01 3.1e-01 6.2e-01 6.6e-01

vertical 10 2.4e-01 1.7e-01 2.9e-01 2.6e-01 5.3e-01 5.0e-01
20 1.3e-01 2.2e-01 2.4e-01 1.7e-01 4.0e-01 4.3e-01
5 2.9e-01 2.7e-01 3.6e-01 3.5e-01 6.6e-01 8.5e-01

horizontal 10 2.4e-01 2.6e-01 1.9e-01 1.6e-01 6.3e-01 6.0e-01
20 2.0e-01 2.1e-01 1.7e-01 1.8e-01 4.4e-01 4.7e-01

In the previous experiments we assumed that all the 2m entries of vector b in
(3.2.2) were available. In Table 3.2 we compare these results with those obtained by
using only half of them, i.e., those corresponding to either the vertical or horizontal
orientation of the instrument. The rows labelled as “both” are extracted from Table 3.1.
The results are slightly worse when the number of data is halved, especially for the
less regular model functions, while they are almost equivalent for the smooth function
f1. This observation contributes, like the previous one, to simplify and speed up field
measurements.

In Section 3.2.2 we described the computation of the Jacobian matrix of (3.2.2), and
compared it to the slower finite difference approximation (3.2.7) and to the Broyden
update of the Jacobian (3.2.12). To investigate the execution time corresponding to
each method, we let the method (3.2.17) perform 100 iterations, with M = D2, for a
fixed regularization parameter (` = 4). When the Jacobian is exactly computed, the
execution time is 7.18 s, while the finite difference approximation requires 18.96 s. The
speedup factor is 2.6, which is far less than the one theoretically expected. This is
probably due to the implementation details and to the features of Matlab programming
language. We performed the same experiment by applying the Broyden update (3.2.12)
and recomputing the Jacobian every kB iterations. For kB = 5 the execution time
is 2.00 s, while for kB = 10 is 1.32 s. Despite this strong speedup (a factor 14 with
respect to finite difference approximation), the accuracy is not substantially affected
by this approach. Table 3.3 reports the relative error eopt obtained by repeating the

3.3. NUMERICAL EXPERIMENTS 99

experiment of Table 3.1 using the Broyden method with kB = 10. We only report the
values of eopt for some of the examples. The loss of accuracy, if any, is minimal.

Table 3.3: Optimal error eopt for m = 5, 10, 20 and n = 20, 40, for f1 (M = D2), f2
(M = D1), and f3 (M = D2). The Jacobian is computed every 10 iterations and
then updated by the Broyden method.

f1, M = D2 f2, M = D1 f3, M = D2

m n = 20 n = 40 n = 20 n = 40 n = 20 n = 40

5 1.8e-01 2.3e-01 1.3e-01 1.2e-01 4.6e-01 5.0e-01
10 1.7e-01 1.5e-01 1.1e-01 1.0e-01 3.3e-01 3.9e-01
20 1.1e-01 1.3e-01 1.1e-01 9.0e-02 3.1e-01 3.3e-01

0.1 0.2 0.3 0.5 1
0

1

2

3

4

5

step length ξ

a
v
e
ra

g
e
 e

rr
o
r

0.1 0.2 0.3 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

step length ξ

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

I
D

1

D
2

I
D

1

D
2

Figure 3.6: Results for the reconstruction of test function f3,ξ with a variable step length
ξ, which is reported on the horizontal axis. The left graph reports the average
error eopt, obtained with three regularization matrices M = I,D1, D2. Each
test is repeated 20 times for each noise level τ = 10−3, 10−2. The right graph
reports the corresponding standard deviations.

The maximal resolution which the inversion algorithm can achieve in imaging high
conductivity thin layers is another important issue we inspected in this work. This
situation is typical, e.g., in UXO detection. To this end, we consider the test function
f3 and let the length ξ of the step vary, that is, we set f3,ξ(z) = 1 for z ∈ [0.5, 0.5 + ξ]
and f3,ξ(z) = 0.2 otherwise. Each problem is solved for three regularization matrices,
two noise levels, and each test is repeated 20 times for different noise realizations.
The left graph of Figure 3.6 reports the average errors for different values of ξ, while
the right graph displays the corresponding standard deviations. The choice M = D1

appears to be the best for detecting a thin conductive layer. Indeed, not only the
errors are smaller, but the smaller standard deviations ensure that the method is more
reliable. Figure 3.7 shows the reconstructions of f3,ξ with three different step lengths,
ξ = 1.0, 0.5, 0.2, M = D1, and τ = 10−2. It is remarkable that the position of the
maximum is well located by the algorithm even in the presence of a very thin step.

Remark 3.3.1. It has been shown in recent literature [21, 42] that if a linear inverse
problem is solved in Lp spaces, with p < 2, the reconstruction of discontinuous functions
can greatly improve. This would be particularly helpful in the presence of a highly

100 CHAPTER 3. ELECTROMAGNETIC SOUNDING

conductive thin layer, but applying such methods is rather involved even in the linear
case.

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Depth (m) Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

Figure 3.7: Optimal reconstructions for the test function f3,ξ, with step lengths ξ = 1.0
(left), 0.5 (center), and 0.2 (right), obtained with M = D1 and noise level
τ = 10−2.

In the above experiments, the regularization parameter ` has been chosen optimally,
that is, in order to produce the smallest deviation from the exact solution. Obviously, in
real-world applications this is not possible, so it is essential to determine the parameter
effectively. When an accurate estimate of the noise level is known, this can be done by
the discrepancy principle (3.2.18). In our experiments, we set κ = 1.5 and replace by
‖e‖ by τ‖b‖, where τ is the noise level and b is the noisy data vector; see (3.3.1).

When the noise level is unknown, the regularization parameter may be estimated by
a heuristic method. We compared the methods described in Subsection 1.6.4, namely
the L-corner [72], the restricted Regińska method (ResReg) [113, 114], the residual
L-curve [114, 115] and the hybrid quasi-optimality criterion [102, 114]. These methods
were designed for linear inverse problems, but they can also be applied to nonlinear
problems, as they only require the knowledge of the residual corresponding to each
regularized solution. Among these methods, the L-corner method proved to be the
most robust, so in the rest of the section we will only refer to it.

Our numerical experiments, showed that the discrepancy and the L-corner methods
furnish very good estimates for the parameter when M = I, while they are less reliable
whenM = D1 or D2, that is, for the choice of the regularization matrix which produced
the best results in our experiments. This fact is known for the L-curve; see, e.g., [116].
In fact, a good choice for M is a matrix whose kernel (approximately) contains the
solution, and this makes the L-curve loose its typical “L” shape. We remark that we
cannot apply the discrepancy principle to real data sets for which an estimate of the
noise is not available. Moreover, according to our experience, the noise on real EMI
data is not necessarily equally distributed. This will be commented on in Section 3.3.2,

Figure 3.8 shows a reconstruction of test function f1 obtained with m = 10, n = 40,
noise level τ = 10−2, and regularization matrix M = D2. The graph on the left
displays the L-curve corresponding to this example, the graph on the right compares
the approximations produced by the discrepancy criterion and the L-corner method
to the exact solution. In this case the optimal parameter is ` = 2. The discrepancy
fails, as it gives the estimate ` = 1, while L-corner returns ` = 2. This test function is
approximately contained in the kernel of D2, as ‖D2σ‖ ' 3 · 10−2 while ‖σ‖ ' 4, and

3.3. NUMERICAL EXPERIMENTS 101

exact

L−corner

discrepancy

m(σ
k
) - b

2

10
-2

D
2
 σ
k

2

10
-1

0.0 0.5 1.0 1.5 2.0 2.5

Depth (m)

1.0

0.8

0.6

0.4

0.2

C
o
n
d
u
c
ti
v
it
y
 (
S
/m
)

Figure 3.8: Results for test function f1, with m = 10, n = 40, τ = 10−2, and M = D2. The
graph on the left displays the L-curve; the one on the right the exact solution
and the reconstructions produced by the discrepancy principle and the L-corner
method.

the L-curve appears almost shapeless. Anyway, the L-corner method implements a
particular strategy to deal with such cases, and produce a good reconstruction.

exact

L−corner

discrepancy

m(σ
k
) - b

2

10
-2

10
-3

D
2
 σ
k

2

10
0

10
-1

0.0 0.5 1.0 1.5 2.0 2.5

Depth (m)

1.0

0.8

0.6

0.4

0.2
C
o
n
d
u
c
ti
v
it
y
 (
S
/m
)

Figure 3.9: Results for test function f2, with m = 10, n = 40, τ = 10−3, and M = D1. The
graph on the left displays the L-curve; the one on the right the exact solution
and the reconstructions produced by the discrepancy principle and the L-corner
method.

Figure 3.9 reports the same graphs for test function f2, with m = 10, n = 40,
τ = 10−3, and M = D1. The optimal parameter is ` = 4. The L-corner method gives
` = 4 and discrepancy returns ` = 2. In this case both methods succeed in identifying
accurately the depth at which the conductivity is maximal.

3.3.2 Field data
We tested the nonlinear inversion technique described in the previous sections

on field data collected at the Cagliari Airport (Sardinia, Italy), in an area where
previous geophysical investigations, conducted for UXO detection, established the
presence of layered materials with very high electrical conductivity, very suitable to be
investigated with vertical electromagnetic induction soundings. The reliability of the

102 CHAPTER 3. ELECTROMAGNETIC SOUNDING

inverted conductivity profile was assessed by comparison with conductivities obtained
by electrical resistivity tomography (ERT) [32, 96].

D
e

p
th

 (
m

)

D
e

p
th

 (
m

)

01 0.4 0.8 1.2 1.6 2

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

5 10 15 20

Distance (m) Conductivity (S/m)

Conductivity (S/m)

(a) (b)

Figure 3.10: ERT results: in the left graph we display the conductivity section; the right
graph reports the conductivity profile versus the depth, at the position where
the electromagnetic data were collected, marked by a dashed line in the first
graph.

The ERT profile was performed using 48 electrodes set up with an inter-electrode
spacing of 0.5m deployed in a Wenner-Schlumberger array, which we chose to reach
a compromise between a reasonable vertical resolution and a good signal-to-noise
ratio [31]. ERT data were collected using an IRIS Syscal Pro Switch 48 resistivity
meter, which was set for six-cycle stacking (repetition of measurements), with the
requirement of reaching a quality factor (standard deviation) of less than 5%. Data were
then inverted using the commercial program Res2Dinv [94, 95]. The software employs
a smoothness-constrained least-squares optimization method [29, 95] to minimize the
difference between measured and modelled data, which it calculates using either a finite
difference or a finite element approximation. The program divides the subsurface into
rectangular cells whose corners, along the line, follow the positions of the electrodes
in the subsurface [95]. The quality of the fit between measured and modelled data
is expressed in terms of the root mean square (RMS) error. Figure 3.10 shows the
ERT result we obtained with an RMS error of 2%, displayed in conductivity units to
facilitate direct comparison with the electromagnetic data.

As expected, the section shows a subsurface model where conductivity changes
almost exclusively in the vertical direction. At the near surface electrical conductivity
starts with low values (< 200mS/m) and keeps them down to 1m depth; then, it
abruptly increases reaching maximum values (up to 1800mS/m) at the depth of about
1.7m; finally, it lowers below 800mS/m in the deepest portion of the investigated
section. The graph on the right of Figure 3.10 shows the conductivity profile at the
location where we carried out the electromagnetic sounding. As the exact solution is not
available in this real case study, this profile was used as a benchmark to comparatively
assess the reliability of our regularized nonlinear inversion procedure.

Electromagnetic data were measured with the CMD-1 conductivity meter (GF
Instruments), a frequency-domain electromagnetic device with a constant operating
frequency of 10 kHz and 0.98m coil separation. After completing the usual calibration
procedure, the electromagnetic vertical sounding was obtained by making measurements
in vertical and horizontal coil-mode configurations, lifting the instrument above the
ground at heights from 0 to 1.9m, with a 0.1m step, by means of a especially built
wooden frame; see picture on the right in Figure 3.11. For both coil orientations and

3.3. NUMERICAL EXPERIMENTS 103

0 0.5 1 1.5 2

0

50

100

150

200

250

300

350

Height (m)

A
p

p
a

re
n

t
c
o

n
d

u
c
ti
v
it
y
 (

m
S

/m
)

Figure 3.11: Left: mean apparent conductivities measured in vertical (circles) and horizontal
(triangles) modes at different heights above the ground; error bars are standard
deviations, which are multiplied by 10 for display purpose. Right: the wooden
frame used to put the instrument at different heights above the ground. In the
picture, the GCM is placed at height 0.5m.

each instrument height we recorded twenty readings to get the mean value and the
standard deviation of each measurement. Figure 3.11 (left) displays the resulting
electromagnetic data versus height curves.

The standard deviations on the data (Figure 3.11, left) are rather different from
each other. This suggests that the noise is not equally distributed and rules out the
use of the discrepancy principle to estimate the regularization parameter, as well as
other statistical methods (see, e.g., the generalized cross validation [69]) for which
this assumption is essential. For this reason, in our experiments we only use heuristic
parameter selection techniques.

We apply the damped Gauss–Newton method (3.2.6) to the least squares problem
(3.2.3), where the vector b (see (3.2.2)) contains the field data reported in left graph of
Figure 3.11. We use 20 measurements in vertical and horizontal orientation (m = 20),
discretizing the soil by 40 layers (n = 40) up to the depth of 2.5m. The Jacobian
is exactly computed, as described in Section 3.2.2, and the damping parameter is
determined by the Armijo–Goldstein principle.

Table 3.4: Performance of the methods for the estimation of the regularization parameters
described in Section 3.2.4, when the inversion algorithm is applied to field data
with m = 20, n = 40, and M = I,D1, D2. Each entry of the table reports the
value of ` identified by a particular method and, in parentheses, the depth at
which the maximum of σ` is located and the value of the maximum (in S/m).
The values predicted by ERT are (1.68,1.74).

L-corner ResReg L-res Q-hyb
M = I 5 (1.47,1.11) 4 (1.67,1.04) 2 (2.44,0.98) 7 (1.73,1.26)
M = D1 2 (1.99,1.48) 1 (2.50,0.98) 2 (1.99,1.48) 2 (1.99,1.48)
M = D2 2 (1.60,1.53) 1 (1.60,1.53) 2 (1.60,1.53) 1 (1.60,1.53)

We initially set M = I and regularize the solution by TSVD; Figure 3.12 shows the
solutions σ`, ` = 2, . . . , 7. In each graph, the dashed line represents the conductivity
profile produced by ERT. To assess the performance of the L-corner method, we

104 CHAPTER 3. ELECTROMAGNETIC SOUNDING

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Depth (m) Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

σ2 σ3 σ4

σ5 σ6 σ7

Figure 3.12: Regularized solutions σ`, with regularization parameter ` = 2, . . . , 7, obtained
by applying TSVD (M = I) to each iteration of the Gauss–Newton method.
We used all the available measurements (m = 20) and set n = 40. The dashed
line represents the conductivity predicted by ERT.

compare it to the ResReg, residual L-curve, and hybrid quasi-optimality criterions,
mentioned in Section 3.3.1. The values of the regularization parameters are reported
in the first row of Table 3.4, together with the coordinates (depth and value) of the
maximum of the corresponding regularized solution. These are to be compared with
the values (1.68,1.74) which locate the maximum of the conductivity profile predicted
by ERT; see Figure 3.10, right. The results of Table 3.4 and Figure 3.12 show that the
position of the maximum is well localized, starting from ` = 5, but that the shape of
the solution is never accurately determined.

We now report the results obtained by TGSVD with M = D1 and M = D2 (the
discrete approximations of the first and second derivatives). The first six regularized
solutions are displayed in Figure 3.13a and Figure 3.13b, respectively, together with
the ERT solution. The identified regularization parameters and the coordinates of
the maximal conductivity predicted by ERT appear in the second and third rows of
Table 3.4.

It is clear that resorting to the TGSVD, using either the first or the second derivative
as a regularizing operator, is much more effective than the TSVD approach. In this
particular case, the second derivative produces the best results. Among the parameter
estimation methods, the L-corner algorithm [72] appears to be the most robust, as it
identifies an acceptable solution in all the three cases. Moreover, the position of the
maximum is localized with sufficient accuracy.

3.3. NUMERICAL EXPERIMENTS 105

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Depth (m) Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

σ1 σ2 σ3

σ4 σ5 σ6

(a) Regularized solutions σ`, with regularization parameter ` = 1, . . . , 6, obtained by applying
TGSVD (M = D1) to each iteration of the Gauss–Newton method. We used all the
available measurements (m = 20) and set n = 40. The dashed line represents the
conductivity predicted by ERT.

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Depth (m) Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

σ1 σ2 σ3

σ4 σ5 σ6

σ1 σ2 σ3

σ4 σ5 σ6

(b) Regularized solutions σ`, with regularization parameter ` = 1, . . . , 6, obtained by applying
TGSVD (M = D2) to each iteration of the Gauss–Newton method. We used all the
available measurements (m = 20) and set n = 40. The dashed line represents the
conductivity predicted by ERT.

Figure 3.13: Use of TGSVD

106 CHAPTER 3. ELECTROMAGNETIC SOUNDING

Figure 3.14 reports the first three regularized solutions withM = D2, corresponding
to m = 10 and m = 5, that is, using half of the measurements used in the previous
figures (h = 0m, 0.2m, . . . , 1.8m), and a quarter of them (h = 0m, 0.4m, . . . , 1.6m).
Reducing the number of data values leads to less accurate solutions, but the position
of the conductivity maximum and its value are very well determined. In both cases,
the L-corner method returned ` = 2.

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

Depth (m) Depth (m) Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

σ1 σ2 σ3

σ1 σ2 σ3

m = 10 m = 10 m = 10

m = 5 m = 5 m = 5

Figure 3.14: Regularized solutions σ`, with regularization parameter ` = 1, 2, 3, obtained by
applying TGSVD (M = D2) to each iteration of the Gauss–Newton method,
and setting n = 40. In the top graphs we used half of the available measure-
ments (m = 10); the bottom graphs are obtained by m = 5, that is, employing
a quarter of the data. The dashed line represents the conductivity predicted
by ERT.

Conclusions and future work

We have proposed two applications of the low-rank approximation in the fields of
complex networks theory and inverse problems, respectively.

In the first one, we have presented a new computational method, based on low
rank approximation of the adjacency matrix, to rank the nodes of both undirected and
directed networks. This method has been originally presented in [51] for undirected
networks and extended for the directed ones in [5]. The numerical examples illustrate
the competitiveness of the approach, called hybrid method, when applied to the analysis
of large networks, and show that it produces accurate results in a reasonable time.
Hybrid methods may be the only feasible approach for determining the most important
nodes in terms of centrality indices expressed by bilinear forms. Moreover, we have
proposed to compute such indices using block methods which are more efficient on
computers with a hierarchical memory structure. This analysis in presented in [50, 99].
The availability of several processors also can be utilized efficiently; see, e.g., [52] for
discussions and examples.

In the second application, we have proposed a regularized inversion method to
reconstruct the electrical conductivity of the soil with respect to depth, starting from
electromagnetic data collected by a GCM. Here the low-rank approximation has been
used as a regularization method since the problem is severely ill-conditioned. We have
develop exact formulae for the Jacobian of the function to be inverted and chosen a
relaxation parameter in order to ensure both the convergence of the iterative method
and the positivity of the solution. This has led to a fast and reliable algorithm.
Various methods for the automatic estimation of the regularization parameter have
been considered. Numerical experiments on synthetic data sets have shown that
the algorithm produces reasonable results, even when the noise level is chosen to be
consistent with real applications. The method has finally been applied to real field
data, producing results which are compatible with those obtained by ERT.

Some topics we are working or planning to work on in the future are the following:

• Complex networks theory:

◦ Recently, the study of dynamic/multi-layer networks has gained an increasing
interest since they model interactions between entities which change during
time. The definition of centrality indices in this case is not trivial and
cannot be easily expressed using matrix functions as in the case of static
networks [63, 64]. We are working on a new block matrix formulation that
permits to express already introduced centrality measures in a convenient
way in order to improve the computation.

◦ A neuronal network is a representation of the functional connections in
the brain. The mathematical model is a correlation matrix [23] which is

107

108 CONCLUSIONS AND FUTURE WORK

full and weighted. Recently, the use of graph spectral analysis has been
proposed [33]. We are working on the application of some centrality indices
to understand the behavior of the brain connections. Moreover, we are
looking at the problem from the computational point of view.

◦ Since one of the main issues in network analysis is the smart computation
of centrality indices, we are working on the re-computation of these ones
when a node falls, that is, when a row/coloumn of the adjacency matrix is
deleted. In this case, a low-rank update has to be applied.

• Inverse problems:

◦ We are studying an extension of the inversion of electromagnetic data to
the case when not only the electrical conductivity but also the magnetic
permeability varies with respect to the depth. Moreover, we plan to adapt
our inversion algorithm and our software in order to deal with multiple
depth responses, corresponding to multifrequency and/or multioffset GCM
measurements, produced by the new generation of instruments nowadays
available.

Bibliography

[1] Alex Arena’s Data Sets. http://deim.urv.cat/~aarenas/data/welcome.htm.

[2] W. L. Anderson. “Numerical integration of related Hankel transforms of orders
0 and 1 by adaptive digital filtering”. In: Geophysics 44.7 (1979), pp. 1287–1305.

[3] J. Baglama, D. Calvetti, and L. Reichel. “Algorithm 827: irbleigs: A MATLAB
program for computing a few eigenpairs of a large sparse Hermitian matrix”. In:
ACM Trans Math. Software 29 (2003), pp. 337–348.

[4] J. Baglama, D. Calvetti, and L. Reichel. “IRBL: An implicitly restarted block
Lanczos method for large-scale Hermitian eigenproblems”. In: SIAM J. Sci.
Comput 24 (2003), pp. 1650–1677.

[5] J. Baglama, C. Fenu, L. Reichel, and G. Rodriguez. “Analysis of directed
networks via partial singular value decomposition and Gauss quadrature”. In:
Linear Algebra and its Applications 456 (2014), pp. 93–121.

[6] J. Baglama and L. Reichel. “An implicitly restarted block Lanczos bidiagonal-
ization method using Leja shifts”. In: BIT 53 (2013), pp. 285–310.

[7] J. Baglama and L. Reichel. “Augmented implicitly restarted Lanczos bidiago-
nalization methods”. In: SIAM J. Sci. Comput. 27 (2005), pp. 19–42.

[8] Z. Bai, D. Day, and Q. Ye. “ABLE: An adaptive block Lanczos method for
non-Hermitian eigenvalue problems”. In: SIAM J. Matrix Anal. Appl. 20 (1999),
pp. 1060–1082.

[9] A. L. Barabási and R. Albert. “Emergence of scaling in random networks”. In:
Science 286.5439 (1999), pp. 509–512.

[10] M. Benzi and P. Boito. “Quadrature rule-based bounds for functions of adjacency
matrices”. In: Linear Algebra Appl. 433 (2010), pp. 637–652.

[11] M. Benzi, E. Estrada, and C. Klymko. “Ranking hubs and authorities using
matrix functions”. In: Linear Algebra Appl. 438 (2013), pp. 2447–2474.

[12] M. Benzi and C. Klymko. “Total communicability as a centrality measure”. In:
J. Complex Networks 1 (2013), pp. 124–149.

[13] D. A. Bini, G. M. Del Corso, and F. Romani. “Evaluating scientific products by
means of citation-based models: a first analysis and validation”. In: Electron.
Trans. Numer. Anal. 33 (2008), pp. 1–16.

[14] Biological Networks Data Sets of Newcastle University. http://www.biologic
al-networks.org/.

[15] A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
1996.

109

http://deim.urv.cat/~aarenas/data/welcome.htm
http://www.biological-networks.org/
http://www.biological-networks.org/

110 Bibliography

[16] A. Björck. Numerical Methods for Least Squares Problems. Philadelphia, PA:
SIAM, 1996.

[17] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. “A
measure of similarity between graph vertices: applications to synonym extraction
and web searching”. In: SIAM Rev. 46 (2004), pp. 647–666.

[18] M. Boguña, R. Pastor-Satorras, A. Dáz-Guilera, and A. Arenas. “Models of
social networks based on social distance attachment”. In: Physical Review E 70
(2004), p. 056122.

[19] F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. S. Lakshmanan. “Fast
matrix computations for pairwise and columnwise commute times and Katz
scores”. In: Internet Math 8 (2012), pp. 73–112.

[20] B. Borchers, T. Uram, and J. M. H. Hendrickx. “Tikhonov regularization of
electrical conductivity depth profiles in field soils”. In: Soil Sci. Soc. Am. J. 61.4
(1997). Package LINEM38 available at http://infohost.nmt.edu/borchers/
linem38.html, pp. 1004–1009.

[21] P. Brianzi, F. Di Benedetto, and C. Estatico. “Preconditioned iterative regu-
larization in Banach spaces”. In: Comput. Optim. Appl. 54.2 (2013), pp. 263–
282.

[22] C. G. Broyden. “A class of methods for solving nonlinear simultaneous equations”.
In: Math. Comp. 19 (1965), pp. 577–593.

[23] E. Bullmore and O. Sporns. “Complex brain networks: graph theoretical analysis
of structural and functional systems”. In: Nature Reviews Neuroscience 10.3
(2009), pp. 186–198.

[24] D. Calvetti, G. H. Golub, and L. Reichel. “Estimation of the L-curve via Lanczos
bidiagonalization”. In: BIT 39 (1999), pp. 603–619.

[25] D. Calvetti, L. Reichel, and F. Sgallari. “Application of anti-Gauss quadrature
rules in linear algebra”. In: Applications and Computation of Orthogonal Poly-
nomials. W. Gautschi and G. H. Golub and G. Opfer, eds. Birkhäuser, Basel,
1999, pp. 41–56.

[26] G. Cassiani, N. Ursino, R. Deiana, G. Vignoli, J. Boaga, M. Rossi, M. T. Perri,
M. Blaschek, R. Duttmann, S. Meyer, R. Ludwig, A. Soddu, P. Dietrich, and
U. Werban. “Noninvasive monitoring of soil static characteristics and dynamic
states: a case study highlighting vegetation effects on agricultural land”. In:
Vadose Zone J. 11.3 (2012).

[27] G. Concas, M. Marchesi, A. Murgia, and R. Tonelli. “An empirical study of
social networks metrics in object oriented software”. In: Advances in Software
Engineering (2010), p. 729826.

[28] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu. “On the dis-
tribution of bugs in the Eclipse system”. In: IEEE Transactions on Software
Engineering 37 (2011), pp. 872–877.

[29] S. C. Constable, R. L. Parker, and C. G. Constable. “Occam’s inversion: A
practical algorithm for generating smooth models from electromagnetic sounding
data”. In: Geophysics 52.3 (1987), pp. 289–300.

[30] J. J. Croft, E. Estrada, D. J. Higham, and A. Taylor. “Mapping directed
networks”. In: Electron. Trans. Numer. Anal 37 (2010), pp. 337–350.

http://infohost.nmt.edu/ borchers/linem38.html
http://infohost.nmt.edu/ borchers/linem38.html

Bibliography 111

[31] T. Dahlin and B. Zhou. “A numerical comparison of 2D resistivity imaging with
10 electrode arrays”. In: Geophys. Prospect. 52.5 (2004), pp. 379–398.

[32] W. Daily, A. Ramirez, A. Binley, and D. LeBrecque. “Electrical resistance
tomography”. In: The Leading Edge 23.5 (2004), pp. 438–442.

[33] W. De Haan, W. M. Van Der Flier, H. Wang, P. F. A. Van Mieghem, P. Schel-
tens, and C. J. Stam. “Disruption of functional brain networks in Alzheimer’s
disease: what can we learn from graph spectral analysis of resting-state magne-
toencephalography?” In: Brain connectivity 2.2 (2012), pp. 45–55.

[34] Vin De Silva and Lek-Heng Lim. “Tensor rank and the ill-posedness of the best
low-rank approximation problem”. In: SIAM Journal on Matrix Analysis and
Applications 30.3 (2008), pp. 1084–1127.

[35] G. P. Deidda, E. Bonomi, and C. Manzi. “Inversion of electrical conductivity
data with Tikhonov regularization approach: some considerations”. In: Ann.
Geophys. 46.3 (2003), pp. 549–558.

[36] G. P. Deidda, C. Fenu, and G. Rodriguez. “Regularized solution of a nonlin-
ear problem in electromagnetic sounding”. In: Inverse Problems 30.12 (2014),
p. 125014.

[37] J. J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Vol. 16. Philadelphia, PA: SIAM, 1983.

[38] J. Duch and A. Arenas. “Community identification using extremal optimization”.
In: Phys. Rev. E 72 (2005), p. 027104.

[39] A. J. Duran and P. Lopez-Rodriguez. “Orthogonal matrix polynomials: zeros
and Blumenthal’s theorem”. In: J. Approx. Theory 84 (1996), pp. 96–118.

[40] C. Eckart and G. Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[41] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.
Dordrecht: Kluwer, 1996.

[42] C. Estatico, M. Pastorino, and A. Randazzo. “A novel microwave imaging
approach based on regularization in Banach spaces”. In: IEEE T. Antenn.
Propag. 60.7 (2012), pp. 3373–3381.

[43] E. Estrada. The Structure of Complex Networks. Oxford: Oxford University
Press, 2012.

[44] E. Estrada and N. Hatano. “Communicability in complex networks”. In: Phys.
Rev. E 77 (2008), p. 036111.

[45] E. Estrada, N. Hatano, and M. Benzi. “The physics of communicability in
complex networks”. In: Physics Reports 514 (2012), pp. 89–119.

[46] E. Estrada and D. J. Higham. “Network properties revealed through matrix
functions”. In: SIAM Rev. 52 (2010), pp. 696–714.

[47] E. Estrada, D. J. Higham, and N. Hatano. “Communicability betweenness in
complex networks”. In: Physica A 388 (2009), pp. 764–774.

[48] E. Estrada and J. A. Rodríguez-Velázquez. “Subgraph centrality and clustering
in complex hyper-networks”. In: Physica A 364 (2006), pp. 581–594.

[49] E. Estrada and J. A. Rodríguez-Velázquez. “Subgraph centrality in complex
networks”. In: Phys. Rev. E 71 (2005), p. 056103.

112 Bibliography

[50] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez. “Block Gauss and anti-Gauss
quadrature with application to networks”. In: SIAM Journal on Matrix Analysis
and Applications 34.4 (2013), pp. 1655–1684.

[51] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez. “Network analysis via partial
spectral factorization and Gauss quadrature”. In: SIAM J. Sci. Comput. 35
(2013), A2046–A2068.

[52] K. Gallivan, M. Heath, E. Ng, B. Peyton, R. Plemmons, J. Ortega, C. Romine, A.
Sameh, and R. Voigt. Parallel Algorithms for Matrix Computations. Philadelphia:
SIAM, 1990.

[53] W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford:
Oxford University Press, 2004.

[54] R. Gebbers, E. Lück, and K. Heil. “Depth sounding with the EM38-detection of
soil layering by inversion of apparent electrical conductivity measurements”. In:
Precision Agriculture ’07. Ed. by J. V. Stafford. The Netherlands: Wageningen
Academic Publisher, 2007, pp. 95–102.

[55] Gephi Sample Data Sets. http://wiki.gephi.org/index.php/Datasets.
[56] G. H. Golub. “Bounds for matrix moments”. In: Rocky Moutain J. Math 4

(1974), pp. 207–211.
[57] G. H. Golub, M. Heath, and G. Wahba. “Generalized cross-validation as a

method for choosing a good ridge parameter”. In: Technometrics 21.2 (1979),
pp. 215–223.

[58] G. H. Golub and G. Meurant. “Matrices, moments and quadrature”. In: Numer-
ical Analysis 1993 303 (1994), pp. 105–156.

[59] G. H. Golub and G. Meurant. Matrices, Moments and Quadrature with Appli-
cations. Princeton: Princeton University Press, 2010.

[60] G. H. Golub and C. F. Van Loan. Matrix Computations. third. Baltimore: The
John Hopkins University Press, 1996.

[61] L. Grasedyck, D. Kressner, and C. Tobler. “A literature survey of low-rank tensor
approximation techniques”. In: GAMM-Mitteilungen 36.1 (2013), pp. 53–78.

[62] J. P. Greenhouse and D. D. Slaine. “The use of reconnaissance electromagnetic
methods to map contaminant migration”. In: Ground Water Monit. Remediat.
3.2 (1983), pp. 47–59.

[63] P. Grindrod and D. J. Higham. “A matrix iteration for dynamic network
summaries”. In: SIAM Review 55.1 (2013), pp. 118–128.

[64] P. Grindrod, M. C. Parsons, D. J. Higham, and E. Estrada. “Communicability
across evolving networks”. In: Physical Review E 83.4 (2011), p. 046120.

[65] R. Guimerà, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. “Self-similar
community structure in a network of human interactions”. In: Phys. Rev. E 68
(2003), 065103(R).

[66] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential
equations. New Haven: Yale University Press, 1923.

[67] M. Hanke. Conjugate gradient type methods for ill-posed problems. Vol. 327.
Longman, Harlow, UK: Pitman Research Notes in Mathematics, 1995.

[68] M. Hanke. “Limitations of the L-curve method in ill-posed problems”. In: BIT
36 (1996), pp. 287–301.

http://wiki.gephi.org/index.php/Datasets

Bibliography 113

[69] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems, Numerical
Aspects of Linear Inversion. Philadelphia, PA: SIAM, 1998.

[70] P. C. Hansen. “Regularization Tools: Version 4.0 for Matlab 7.3”. In: Numer.
Algorithms 46 (2007), pp. 189–194.

[71] P. C. Hansen. “The truncated SVD as a method for regularization”. In: BIT 27
(1987), pp. 543–553.

[72] P. C. Hansen, T. K. Jensen, and G. Rodriguez. “An adaptive pruning algorithm
for the discrete L-curve criterion”. In: J. Comput. Appl. Math. 198.2 (2007),
pp. 483–492.

[73] P. C. Hansen and D. P. O’Leary. “The use of the L-curve in the regularization of
discrete ill-posed problems”. In: SIAM J. Sci. Comput. 14 (1993), pp. 1487–1503.

[74] J.M.H. Hendrickx, B. Borchers, D.L. Corwin, S.M. Lesch, A.C. Hilgendorf, and
J. Schlue. “Inversion of soil conductivity profiles from electromagnetic induction
measurements”. In: Soil Sci. Soc. Am. J. 66.3 (2002). Package NONLINEM38
available at http : / / infohost . nmt . edu / ~borchers / nonlinem38 . html,
pp. 673–685.

[75] V. E. Henson and G. Sanders. “Locally supported eigenvectors and matrices
associated with connected and unweighted power-law graphs, Electron”. In:
Electron. Trans. Numer. Anal 39 (2012), pp. 353–378.

[76] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for Solving
Linear Systems1”. In: Journal of Research of the National Bureau of Standards
49.6 (1952).

[77] N. J. Higham. Functions of Matrices: Theory and Computation. Philadelphia:
SIAM, 2008.

[78] M. E. Hochstenbach, L. Reichel, and G. Rodriguez. “Regularization parameter
determination for discrete ill-posed problems”. In: J. Comput. Appl. Math. 273
(2015), pp. 132–149.

[79] H. Huang, B. SanFilipo, A. Oren, and I. J. Won. “Coaxial coil towed EMI
sensor array for UXO detection and characterization”. In: J. Appl. Geophys.
61.3 (2007), pp. 217–226.

[80] H. Huang and I. J. Won. “Automated anomaly picking from broadband electro-
magnetic data in an unexploded ordnance (UXO) survey”. In: Geophysics 68.6
(2003), pp. 1870–1876.

[81] H. Jeong, S. Mason, A.-l. Barabási, and Z. N. Oltvai. “Lethality and centrality
of protein networks”. In: Nature 411 (2001), pp. 41–42.

[82] J. Kleinberg. “Authorative sources in hyperlinked environments”. In: J. ACM
49 (1999), pp. 604–632.

[83] T. G. Kolda and B. W. Bader. “Tensor decompositions and applications”. In:
SIAM Review 51.3 (2009), pp. 455–500.

[84] G. López Lagomasino, L. Reichel, and L. Wunderlich. “Matrices, moments, and
rational quadrature”. In: Linear Algebra Appl. 429 (2008), pp. 2540–2554.

[85] S. Lang. Linear algebra. Springer, 1992.

[86] E. Lascano, P. Martinelli, and A. Osella. “EMI data from an archaeological
resistive target revisited”. In: Near Surf. Geophys. 4.6 (2006), pp. 395–400.

http://infohost.nmt.edu/~borchers/nonlinem38.html

114 Bibliography

[87] D. P. Laurie. “Anti-Gaussian quadrature formulas”. In: Math. Comp. 65 (1996),
pp. 739–747.

[88] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack Users’ Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
Vol. 6. SIAM Philadelphia, 1998.

[89] S. M. Lesch, D. J. Strauss, and J. D. Rhoades. “Spatial prediction of soil salinity
using electromagnetic induction techniques: 1. Statistical prediction models: A
comparison of multiple linear regression and cokriging”. In: Water Resour. Res.
31.2 (1995), pp. 373–386.

[90] J. Leskovec, D. Huttenlocher, and J. Kleinberg. “Predicting positive and nega-
tive links in online social networks”. In: Proceedings of the 19th international
conference on World Wide Web (WWW ’10). 2010, pp. 641–650.

[91] J. Leskovec, D. Huttenlocher, and J. Kleinberg. “Signed networks in social media”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). 2010, pp. 1361–1370.

[92] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. “Community structure
in large networks: natural cluster sizes and the absence of large well-defined
clusters”. In: Internet Math 6 (2009), pp. 29–123.

[93] Lev Muchnik’s Data Sets web page. http://www.levmuchnik.net/Content/
Networks/NetworkData.html.

[94] M. H. Loke, I. Acworth, and T. Dahlin. “A comparison of smooth and blocky
inversion methods in 2D electrical imaging surveys”. In: Explor. Geophys. 34.3
(2003), pp. 182–187.

[95] M. H. Loke and R. D. Barker. “Practical techniques for 3D resistivity surveys
and data inversion”. In: Geophys. Prospect. 44.3 (1996), pp. 499–523.

[96] M. H. Loke and R. D. Barker. “Rapid least-squares inversion of apparent
resistivity pseudosections by a quasi-Newton method”. In: Geophys. Prospect.
44.1 (1996), pp. 131–152.

[97] J. Marcelino and M. Kaiser. “Critical paths in a metapopulation model of H1N1:
Efficiently delaying influenza spreading through flight cancellation”. In: PLoS
Curr. 23 (Apr. 2012), e4f8c9a2e1fca8.

[98] Mark Newman’s web page. http://www-personal.umich.edu/~mejn/netdat
a/.

[99] D. R. Martin. “Quadrature approximation of matrix functions, with applications”.
PhD Thesis. Kent State University, 2012.

[100] P. Martinelli and M. C. Duplaá. “Laterally filtered 1D inversions of small-loop,
frequency-domain EMI data from a chemical waste site”. In: Geophysics 73.4
(2008), F143–F149.

[101] J. D. McNeill. Electromagnetic terrain conductivity measurement at low induc-
tion numbers. Tech. rep. TN-6. Mississauga, Ontario, Canada: Geonics Limited,
1980.

[102] V. A. Morozov. Methods for Solving Incorrectly Posed Problems. New York:
Springer Verlag, 1984.

[103] M. E. J. Newman. Networks: An Introduction. Oxford: Oxford University Press,
2010.

http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/

Bibliography 115

[104] M. E. J. Newman. “The structure of scientific collaboration networks”. In: Proc.
Natl. Acad. Sci. USA 98 (2001), pp. 404–409.

[105] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. New York: Academic Press, 1970.

[106] A. Osella, M. de la Vega, and E. Lascano. “3D electrical imaging of an archaeo-
logical site using electrical and electromagnetic methods”. In: Geophysics 70.4
(2005), G101–G107.

[107] C. C. Paige and M. A. Saunders. “Towards a generalized singular value decom-
position”. In: SIAM J. Numer. Anal. 18.3 (1981), pp. 398–405.

[108] J. G. Paine. “Determining salinization extent, identifying salinity sources, and
estimating chloride mass using surface, borehole, and airborne electromagnetic
induction methods”. In: Water Resour. Res. 39.3 (2003).

[109] Pajek Data Sets. http://vlado.fmf.uni-lj.si/pub/networks/data/.

[110] L. Pellerin. “Applications of electrical and electromagnetic methods for envi-
ronmental and geotechnical investigations”. In: Surv. Geophys. 23.2-3 (2002),
pp. 101–132.

[111] M. Penrose. Geometric Random Graphs. Oxford: Oxford University Press, 2003.

[112] H. Ramsin and P. Å. Wedin. “A comparison of some algorithms for the nonlinear
least squares problem”. In: BIT Numerical Mathematics 17.1 (1977), pp. 72–90.

[113] T. Regińska. “A regularization parameter in discrete ill-posed problems”. In:
SIAM J. Sci. Comput. 17 (1996), pp. 740–749.

[114] L. Reichel and G. Rodriguez. “Old and new parameter choice rules for discrete
ill-posed problems”. In: Numer. Algorithms 63.1 (2013), pp. 65–87.

[115] L. Reichel and H. Sadok. “A new L-curve for ill-posed problems”. In: J. Comput.
Appl. Math. 219 (2008), pp. 493–508.

[116] G. Rodriguez and D. Theis. “An algorithm for estimating the optimal regu-
larization parameter by the L-curve”. In: Rend. Mat. Appl. 25 (2005), pp. 69–
84.

[117] W. Rudin. Principles of mathematical analysis. McGraw-Hill New York, 1964.

[118] L. Sambuelli, S. Leggieri, C. Calzoni, and C. Porporato. “Study of riverine de-
posits using electromagnetic methods at a low induction number”. In: Geophysics
72.5 (2007), B113–B120.

[119] G. Schultz and C. Ruppel. “Inversion of inductive electromagnetic data in highly
conductive terrains”. In: Geophysics 70.1 (2005), G16–G28.

[120] A. Sinap andW. Van Assche. “Polynomial interpolation and Gaussian quadrature
for matrix-valued functions”. In: Linear Algebra Appl. 207 (1994), pp. 71–114.

[121] Snap Network Data Sets. http://snap.stanford.edu/data/index.html.

[122] B. R. Spies and F. C. Frischknecht. “Electromagnetic sounding”. In: Electro-
magnetic Methods in Applied Geophysics. Volume 2: Application. Ed. by M. N.
Nabighian. Vol. 3. Investigation in Geophysics. Tulsa, OK: Society of Exploration
Geophysicists, 1991. Chap. 5, pp. 285–426.

[123] S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen. “Topological structure analysis
of the protein-protein interaction network in budding yeast”. In: Nucleic Acids
Research 31 (2003), pp. 2443–2450.

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://snap.stanford.edu/data/index.html

116 Bibliography

[124] A. Taylor and D. J. Higham. “CONTEST: A controllable test matrix toolbox
for MATLAB”. In: ACM Trans. Math. Software 35 (2009), pp. 1–26.

[125] The Max Plank Institute for Software Systems web site. http://socialnetwor
ks.mpi-sws.org/data-wosn2009.html.

[126] The University of Florida Sparse Matrix Collection. http://www.cise.ufl.
edu/research/sparse/matrices/.

[127] J. Thiesson, M. Dabas, and S. Flageul. “Detection of resistive features using
towed Slingram electromagnetic induction instruments”. In: Archaeol. Prospect.
16.2 (2009), pp. 103–109.

[128] L. N. Trefethen and D. Bau III. Numerical linear algebra. Vol. 50. Siam, 1997.

[129] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. “On the evolution
of user interaction in Facebook”. In: Proceedings of the 2nd ACM SIGCOMM
Workshop on Social Networks (WOSN’09). Ed. by Spain Barcelona. 2009, pp. 37–
42.

[130] C. R. Vogel. “Non-convergence of the L-curve regularization parameter selection
method”. In: Inverse Problems 12.4 (1996), p. 535.

[131] G. Wahba. “Practical approximate solutions to linear operator equations when
the data are noisy”. In: SIAM Journal on Numerical Analysis 14.4 (1977),
pp. 651–667.

[132] J. R. Wait. Geo-Electromagnetism. New York: Academic Press, 1982.

[133] S. H. Ward and G. W. Hohmann. “Electromagnetic theory for geophysical
applications”. In: Electromagnetic Methods in Applied Geophysics. Volume 1:
Theory. Ed. by M. N. Nabighian. Vol. 3. Investigation in Geophysics. Tulsa, OK:
Society of Exploration Geophysicists, 1987. Chap. 4, pp. 131–311.

[134] D. J. Watts and S. H. Strogatz. “Collective dynamics of ‘small-world’ networks”.
In: Nature 393 (1998), pp. 440–442.

[135] R. Yao and J. Yang. “Quantitative evaluation of soil salinity and its spatial
distribution using electromagnetic induction method”. In: Agric. Water Manage.
97.12 (2010), pp. 1961–1970.

[136] T. Zhang and G. H. Golub. “Rank-one approximation to high order tensors”. In:
SIAM Journal on Matrix Analysis and Applications 23.2 (2001), pp. 534–550.

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Dedica
	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Introduction
	Introduction
	1. Preliminaries
	1.1 Eigendecomposition, Singular Value Decomposition and Jordan Canonical Form
	1.2 Low-rank approximation
	1.3 Orthogonal polynomials
	1.4 Krylov subspaces and Decomposition algorithms
	1.4.1 The Symmetric Lanczos algorithm
	1.4.2 The Arnoldi algorithm
	1.4.3 The Nonsymmetric Lanczos algorithm
	1.4.4 The Golub–Kahan Bidiagonalization algorithm
	1.4.5 The Symmetric Block Lanczos Algorithm
	1.4.6 The Nonsymmetric Block Lanczos Algorithm

	1.5 Bilinear Forms and Quadrature Rules
	1.5.1 The Gauss rule
	1.5.2 The Gauss–Radau rule
	1.5.3 The Anti–Gauss rule
	1.5.4 The Symmetric Block Gauss quadrature rule
	1.5.5 The Nonsymmetric Block Gauss quadrature rule
	1.5.6 The Symmetric Block Anti-Gauss quadrature rule
	1.5.7 The Nonsymmetric Block Anti-Gauss quadrature rule
	1.5.8 Bilinear forms
	1.5.9 Block methods

	1.6 Inverse Problems
	1.6.1 Linear least squares problems
	1.6.2 Nonlinear least squares problems
	1.6.3 Regularization Methods
	1.6.4 Choice of the regularization parameter

	2. Complex networks
	2.1 Graphs and Complex networks
	2.2 Centrality indices and rank of the nodes
	2.3 Undirected networks
	2.3.1 Use of low-rank approximation
	2.3.2 Numerical experiments

	2.4 Directed networks
	2.4.1 Use of low-rank approximation
	2.4.2 Numerical experiments

	3. Electromagnetic Sounding
	3.1 The nonlinear forward model
	3.2 Solution of the inverse problem
	3.2.1 Inversion algorithm
	3.2.2 Computation of the Jacobian
	3.2.3 Low-rank approximation as regularization method
	3.2.4 Choice of the regularization parameter

	3.3 Numerical experiments
	3.3.1 Synthetic data
	3.3.2 Field data

	Conclusions and future work
	Conclusions and future work
	Bibliography

