
UNIVERSITÀ DEGLI STUDI DI CAGLIARI
FACOLTÀ DI INGEGNERIA E ARCHITETTURA

Corso di Laurea in Ingegneria Elettrica ed Elettronica

Parallel computing: a comparative
analysis using Matlab

Relatore:
Prof. Giuseppe Rodriguez

Candidato:
Edoardo Daniele Cannas

Anno Accademico 2015/2016



Contents

Introduction ii

1 Parallel computing: a general overview 1
1.1 Definition and classification . . . . . . . . . . . . . . . . . . . 1
1.2 Flynn’s taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Parallel memory structures . . . . . . . . . . . . . . . . . . . . 4
1.4 Grain size and parallelism level in programs . . . . . . . . . . 6
1.5 Parallel programming models . . . . . . . . . . . . . . . . . . 8

1.5.1 Shared memory models . . . . . . . . . . . . . . . . . . 9
1.5.2 Distributed memory models . . . . . . . . . . . . . . . 9
1.5.3 Hybryd and high level models . . . . . . . . . . . . . . 10

1.6 Modern computers: accustomed users of parallel computing . 11

2 Parallel MATLAB 14
2.1 Parallel MATLAB . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 PCT and MDCS: MATLAB way to distributed computing and

multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Infrastructure: MathWorks Job Manager and MPI . . . . . . . 17
2.4 Some parallel language constructs: pmode, SPMD and parfor . 21

2.4.1 Parallel Command Window: pmode . . . . . . . . . . . 21
2.4.2 SPMD: Single Program Multiple Data . . . . . . . . . 21
2.4.3 Parallel For Loop . . . . . . . . . . . . . . . . . . . . . 25

2.5 Serial or parallel? Implicit parallelism in MATLAB . . . . . . 27

3 Parallelizing the Jacobi method 29
3.1 Iterative methods of first order . . . . . . . . . . . . . . . . . . 29
3.2 Additive splitting: the Jacobi method . . . . . . . . . . . . . . 31
3.3 Developing the algorhytm: jacobi ser and jacobi par . . . . . . 33
3.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



CONTENTS 2

4 Computing the trace of f(A) 41
4.1 Global Lanczos decomposition . . . . . . . . . . . . . . . . . . 41
4.2 Gauss quadrature rules and Global Lanczos . . . . . . . . . . 44
4.3 Developing the algorithm: par trexpgauss . . . . . . . . . . . . 45
4.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion 56

Bibliography 58



Acknowledgmentes and thanks

I would like to thank and acknowledge the following people.

Professor Rodriguez, for the help and opportunity to study such an inter-
esting, yet manifold, topic.

Anna Concas, whose support in the understanding of chapter’s 4 mat-
ter was irreplaceable.

All my family and friends, otherwise ”they’ll get upset” [21].

All the colleagues met during my university career, for sharing even a lit-
tle time in such an amazing journey.

Everyone who is not a skilled english speaker, for not pointing out all the
grammar mistakes inside this thesis.



Introduction

With the term parallel computing, we usually refer to the symoltaneous use of
multiple compute resources to solve a computational problem. Generally, it
involves several aspects of computer science, starting from the hardware de-
sign of the machine executing the processing, to the several levels where the
actual parallelization of the software code takes place (bit-level, instruction-
level, data or task level, thread level, etc...).
While this particular tecnique has been exploited for many years especially
in the high-performance computing field, recently parallel computing has be-
come the dominant paradigm in computer architecture, mainly in the form
of multi-core processors, due to the physical constraints related to frequency
ramping in the development of more powerful single-core processors [14].
Therefore, as parallel computers became cheaper and more accessible, their
computing power has been used in a wide range of scientific fields, from
graphical models and finite-state machine simulation, to dense and sparse
linear algebra.
The aim of this thesis, is to analyze and show, when possible, the implications
in the parallelization of linear algebra algorithms, in terms of performance
increase and decrease, using the Parallel Computing Toolbox of MAT-
LAB.
Our work focused mainly on two algorithms:

• the classical Jacobi iterative method for solving linear systems;

• the Global Lanczos decomposition method for computing the Estrada
index of complex networks.

whose form has been modified to be used with MATLAB’s parallel language
constructs and methods. We compared our parallel version of these algo-
rithms to their serial counterparts, testing their performance and highlight-
ing the factors behind their behaviour, in chapter 3 and 4.
In chapter 1 we present a little overview about parallel computing and its
related aspects, while in chapter 2 we focused our attention on the imple-
mentation details of MATLAB’s Parallel Computing Toolbox.

ii



Chapter 1

Parallel computing: a general
overview

1.1 Definition and classification

Parallel computing is a particular type of computation where several calcula-
tions are carried out simultaneously. Generally, a computational problem is
broken into discrete parts, which are solvable indipendently, and each part is
further broken down to a series of instructions. The instrunctions from each
part are executed on different processors at the same time, with an overall
mechanism of control and coordination that oversees the whole process (for
an example see figure 1.1).
Needless to say, the problem must be breakable into discrete pieces of work,
and we have some requirements on the machine executing our parallel pro-
gram too.
In fact, our computer should execute multiple program instructions at any
moment in time: thus, in other words, we need a parallel computer.
Usually, a parallel computer might be a single computer with multiple proces-
sors or cores, or an arbitrary number of these multicore computers connected
by a network. In the next sections we will try to provide a general classifi-
cation of these machines, basing our work of scheduling on1 :

• types of instruction and data streams;

• hardware structure of the machine;

We will try then to make a general overview of the most common parallel
programming models actually in use, trying to illustrate how, indeed, our

1Our classification is mainly based on [3]: for a comprehensive discussion, see [25],
chapter 8.

1



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 2

computers exploit parallel computing in various ways and in several levels of
abstraction. In fact, parallelism is not only related to our hardware structure,
but can be implemented in our software too, starting from how instructions
are given to and executed by the processor, to the possibility of generate mul-
tiple streams of instruction and thus, multiple programs to be performed.
We will try to give a general insight to each one of these aspects, consider-
ing that modern computers exploit parallelism in several manners that may
include one of more of the means previuosly cited.

Figure 1.1: Example of a parallelization in a payroll problem for several
employees of the same company

1.2 Flynn’s taxonomy

Michael J. Flynn is a Stanford University computer science professor who
developed in 1972 a method to classify computers based on the concept of
instruction and data streams. An instruction cycle is a sequence of steps
needed to perform a command in a program. It usually consists of an opcode
and a operand, the last one specifying the data on which the operation has
to be done. Thus, we refer to instruction and data streams, to the flow
of instructions established from the main memory to the CPU, and to the



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 3

bi-directional flow of operand between processor and memory (see figure 1.2).

Figure 1.2: Instruction and data streams

Flynn’s classification divides computers based on the way their CPU’s in-
struction and data streams are organized during the execution of a program.
Being I and D the minimum number of instruction and data flows at any
time during the computation, computers can then be categorized as follows:

• SISD (Single Instruction Single Data): sequential execution of in-
structions is performed by a single CPU containing a control unit and
a processing element (i.e., an ALU). SISD machines are regular com-
puters that process single streams of instruction and data at execution
cycle, so I=D=1;

• SIMD (Single Instruction Multiple Data): a single control unit
coordinates the work of multiple processing elements, with just one
instruction stream that is broadcasted to all the PE. Therefore, all the
PE are said to be lock stepped together, in the sense that the execution
of instructions is synchronous. The main memory may or may not be
divided into modules to create multiple streams of data, one for each
PE, so that they work indipendently from each other. Thus, having n
PE, I=1 and D=n;

• MISD (Multiple Instruction Single Data): n control units handle
n separate instruction streams, everyone of them having a separate pro-
cessing element to execute their own stream. However, each processing
elements can compute a single data stream at a time, with all the PE
interacting with a common shared memory together. Thus, I=n, D=1.

• MIMD (Multiple Instruction Multiple Data): control units and
processing elements are organized like MISD computers. There is only



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 4

one important difference, or rather that every couple of CU-PE oper-
ates on a personal data stream. Processors work on their own data
with their own instructions, so different tasks carried out by different
processors can start and finish at any time. Thus, the execution of
instructions is asynchronous.

The MIMD category actually holds the formal definition of parallel comput-
ers: anyway, modern computers, depending on the instruction set of their
processors, can act differently from program to program. In fact, programs
which do the same operation repeatedly over a large data set, like a signal
processing application, can make our computers act like SIMDs, while the
regular use of a computer for Internet browsing while listening to music, can
be regarded as a MIMD behaviour.
So, Flynn’s taxonomy is rather large and general, but it fits very well for clas-
sifying both computers and programs for it’s understability and is a widely
used scheme.
In the next sections we will try to provide a more detailed classification based
on hardware implementations and programming paradigms.

Figure 1.3: A MIMD architecture

1.3 Parallel memory structures

When talking about hardware structures for parallel computers, a very use-
ful standard of classification is the way through which the memory of the



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 5

machine is organized and accessed by the processors. In fact, we can divide
computers between two main common categories, the shared memory or
tightly coupled systems, and the distributed memory or loosely cou-
pled computers.
The first one holds all those systems whose processors communicate to each
other through a shared global memory, which may have different modules,
using several interconnection networks (see figure 1.4).

Figure 1.4: Shared memory systems organization

Depending on the way the processors access data in the memory, tightly
coupled systems can be further divided in:

• Uniform Model Access Systems (UMA): main memory is globally
shared among all the processors, with every processors having equal
access and access time to the memory;

• Non Uniform Model Access Systems (NUMA): the global mem-
ory is distributed to all the processors as a collection of local memories



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 6

singularly attached to them. The access to a local memory is uniform
for its corresponding processor, but access for data whose reference is
to the local memory of other remote processors is no more uniform.

• Cache Only Memory Access Systems (COMA): they are similar
to the NUMA systems, being different just for having the global mem-
ory space formed as a collection of cache memories, instead of local
memories, attached singularly to the processors. Thus, the access to
the global memory is not uniform even for this kind of computers.

All these systems may present some mechanism of cache coherence, mean-
ing that if one process update a location in the shared memory, all the other
processors are aware of the update.

The need to avoid problems of memory conflict, related to the concept of
cache coherence, which can slow down the execution of instructions by the
computers, is the main motivation to the base of the birth of loosely coupled
systems. In these computers, each processor owns a large memory and a
set of I/O devices, so that each processor can be viewed as a real computer:
for this reason, loosely coupled systems are also referred to multi-computer
systems, or distributed multi-computer systems.
All the computers are connected together via message passing interconnection
networks, through which all the single processes executed by the computers
can communicate by passing messages to one another. Local memories are
accessible only by the single attached processor only, no processor can access
remote memory, therefore, these systems are sometimes called no remote
memory access systems (NORMA).

1.4 Grain size and parallelism level in pro-

grams

The term grain size indicates a measure of how much computation is in-
volved in a process, defining computation as the number of instruction in a
program segment.
Using this concept, we can categorize programs in three main sections:

• fine grain programs: programs which contain roughly 20 instructions
or less;

• medium grain programs: programs which contain roughly 500 in-
structions or less;



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 7

• coarse grain programs: programs which contain roughly one thou-
sand instructions or more;

The granularity of a program led to several implications in the possibility
of parallelazing it. In fact, the finer the granularity of the program is, the
higher degree of parallelism is achiavable.
This not always means that parallelizing a program is always a good choice
in terms of performance: parallelization involves demands of some sort of
communication and scheduling protocols, which led to inevitable overhead
and delays in the execution of the program itself.
Anyway, we can classify parallelism in a program at various levels, forming
a hierarchy according to which the lower the level, the finer the granularity,
and the higher the degree of parallelism obtainable is.

Figure 1.5: Parallelism levels in programs

Instruction level is the highest degree of parallelism achiavable in a pro-
gram, and takes place at the instruction or statement level. There are two
approaches to instruction level parallelism [20]:

• hardware approach: the parallelism is obtained dynamically, mean-
ing that the processor decides at runtime which instruction has to be
executed in parallel;



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 8

• software approach: the parallelism is obtained statically, meaning
that the compiler decides which instruction has to be executed in par-
allel.

Loop level is another high degree of parallelism level, implemented paral-
lelizing iterative loop instructions (fine grain size programs). It is usually
achieved through compilers, even though sometimes it requires some effort
by the programmer to actually make the loop parallelizable, meaning that it
should not have any data depedency to be performed in parallel.
Procedure or subprogram level consists of procedures, subroutines or
subprograms of medium grain size which are usually parallelized by the pro-
grammer and not through the compiler. A typical example of this kind
of parallelism is the multiprogramming. More details about the software
paradigms for parallel programming will be given in the next section.
Finally, program level consists of independent program executed in parallel
(multitasking). This kind of parallelism involves coarse grain programs with
several thousand of instruction per each, and is usually exploited through
the operative system.

1.5 Parallel programming models

A programming model is an abstraction of the underlying system architec-
ture that allows the programmer to express algorithms and data structures.
While programming languages and application programming intergaces (APIs)
exist as an implementation that put in practice both algorithms and data
structures, programming models exist independently from the choice of both
the programming language and the API. They are like a bridge between the
actual machine organization and the software that is going to be executed
by it and, as an abstraction, they are not specific to any particular type of
machine or memory architecture: in fact, any of these models can be (theo-
retically) be implemented on any underlying hardware [8] [4].
The need to manage explicitly the execution of thousands of processors and
coordinate millions of interprocessors interactions, makes the concept of pro-
gram model extremely useful in the field of parallel programming. Thus, it
may not surprise that over the years parallel programming models spread
out and became the main paradigm concerning parallel programming and
computing.
There are several models commonly used nowadays, that can be divided in
shared memory models and distributed memory models.



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 9

1.5.1 Shared memory models

The two main shared memory models are the ones using threads or not.
The one which does not use threads, is probably the simpliest parallel pro-
gramming model existent. In this model, tasks (a logically discrete section
of computational work, like a program or program-like set of instructions
executed by a processor [4]), share a common address space, which to they
read and write asyncrohnously, using mechanisms such as semaphores and
locks to prevent deadlocks and race conditions.
The main advantage, which is also the biggest drawback of this model, is
that all the tasks have equal access to the shared memory, without needing
any kind of communication of data between them. On the other hand, it
becomes difficult to understand and manage the data locality, or rather
the preservation of data to the process that owns it from the access from
other tasks, cache refreshes and bus traffic that are typical in this type of
programming.
This concept may be difficult to manage for average users.
The thread model instead is another subtype of shared memory parallel
programming. In this model, single heavy processes may have several light
processes that may be executed concurrently. The programmer is in charge
of determing the level of parallelism (though sometimes compilers can give
some help too), and usually implementations allow him to do it through the
use of a library of subroutines, callable from inside the parallel code, and a
set of compilers directives embedded in either the serial or parallel source
code.
Historically, every hardware vendor implemented its own proprietary version
of threads programming, but recent standardization effort have resulted in
two different implementations of these models, POSIX threads and Open
MP.

1.5.2 Distributed memory models

All distributed memory models present these three basic features.

• computation is made of separate tasks with their own local memory,
residing on the same physical machine or across an arbitrary number
of machines;

• data is exchanged between tasks during the computation;

• data transfer require some sort of data exchange protocol.



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 10

(a) (b)

Figure 1.6: Shared memory model with and without threads

For these last two reasons, distributed memory models are usually referred
as message passing models. They require the programmer to specify and
realize the parallelism using a set of libraries and/or subroutines. Nowadays,
there is a standard interface for message passing implementations, called
MPI (Message Passing Interface), that is the ”de-facto” industry stan-
dard for distributed programming models.

1.5.3 Hybryd and high level models

Hybryd and high level models are programming models that can be built
combining any one of the previously mentioned parallel programming mod-
els.
A very commonly used hybrid model in hardware environment of clustered
multi-core/processor machines, for example, is the combination of the mes-
sage passing model (MPI) with a thread model (like OpenMP), so that
threads perform computational kernels on local data, and communication
between the different nodes occurs using the MPI protocol.
Another notewhorty high level model is the Single Program Multiple
Data (SPMD), where all the task execute the same program (that may be
threads, message passing or hybrid programs) on different data. Usually, the
program is logically designed in such a way that the single task executes only
a portion of the whole program, thus creating a logical multitasking compu-



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 11

tation. The SPMD is probably the most common programming model used
in multi-node cluster environments.

1.6 Modern computers: accustomed users of

parallel computing

Having given in the previous sections some instruments to broadly classify
the various means and forms through which and where a parallel computation
can take place, we will now discuss about the classes of parallel computers.
According to the hardware level at which the parallelism is supported, com-
puters can be approximately classified in:

• distributed computers: distributed memory machines in which the
preocessing elements (or computational entities) are connected by a
network;

• cluster computers: groups of multiple standalone machines con-
nected by a network (e.g. the Beowulf cluster [24]);

• multi-core computers.

Muti-core computers are systems with multi-core processors, an inte-
grated circuit to which two or more processors have been attached for en-
hanced performance, reading multiple instruction at the same time and in-
creasing overall speed for executing programs, being suitable even for par-
allel computations.
Nowadays, multi-core processors are exploited in almost every average com-
puter or electronic device, leading ourselves to deal with parallel computing
even without awareness.
In figure 1.7, we can see how parallelism is exploited in various levels: a
single system in a cluster (a standalone machine like commercial off-the-shelf
computers) might have several processors, each one executing high perfor-
mance applications that implement one of the parallel programming models
discussed previously.
Every one of these processors might be a multi-core processor, each one of
them executing a multithreaded program (see section 1.5.1), with every core
performing a thread parallelizing its executing code through parallized in-
structions set. Effective implementation can thus exploit parallel processing
capabilities at all levels of execution by maximizing the speedup [15]. More-
over, even general purpouse machines can make use of parallelism to increase
their performance, so that a more insightful comprehension of this topic is



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 12

Figure 1.7: Hierarchy in parallel programming



CHAPTER 1. PARALLEL COMPUTING: A GENERAL OVERVIEW 13

now necessary, expecially for what is related to linear algebra and scien-
tific computing.



Chapter 2

Matlab’s approach to parallel
computing: the PCT

The following chapter aims to describe briefly the features and mechanism
through which MATLAB, a technical computing language and development
environment, exploits the several techniques of parallel computing discussed
in the previous chapter. Starting from the possibility of having a parallel
computer for high performance computation, like a distributed computer or
a cluster, using different parallel programming models (i.e. SPMD and or
MPI), to the implementation of different parallelism level in the software it-
self, there are various fashions of obtaining incremented performance through
parallel computations.
The information here reported are mainly quoted from [2] and [23].

2.1 Parallel MATLAB

While even in the late 1980s Cleve Moler, the original MATLAB author and
cofounder of MathWorks, worked on a version of MATLAB specifically de-
signed for parallel computers (Intel HyperCube and Arden Titan in particular
1), the release of the MATLAB Parallel Computing Toolbox (PCT) soft-
ware and MATLAB Distributed Computing Server (DCS) took place
only in 2004.
The main reason is that until 2000s, several factors including the business
situation, made the effort needed for the design and development of a paral-
lel MATLAB not very attractive 2. Anyway, having MATLAB matured into
a preeminent technical computing environment, and the access to multipro-

1Anyone who is interested in this topic may read [16]
2for more information, see [19]

14



CHAPTER 2. PARALLEL MATLAB 15

cessor machines become easier, the demand for such a toolbox like the PCT
spread towards the user community.
The PCT software and DCS are toolboxes made to extend MATLAB such as
a library or an extension of the language do. These two instruments anyway
are not the only means avaible to the user for improving the performance of
its code through tecniques of parallelization.
In fact, MATLAB supports a mechanism of implicit and explicit mul-
tithreading of computations, and presents a wide range of mechanism to
transform the data and make the computation vectorized, so that computa-
tion can take advantage of the use of libraries such as BLAS and LAPACK.
We will discuss this details later.
However, we can now roughly classify MATLAB parallelism into four cate-
gories ([2], pag.285; see [18] too):

• implicit multithreading: one instance of MATLAB automatically
generate simultaneous multithreaded instruction streams (level 3 and
4 of figure 1.5). This mechanism is employed for numerous built-in
functions.

• explicit multithreading: through this way, the programmer explic-
itily creates seperate threads from the main MATLAB thread, easing
the burden on it. There is no official support to this way of program-
ming, and in fact, it is achieved using MEX functions, innested Java
or .Net threads. We will not discuss this method in this thesis 3.

• explicit multiprocessing: multiple instances of MATLAB run on
several processors, using the PCT constructs and functions to carry
out the computation. We will discuss its behaviour and structure in
the next sections.

• distrubuted computing: multiple instances of MATLAB run inde-
pendent computation on different computers (such as those of cluster,
or a grid, or a cloud), or the same program on multiple data (SPMD).
This tecnique is achieved through the DCS, and it is strictly bounded
to the use of the PCT.

3For those who are interested in this topic see [1].



CHAPTER 2. PARALLEL MATLAB 16

2.2 PCT and MDCS: MATLAB way to dis-

tributed computing and multiprocessing

MATLAB Distributed Computing Server and Parallel Computing Toolbox
work along as two sides of the same tool. While the DCS works as a library
for controlling ad interfacing together the computers of a cluster, the PCT
is a toolbox that allow the user to construct parallel software.
As we said before, the PCT exploits the advantages offered by a multicore
computer allowing the user to implement parallel computing tecniques cre-
ating multiple instances of MATLAB on several processors.
These instances are called workers, or also headless MATLABs or MAT-
LAB computational engines, and are nothing more than MATLAB pro-
cesses that run in parallel without GUI or Desktop [2]. The number of work-
ers runned by the client (MATLAB principal process, the one the user uses
to manage the computation through the GUI) is set by default as the num-
ber of processors of the machine. Certain architectures, such as modern Intel
CPUs, may create a logical core, through the tecniques of hyperthread-
ing[27], allowing the PCT to assign other processes to both physical and
logical cores. Anyway, the user can have more workers than the number of
cores of its machine, up to 512 from the R2014a MATLAB release, using the
Cluster Profile Manager function of the PCT.

Figure 2.1: Cluster Profile Manager window

The workers can function completely independently of each other, without
requiring any communication infrastructure setup between them[23].



CHAPTER 2. PARALLEL MATLAB 17

Figure 2.2: Workers processes are delimited by the red rectangule, while the
client is delimited by the green rectangule. The computer is an Intel 5200U
(2 physical cores double threaded, for a total of 4 cores)

Anyway, some functions and constructs (like message passing functions
and distributed arrays) may require a sort of communication infrastruc-
ture. In this context, we call the workers labs.

2.3 Infrastructure: MathWorks Job Manager

and MPI

This section aims to describe briefly the implementation details of the PCT
and its general operating mechanisms.
The basic concepts of PCT working are the ideas of jobs and tasks. Tasks
are simple function evaluations that can be arranged together sequentially
to form a job. Jobs are then submitted to the Job Manager, a scheduler
whose duty is to organize jobs in a queue and dispatch them to the workers
which are free and ready to execute them.
This scheduler operates in a Service Oriented Architecture (SOA), fitted in
an implementation of JINI/RMI framework, being Matlab based on a JVM
and being tasks, jobs and cluster all instances of their specific parallel.class.
All the data related to a specific task or job (like function code, inputs and
outputs, files, etc...) is stored in a relational database with a JDBC driver



CHAPTER 2. PARALLEL MATLAB 18

Figure 2.3: Creation of a job of three equal tasks, submitted to the scheduler

Figure 2.4: Interaction between the client and the schedulers



CHAPTER 2. PARALLEL MATLAB 19

that supports Binary Large Objects (BLOBs). The scheduler is then pro-
vided with an API with significant data facilities, to allow both the user and
MATLAB to relate with both the database and the workers.

Figure 2.5: Infrastructure for schedulers, jobs and parallel interactive sessions

In fact, all the workers have their separate workspace and can work indepen-
dently from each other without requiring any communication infrastructure.
Having said that, they can still communicate with each other through a
message passing infrastructure, consisting of two principal layers:

• MPI Library Layer: a MPI-2 shared library implementation based
on MPICH2 distribution from Argonne National Laboratory, loaded
on demand which provides an uniform interface to message passing
function in MATLAB and other libraries (like ScaLAPACK);

• binder layer: an abstraction layer thet provides MATLAB with a
standard binary interface to all MPI library functions.

This particular infrastructure is held up and controlled by the scheduler when
the user decides to create a parpool, a series of MATLAB engine processes
in an MPI ring, with a control communication channel back to the MATLAB
client. Parpools may comprehend all the workers in the cluster (or all the
workers assigned to the processors of our machine) or just few of them, and
is started automatically using parallel constructs or manually by the user.



CHAPTER 2. PARALLEL MATLAB 20

Figure 2.6: Message passing infrastructure

Figure 2.7: Creation of a parpool: as job and tasks, parpool are instances of
objects

Figure 2.8: Building and configuration of the MPI ring: the mpiexec con-
fig.file (green square) is a configuration file for setting up and running the
pool, whose workers are delimited by the blue square



CHAPTER 2. PARALLEL MATLAB 21

2.4 Some parallel language constructs: pmode,

SPMD and parfor

As we stated earlier in the chapter, PCT initial goal was to ”extend the MAT-
LAB language with a set of parallel data structures and parallel constructs,
which would abstract details as necessary and present to users a language in-
dependent of resource allocation and underlying implementation”[23]. This
reflected in a series of high-level constructs which allow the user to immedi-
ately start using the toolbox withouth any specific change to the its usual
working model, yet giving it enough control to what is happening between
the workers.
We will discuss shortly two ways of interacting with the PCT: the pmode, an
interactive command line similar to the normal MATLAB command window,
and the SPMD and parfor constructs.

2.4.1 Parallel Command Window: pmode

The control communication channel cited earlier when talking about the
parpool, allow the user to interact with the workers of the pool through a
parallel command window which is a counterpart to the normal MATLAB
command window. This window provides a command line interface to an
SPMD programming model, with the possibility to interrupt and display
outputs from all the computational processes.
In fact, the parallel command window has display features that allow the
output of the computation to be viewed in several different ways, and its
basic functions are the sending and receveing of simple evaluation request
messages to and from all labs when the user types a command.
The main problem when using this functionality, is that the parallel command
window is not the MATLAB command window: users have to send variables
and data with specific functions from the serial workspace to the parallel
one (every worker has its separate workspace), and this may be a long and
exhausting operation. Anyway, pmode is still a great tool for developing and
debugging SPMD algorhytms, which we will discuss in the next subsection.

2.4.2 SPMD: Single Program Multiple Data

The spmd construct implements the Single Program Multiple Data pro-
gramming model: the statement between the command spmd and end is
executed by the workers of the parpool simultaneously, opening a pool if it
has not been created yet.



CHAPTER 2. PARALLEL MATLAB 22

Figure 2.9: Parallel command window

Inside the body of the spmd statement, every worker is denoted as a lab, and
is associated with a specific and unique index. This index allow the user to
diversify the execution of the code by the labs using conditional statements
(see figure 2.10), but also to use some message passing functions which are
high-level abstraction of functions described in the MPI-2 standard.

Figure 2.10: Use of conditional statements to diversify the execution of the
code (parpool of 4 workers)

These functions comprehend point-to-point and broadcast operations, error
and dealdlock detection mechanisms, etc..., and are based on a protocol for
exchanging arbitrary MATLAB data types (numerical array of any precision,
structure arrays, cell arrays, etc...), which consists in sending a first message
containing the information about the data, and then a message with the ac-
tual payload (which may be serialized in case of non-numeric data types).



CHAPTER 2. PARALLEL MATLAB 23

Users may use these operations explicitly, or implicitly whithin the code of
other constructs.
For example, trying to reduce the programming complexity by abstracting
out the details of message passing. the PCT implements the PGAS (Par-
titioned Global Address Space) model for SPMD through distributed
arrays. These arrays are partitioned with portions localized to every worker
space, and are implemented as MATLAB objects, so that they also store
information about the type of distribution, the local indices, the global array
size, the number of worker processes, etc...
Their distributions are usually one-dimonsional or two-dimensional block
cyclic: users may specify their personal data distribution too, creating their
own distribution object, through the functions distributor and codistribu-
tor4. An important aspect of data distributions in MATLAB is that they are
dynamic[23], as the user may change distribution as it likes by redistributing
data with a specific function (redistribute).
Distributed arrays can be used with almost all MATLAB built-in functions,
letting users write parallel programs that do not really differ from serial ones.
Some of these functions, like the ones for linear dense algebra, are finely tuned
as they are based on the ScaLAPACK interface: ScaLAPACK routines are
accessed by distributed array functions in MATLAB without any effort by
the user, with the PCT enconding and decoding the data from the ScaLA-
PACK library5. Other algorithms, suchs as the ones used for sparse matrices,
are implemented in the MATLAB language instead.

Anyway, their main characteristic is that their use is easy to the program-
mer: the access and use of distributed arrays are syntactically equal to reg-
ular MATLAB arrays access and use, with all the aspects related to data
location and communication between the workers being hidden to the user
though they are implemented in the definition of the functions deployed with
distributed arrays. In fact, all workers have access to all the portion of the
arrays, with all the communication syntax needed to transfer the data from
their location to the worker which has not to be specified within the code
lines of the user.
The same idea lays behind the reduction operations, which allow the user

to see the distributed array as a Composite object directly in the workspace
of the client without any effort by the user.

4Please note that distributed and codistributed arrays are the same arrays but seen from
different perspective: a codistributed array which exists on the workers is accessible from
the client as distributed, and viceversa[2]

5ScaLAPACK is a library which includes a subset of LAPACK routines specifically
designed for parallel computers, written in a SPMD style. For more information, see [9]



CHAPTER 2. PARALLEL MATLAB 24

Figure 2.11: Some example of distributed arrays



CHAPTER 2. PARALLEL MATLAB 25

Thus, the SPMD construct brings the user a powerful tool to elaborate par-
allel algorhytms in a simple but still performing fashion.

2.4.3 Parallel For Loop

Another simple but yet useful instrument to realize parallel algorhytms is
the parfor (Parallel For Loop) construct.
The syntax parfor i = range; 〈loopbody〉 ; end allows the user to write a
loop for a block of code that will be executed in parallel on a pool of workers
reserved by the parpool command. A parpool is initialized automatically if it
has not been created yet by submitting the parfor command.
Shortly, when users declare a for loop as a parfor loop, the underlying ex-
ecution engine uses the computational resources available in the parpool to
execute the body of the loop in parallel. In the absence of these resources,
on a single processor system, parfor behaves like a traditional for loop [23].
The execution of the code by the workers is absolutely asynchronous : this
means that there is no order in the execution of the contents of the loop, so
that there are some rules to follow to use the construct correctly.
First of all, the loop must be deterministic: its results should not depend on
the order in which iterations are executed. This force the user to use only
certain constructs and functions within the parfor body, and requires a static
analysis of it before its execution.
The main goals of this analysis is to categorize all the variables inside the
loop into 5 categories:

• Loop indexing variables;

• Broadcast variables: variables never target of assignments but used
inside the loop; must be sent over from the host;

• Sliced variables: indexed variables used in an assignment, either on
the right-hand or the left-hand side of it;

• Reduction variables: variables that appear at the left-hand side of
an unindexed expression and whose values are reduced by MATLAB in
a non-deterministc order from all the iterations (see section 2.4.2);

• temporary variables: variables subjected to simple assignment within
the loop.

If anyone of the whole variables of the loop failed to be classified into one of
these categories, or the user utilizes any functions that modifies the workers’



CHAPTER 2. PARALLEL MATLAB 26

Figure 2.12: Classification of variables in a parfor loop

workspace in a non-statically way, then MATLAB reports an error.

Transport of code and data for execution is realized through a permanent
communication channel setup between the client (which acts as the master in
a master-worker pattern) and the workers of the pool (which, indeed, act as
the workers), as described in section 2.3. Work and data are encapsulated into
a function which can be referenced by a function handle. Clumsily, function
handles are MATLAB equivalent to pointers to functions in C language;
anonymous functions are instead expressions that exist as function handles
in the workspace but have no corresponding built-in or user-defined function.
Usually, sliced input variables, broadcast variables and index variables are
sent as input of this function handle, and sliced output variables are sent
back as its outputs. For what concerns the code, if the parfor is being
executed from the MATLAB command line, the executable package is sent
as an anonymous function transported along with the data over the workers;
when the parfor is being executed within a MATLAB function body, existing
as a MATLAB file with appropriate function declaration, this payload is an
handle to an automatically generated nested function from the parfor body
loop, serialized and transmitted over the persistent communication channel
described above. The workers then deserialize and execute the code, and
return the results as sliced output variables [23].
As SPMD, parfor is a very simple construct: yet it cannot be used like a
simple for loop, requiring the user some practice to rearrange its algorithms,
it can lead to great performance increase with little effort.



CHAPTER 2. PARALLEL MATLAB 27

2.5 Serial or parallel? Implicit parallelism in

MATLAB

Having described in the previous sections the mechanism behind the PCT
and some of its construct that allow normal users to approach parallel com-
puting without great labors, it is worth to say that the MathWorks put great
effort in implementing mechanisms of implicit parallelization. As we said in
the introduction of this chapter, MATLAB presents a wide range of instru-
ments to improve the performance of its computations. Among them, one of
the most important is the already mentioned multithreading.
This mechanism relies on the fact that ”many loops have iterations that are
independent of each other, and can therefore be processed in parallel with
little effort”[2], so, if the data format is such that it can be transformed as
non-scalar data, MATLAB tries to parallelize anything that fits this model.
The technical details of MATLAB’s multithreading are undocumented: it
has been introduced in the R2007a version[29], as an optional configura-
tion, becaming definitive in R2008a. We know that it makes use of parallel
processing of parts of data on multiple physical or logical CPUs when the
computation involves great numbers of elements (20K, 40K, etc...), and it is
realized only for a finite number of function6.

This useful tool, which operates at level 3 and 4 of parallelism level in pro-
grams (see section 1.4), is not the only one helpful to the user to accelerate its
code. In fact, MATLAB use today’s state-of-the-art math libraries such as
PBLAS, LAPACK, ScaLAPACK and MAGMA[17], and for platforms having
Intel or AMD CPUs, takes advanteges of Intel’s Math Kernel Library (MKL),
which uses SSE and AVX CPU instructions that are SIMD (Single Instruc-
tion Multiple Data) instructions, implementing the level 1 of parallelism level
in programs (see figure 1.5), and includes both BLAS and LAPACK7.
So, yet the user may not be aware of that, some of his own serial code may be,
in fact, parallelized in some manner: from multithreaded functions, to SIMD
instruction sets and highly-tuned math libraries, there are several levels in
which the parallelization of the computing can take place.
This aspect revealed to be very important during the analysis of our algo-
rithms’ performance, so we think it has to be described within a specific
section. Anyway, we were not able to determine where this mechanism of

6An official list of MATLAB’s multithreaded functions is avaiable at [29]; a more de-
tailed but unofficial list is avaiable at [7]

7For information about the MKL, see [28]; for information about the SSE and AVX set
of instructions, see [26]



CHAPTER 2. PARALLEL MATLAB 28

Figure 2.13: Implicit multithreading speedup for the acos function

implicit parallelitazion have taken place, since the implementation details are
not public.



Chapter 3

Parallelizing the Jacobi method

This chapter and the following one will focus on two linear algebra appli-
cations: the Jacobi iterative method for solving linear systems and the
Global Lanczos decomposition used for the computation of the Estrada
index of complex networks analysis.
Both these algorithms are theoretically parallelizable, thus, we formulated
a serial and a parallel version of them, implemented using the SPMD and
parfor constructs of the PCT. Then, we compared their performance against
their serial counterparts, trying to understand and illustrate the reasons
behind their behaviour, and highlighting the implications of parallelization
within them.

3.1 Iterative methods of first order

The content of the next two sections is quoted from G.Rodriguez’s textbook
”Algoritmi numerici”[21], and its aim is to recall some basic concepts of lin-
ear algebra.
Iterative methods are a class of methods for the solution of linear systems
which generates a succession of vectors x(k) from a starting vector x(0) that,
under certain assumptions, converges to the problem solution.
We are considering linear systems in the classical form of Ax = b, where
A is the system matrix, and x and b are the solution and data vector re-
spectively. Iterative methods are useful tools for solving linear systems with
large dimension matrices, especially when these are structured or sparsed. In
comparision to direct methods, which operate modifying the matrix struc-
ture, they do not require any matrix modification and in certain cases their
memorization either.

29



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 30

Iterative methods of the first order are methods where the computation of
the solution at the step (k+ 1) involves just the approximate solution at the
step k; thus, are methods in the form of x(k+1) = ϕ(x(k)).

Definition 3.1. We say an iterative method of the first order is globally
convergent if, for any starting vector x(0) ∈ Rn, we have that

lim
k→∞
||x(k) − x|| = 0

where x is the solution of the system and || · || identifies any vector norm.

Definition 3.2. An iterative method is consistent if

x(k) = x =⇒ x(k+1) = x

.

From these definitions, we obtain the following theorem, whose demonstra-
tion is immediate.

Theorem 3.1. Consistency is a necessary, but not sufficient, condition for
convergence.

A linear, stationary, iterative method of the first order is a method in
the form

x(k+1) = Bx(k) + f (3.1)

where the linearity comes from the relation that defines it, the stationarity
comes from the fact that the iteration matrix B and the vector f do not
change when varying the iteration index k, and the computation of the vector
x(k+1) depends on the previous term x(k) only.

Theorem 3.2. A linear, stationary iterative method of the first order is
consistent if and only if

f = (I −B)A−1b.

Demonstration. Direct inspection.

Defining the error at k step as the vector

e(k) = x(k) − x,

where x is the solution of the system, applying the equation 3.1 and the
definition 3.2, we obtain the following result

e(k) = x(k)−x = (Bx(k−1)+f)−(Bx+f) = Be(k−1) = B2e(k−2) = · · · = Bke(0).
(3.2)



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 31

Theorem 3.3. A sufficient condition for the convergence of an iterative
method defined as 3.1, is that it exists a consistent norm ||·|| so that ||B|| < 1.
Demonstration. From matrix norm properties we have that

||e(k)|| ≤ ||Bk|| · ||e(0)|| ≤ ||B||k||e(0)||,

thus ||B|| < 1 =⇒ ||e(k)|| → 0.

Theorem 3.4. An iterative method is convergent if and only if the spectral
radius ρ(B) of the iteration matrix B is < 1.

The demonstration for this theorem can be found at page 119 of [21].

3.2 Additive splitting: the Jacobi method

A common strategy for the construction of linear iterative methods is the
one defined as the additive splitting strategy.
Basically, it consists of writing the system matrix in the following form

A = P −N,

where the preconditioning matrix P is nonsingular. Replacing A with
the previous relation in our linear system, we obtain the following equivalent
system

Px = Nx+ b

which leads to the definition of the iterative method

Px(k+1) = Nx(k) + b. (3.3)

An immediate remark is that a method in such form is consistent; moreover,
it can be classified under the previous defined (definition 3.1) category of
linear stationary methods of the first order.
In fact, being det(P ) 6= 0, we can observe that

x(k+1) = P−1Nx(k) + P−1b = Bx(k) + f,

with B = P−1N and f = P−1b.
From theorem 3.3 and 3.4, a sufficient condition for convergence is that
||B|| < 1; in this case ||P−1N || < 1, where || · || is any consistent matrix



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 32

norm. A necessary and sufficient condition is that1 ρ(P−1N) < 1.
Considering the additive splitting

A = D − E − F,

where

Dij =

{
aij, i = j

0 i 6= j
, Eij =

{
−aij, i > j

0 i ≤ j
, Fij =

{
−aij, i < j

0 i ≥ j
,

or rather

A =

a11 . . .

ann

−
 0

. . .

−aij 0

−
0 −aij

. . .

0

 ,
the Jacobi iterative method presents

P = D, N = E + F. (3.4)

In this case, being P nonsingular means that aij 6= 0, i = 1, . . . , n. When this
condition is not true, if A is nonsingular it must still exist a permutation of
its rows that makes its diagonal free of zero-elements. The equation 3.3 then
becomes equal to

Dx(k+1) = b+ Ex(k) + Fx(k),

or, expressed with coordinates,

x
(k+1)
i =

1

aii

[
bi −

n∑
j=1
j 6=1

aijx
(k)
j

]
, i = 1, . . . , n.

From this relation, we can see that the x(k+1) components can be computed
from the ones of the x(k) solution in any order independently from each other.
In other words, the computation is parallelizable.

1Obviously, for the method to being operative, P must be easier to invert than A.



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 33

3.3 Developing the algorhytm: jacobi ser and

jacobi par

Starting from the theorical discussion of the previous sections, we have de-
veloped two algorithms: a serial version of the Jacobi iterative method, and
a parallel version using the SPMD construct of the PCT.

Figure 3.1: The Jacobi ser MATLAB function

Figure 3.1 illustrates our serial MATLAB implementation of the Jacobi iter-
ative method. We chose to implement a sort of vectorized version of it, where
instead of having a permutation matrix P we have a vector p containing all
the diagonal elements of A, and a vector f whose elements are those of the
vector data b divided one-by-one by the diagonal elements of A. Thus, the
computation of the x

(k+1)
i component of the approximated solution at the

step (k + 1) is given by

x
(k+1)
i =

1

di

[
bi −

n∑
j=1
j 6=i

aijx
(k)
j

]
i = 1, . . . , n.

Our goal was to make the most out of the routines of PBLAS and LAPACK
libraries, trying to give MATLAB a code in the best vectorized manner pos-
sible. The matrix N instead, is identical to the one in equation 3.4.
Jacobi par is the parallel twin of the serial implementation of the Jacobi
iterative method of figure 3.1. Like Jacobi ser, it is a MATLAB function
which returns the approximate solution and the step at which the compu-



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 34

Figure 3.2: The Jacobi par MATLAB function

tation stopped. For both of them, the iterativity of the algorithm is im-
plemented through a while construct. We used the Cauchy criterion of
convergence to stop the iterations, checking the gap between two subse-
quent approximated solutions with a generic vector norm and a fixed toler-
ance τ > 0.
Generally, a stop criterion is given in the form of

||x(k) − x(k−1)|| ≤ τ,

or in the form of
||x(k) − x(k−1)||
||x(k)||

≤ τ,

which considers the relative gap between the two approximated solutions.
However, for numerical reasons, we chose to implement this criterion in the
form of2

||x(k) − x(k−1)|| ≤ τ ||x(k)||.

To avoid an infinite loop, we also set a maximum number of iterations k, so
that our stop criterion is a boolean flag whose value is true if any one of the
two expressions is true (the Cauchy criterion or the maximum step number).
As we said at the beginning of this section, we used the SPMD construct to
develop our parallel version of Jacobi. Figure 3.2 shows that all the com-

2See [21], page 125



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 35

putation and data distribution are internal to the SPMD body3. First of
all, after having computed our N matrix and our p and f vectors, we put a
conditional construct to verify if a parpool was set up and to create one if
it has not been done yet. We then realize our own data distribution scheme
with the codistributor1d function.
This function allows the user to create its own data distribution scheme on
the workers. In this case, the user can decide to distribute the data along
one dimension, choosing between rows and columns of the matrix with the
first argument of the function.
We opted to realize a distribution along rows, with equally distributed parts
all over the workers, setting the second parameter as unsetPartition. With
this choice, we left MATLAB the duty to realize the best partition possi-
ble using the information about the global size of the matrix (the third
argument of the function) and the partition dimension.
Figure 3.3 shows a little example of distribution of an identity matrix. As
we can see, any operation executed inside the SPMD involving distributed
arrays, is performed by the workers on the part they store of it independently.
This is the reason why we decided to use this construct to implement the
Jacobi method: the computation of the components of the approximated
solution at the (k+ 1) step could be performed in parallel by the workers by
just having the whole solution vector at the prior step k in their workspace
(see lines 38–39 of the Jacobi par function in figure 3.2).
To do so, we employed the gather function just before the computation of
the solution at that step (line 37, figure 3.2).
The gather function is a reduction operation that allows the user to
recollect the whole pieces of a distributed array in a single workspace. Inside
an SPMD statement, without any other argument, this function collects all
the segments of data in all the workers’ workspaces; thus, it perfectly fits our
need for this particular algorithm, recollecting all the segments of the prior
step solution vector.

3.4 Numerical tests

For our first comparative test, we decided to gauge the computational speed
of our Jacobi par script in solving a linear system whose matrix A is a sparse

3Somebody may argue that we should have distributed the data outside the SPMD
construct, to speed up the computation and lighten the workers’ execution load. However,
we did not observe any performance increase in doing such a distribution. We suppose
that this feature is related to the fact that distributed arrays are an implementation of
the PGAS model (see section 2.4.2)



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 36

Figure 3.3: Distributing and working with distributed arrays



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 37

square matrix of 10000 elements, generated through the rand function of
MATLAB, using the tic toc function.
We developed a function called diag dom spar whose aim was to made
our matrix A diagonally dominant, thus, being sure that our solution would
converge4. The data vector b was developed by multiplying A times the exact
solution vector.

Figure 3.4: Display outputs of our comparative test

All tests have been executed on an Intel(R) Xeon(R) CPU E5-2620 (2
CPUs, 12 physical cores with Intel hypertreading, for a total of 24 physical
and logical cores), varying the number of workers in the parpool from a
minimum of 1 to a maximum of 24.

Figure 3.5: Computation time for Jacobi ser and Jacobi par

As we can see from figure 3.5, our serial implementation revealed to be al-
ways faster than our parallel one. In fact, Jacobi par produced slower com-
putations and decreasing performances with increasing number of workers.
Looking for an explanation for this behaviour, we decided to debug our al-
gorithm using the MATLAB Parallel Profiler tool.
MATLAB Parallel Profiler is nothing different from the regular MATLAB

4See [22] page 109 for a demonstration of this statement.



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 38

Figure 3.6: Speedup increase (serial-parallel execution time ratio)

Profiler: it just works on parallel blocks of code enabling us to see how much
time each worker spent evaluating each function, how much time was spent
on communicating or waiting for communications with the other workers,
etc...5

Figure 3.7: Using the parallel profiler

An important feature of this instrument is the possibility to explore all the
children functions called inside the execution of a body function.
Thus, inside the jacobi par function, we identified the two major bottlenecks
being the execution of the SPMD body and the gathering operation of the
previous step approximated solution.
The SPMD body involves a series of operations with codistributed arrays,
such as element-wise operation, norm computation, etc... that are, for now,
implemented as methods of MATLAB objects[12]. The overhead of method

5See [2], pag. 309 for an exhaustive discussion.



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 39

Figure 3.8: MATLAB Parallel Profiler

dispatching for these operations may be quite large, especially if compared
to the relatively little amount of numerical computation required for small
data sets. Even in absence of communication overheads, as it happens in
this case where the computation of the different components of the solution
is executed independetly by each worker, the parallel execution may reveal to
be rather a lot slower than the serial. Thus, increasing the number of workers
worsens this situation: it leads to more subdivision of the computation, with
related calls to slow data operations, and more communication overheads in
gathering the data across all the computational engines for the next iteration.

Figure 3.9: Jacobi par time spending functions

Therefore, in this context the parallelization realized through the SPMD con-



CHAPTER 3. PARALLELIZING THE JACOBI METHOD 40

Figure 3.10: Codistributed arrays operations: as we can see, they are all
implemented as methods of the codistributed.class

struct and the codistributed arrays did not perform in an efficient manner:
in fact, to have some performance benefit with codistributed arrays, they
should work with ”data sizes that do not fit onto a single machine”[12].
Anyhow, we have to remember that our serial implementation may, in fact,
not be serial: going beyond the sure fact that the BLAS and LAPACK rou-
tines are more efficient than the MATLAB codistributed.class operations, we
cannot overlook the possibility that our computation may have been multi-
threaded by MATLAB’s implicit multithreading mechanisms, or our program
executed by parallelized instruction sets (such as the Intel’s MKL), being our
machine equipped with an Intel processor. Obviously, without any other type
of information besides the one reported in section 2.5 and the computation
time measured, we cannot identify if one or more or none of these features
played a role inside our test.



Chapter 4

Computing the trace of f(A)

This last chapter focuses on the parallelization of the computation of upper
and lower bounds for the Estrada index of complex networks analysis using
the Global Lanczos decomposition. We will spend some few words about this
topic in the next section to acclimatize the reader with the basic concepts of
it.

4.1 Global Lanczos decomposition

The global Lanczos decomposition is a recent computational tecnique devel-
oped starting from the standard Lanczos block decomposition. A com-
prehensive discussion about this argument can be found in [6] and in [11].
The Lanczos iteration is a Krylov subspace projection method. Given
a matrix A ∈ Rn×n and a vector b ∈ Rn, for r = 1, 2, . . . , a Krylov subspace
with index r generated starting from A and b, is a mathematical set defined
as

Kr := span(b, Ab, . . . , Ar−1b) ⊆ Rn. (4.1)

There are several algorithms that exploits Krylov’s subspaces, especially for
the resolution of linear systems.
The Arnoldi iteration algorithm, for example, builds up an orthonormal
basis {q1, . . . ,ql} for the Kl subspace, replacing the numerically unstable
{b, Ab, Al−1b} basis. For doing so, it makes use of the Gram-Schmidt or-
thogonalization method (see [21], page 144), being l the number of iteration
of the algorithm.
The final result of this method, is a Hl ∈ Rl×l matrix defined as

Hl = QT
l AQl (4.2)

where the Ql matrix is equal to Ql = [q1 q2 · · · ql] ∈ Rn×l.

41



CHAPTER 4. COMPUTING THE TRACE OF F(A) 42

Annotation 4.0.1. The matrix

HL = QT
l AQl

is the representation in the orthonormal base {q1, . . . ,ql} of the orthogonal
projection of A on Kl. In fact, being y ∈ Rl, Qly indicates a generic vector
of Kl, as it is a linear combination of its given base.

The Lanczos method applies the Arnoldi algorithm to a symmetric matrix
A. In this way, the Hl matrix of equation 4.2 becomes tridiagonal, and it is
given in the form of

Hl =


α1 β1

β1 α2
. . .

. . . . . . βl−1
βl−1 αl

 .
This particular matrix structure leads to a reduction in the computational
complexity of the whole algorithm 1.
Now, the block Lanczos method is similar to the standard Lanczos itera-
tion. Starting from a symmetric matrix A of dimension n, and, instead of a
vector b, a matrix W of size n× k, with k � n, the result of this algorithm
is a partial decomposition of the matrix A in the form of

A[V1, V2, · · · , Vl] = [V1, V2, · · · , Vl, Vl+1]Tl+1,l, (4.3)

where we obtain a matrix V whose Vj ∈ Rn×k blocks are an orthonormal base
for the Krylov subspace generated by A and W defined as

Kl := span(W,AW,A2W, . . . , Al−1W ) ⊆ Rn×k.

The only differences between this method and the standard one are that:

• the internal product of Kl is defined as 〈W1,W2〉 := trace(W T
1 W2);

• the norm induced by the scalar product is the Frobenius norm

‖W1‖F := 〈W1,W1〉1/2.

The Global Lanczos method is very similar to the regular block Lanczos
method. The only difference lies in the fact that the orthonormality of the

1We suggest the reader who is interested in this topic to see [21] from page 141 to page
149, for demonstrations, implementations and implications of these algorithms.



CHAPTER 4. COMPUTING THE TRACE OF F(A) 43

V base is required only between the blocks of which it is made of, while, in
the standard block Lanczos iteration, every column of every block has to be
orthonormal within each other.
In this case, the matrix Tl becomes a tridiagonal symmetric matrix in the
form of

Tl =


α1 β2
β2 α2 β3

β3 α3
. . .

. . . . . . βl
βl αl

 ;

the matrix Tl+1 instead, is the matrix Tl plus a row of null-elements besides
the last one, which is equal to βl+1. Thus, it is equal to

Tl+1,l =



α1 β2
β2 α2 β3

β3 α3
. . .

. . . . . . βl
βl αl

βl+1


. (4.4)

It is immediately remarkable that Tl, even if of l dimension (with l being the
number of iterations of the algorithm), is rather smaller in dimension with
respect to the starting A matrix, yet being its eigenvalues a good approxi-
mation of A’s estremal eigenvalues. Moreover, it can be used to express Tl+1

as
Tl+1 = Tl ⊗ Ik,

being k the initial block-vector dimension.
This relation is quite important for the application of this tecnique to the
resolution of linear systems. For this purpose, starting from [6], in [10] we
developed an algorithm (in collaboration with Anna Concas), which takes
a generic block W as input together with the matrix A, and takes into ac-
count the possibility that certain coefficients may present a value which is
minor than a fixed tolerance thresold, leading to a breakdown situation.
A breakdown occur is very useful in the application of the Global Lanczos
iterations to the resolution of linear systems: roughly speaking, it denotes
that the approximated solution found at the j step is the exact solution of
the linear system2.

2For a more detailed explanation see [21], page 142.



CHAPTER 4. COMPUTING THE TRACE OF F(A) 44

Algorithm 1 Global Lanczos decomposition method

1: Input: symmetric matrix A ∈ Rn×n, block-vector W ∈ Rn×k

2: algorithm iteration number l, tauβ breakdown thresold

3: β1 = ‖W‖F , V1 = W/β1

4: for j = 1, . . . , l

5: Ṽ = AVj − βjVj−1, αj = 〈Vj , Ṽ 〉
6: Ṽ = Ṽ − αjVj
7: βj+1 = ‖Ṽ ‖F
8: if βj+1 < τβ then exit for breakdown end

9: Vj+1 = Ṽ /βj+1

10: end for

11: Output: Global Lanczos decomposition 4.3

4.2 Gauss quadrature rules and Global Lanc-

zos

In [13], Golub and Meurant showed links between the Gauss-quadrature
rules and the block Lanczos decomposition. In [6], the authors extended
these bonds between quadrature rules and the Global Lanczos decomposition.
Defining If := trace(W Tf(A)W ), we can say that it is equal to

||W ||2F
∫
f(λ)dµ(λ),

with µ(λ) :=
∑k

i=1 µi(λ); we can then define the following Gauss-quadrature
rules

Gl = ||W ||2FeTi f(Tl)ei, Rl+1,ζ = ||W ||2FeTi f(Tl+1,ζ)ei,

being Tl the result matrix of the Global Lanczos decomposition of matrix A
with initial block-vector W .
These rules are exact for polynomial of degree 2l − 1 and 2l, so that, if the
derivatives of f behave nicely and ζ is suitably chosen, we have

Gl−1f < Glf < If < Rl+1,ζ < Rl,ζf ;

thus, we can determine the upper and lower bounds of the function If .

Let G = [V , ε] be a graph defined by a set of nodes V and a set of edges
ε. The adjacency matrix associated with G is the matrix A = [aij] ∈ Rm×m



CHAPTER 4. COMPUTING THE TRACE OF F(A) 45

defined by aij = 1 if there is an edge from node i to node j, and aij = 0
otherwise [6]. If G is undirected, then A is symmetric.
Let us define the Estrada index of graph G as

trace(exp(A)) =
m∑
i=1

| exp(A)|ii =
m∑
i=1

exp(λi),

where λi, i = 1, . . . ,m denotes the eigenvalues of the adjacency matrix A
associated with the graph. This index gives a global characterization of the
graph, and is used to express meaningful quantities about it [6].
Being G undirected, and thus A symmetric, we can exploit the bounds for
trace(W Tf(A)W ) to approximate the Estrada index by

trace(exp(A)) =
ñ∑
j=1

trace(ET
j exp(A)Ej), (4.5)

where

Ej = [e(j−1)k+1, . . . , emin{jk,n}], j = 1, . . . , ñ; ñ := [
n+ k − 1

k
].

This result is rather remarkable, as it shows that there is a level of feasible
parallelization.
Besides the computational speed increase given by the use of the Global
Lanczcos decomposition in the evaluation of the trace at each step of the
summation, each term of it can, in fact, be computed independently.

4.3 Developing the algorithm: par trexpgauss

In [6], M.Bellalij and colleagues developed an algorithm for the serial compu-
tation of the Estrada index using the Global Lanczos decomposition, whose
basic functioning is illustrated in Algorithm 2.
Of this algorithm, the authors created a MATLAB implementation, whose
performances have been tested in [6] on the computing of the index of 6 undi-
rected networks adjacency matrices obtained from real world applications,
against the standard Lanczos method and the expm function of MATLAB.
This work was the starting point for the development of our parallel version
of this algorithm, whose central aspect is the use of the parfor construct of
the Parallel Computing Toolbox.
As we can see from figure 4.1, in Reichel and Rodriguez’s implementation of
Algorithm 2, the computation of the Estrada index (equation 4.5) is obtained



CHAPTER 4. COMPUTING THE TRACE OF F(A) 46

Figure 4.1: MATLAB implementation of Algorithm 2: the for cycle inside
the red rectangule is the implementation of relation 4.5



CHAPTER 4. COMPUTING THE TRACE OF F(A) 47

Algorithm 2 Approximation of trace(W Tf(A)W ) by Gauss-type quadra-
ture based on the global Lanczos algorithm

1: Input: symmetric matrix A ∈ Rn×n, function f

2: block-vector W ∈ Rn×k, constants: ζ, τ,Nmax, ε

3: V0 = 0, β1 = ‖W‖F , V1 = W/β1

4: ` = 0, f lag = true

5: while flag and (` < Nmax)

6: ` = `+ 1

7: Ṽ = AV`, α` = trace(V T
` Ṽ )

8: Ṽ = Ṽ − βjV`−1 − αjV`
9: βj+1 = ‖Ṽ ‖F

10: if βj+1 < τβ

11: T = tridiag([α1, . . . , α`], [β2, . . . , βl])

12: G` = [f(T )]11

13: R`+1 = G`
14: break // exit the loop

15: else

16: V`+1 = Ṽ /β`+1

17: end if

18: α̃`+1 = ζ − β`+1P`−1(ζ)/P`(ζ) //P`−1, P` orthogonal polynomials

19: T = tridiag([α1, . . . , α`], [β2, . . . , βl])

20: G` = [f(T )]11

21: Tζ = tridiag([α1, . . . , α`, α̃`+1], [β2, . . . , βl+1])

22: Rl+1 = [f(Tζ)]

23: flag = |R`+1 − G`| > 2τ |G`|
24: end while

25: F = 1
2β

2
1(G` +R`+1)

26: Output: Approximation F of trace(W T f(A)W ),

27: lower and upper bounds β21G` and β21R`+1

28: for suitable functions f , number of iterations `

through a for cycle where each term of the summation is evaluated serially,



CHAPTER 4. COMPUTING THE TRACE OF F(A) 48

and then summed to the other terms in the trc variable (line 70 of figure
4.1). The single terms computation, which is an evaluation of the trace of an
exponential function through the Global Lanczos decomposition, is realized
through the gausstrexp function, which uses an algorithm similar to Algo-
rithm 1 for obtaining the decomposition.
As we have already highlighted the feasible parallelizability of the computa-
tion of the Estrada index in equation 4.5, the actual MATLAB implemen-
tation of it presents itself as a perfect candidate for the use of the parfor
construct.

Figure 4.2: MATLAB parallel implementation of algorithm 2

In fact, the computation of the summation in its serial implementation needs



CHAPTER 4. COMPUTING THE TRACE OF F(A) 49

just few syntax adjustements to be performed in parallel through the parfor
construct, since basically it just needs the single terms of the summation to
be evaluated by each worker.
First of all, since we cannot use distributed arrays, we have to allocate each
Ej block for the Global Lanczos decomposition; thus we have to create them
in each worker’s workspaces at every iteration(line 61 to 67 of figure 4.2).
Since this operation is equal to the creation of a full-zero elements matrix,
excepts for a square block of dimension k identical to an identity matrix of
the same dimensions, it does not really heavy the computational complexity
of the whole algorithm.
The second operation needed, is the delivery of the gausstrexp function to
every workers: since this is not a MATLAB built-in function, we have to
transmitt it over their workspaces before the computation. To do so, we
use the addAttachedFiles function, which allows the user to send to the
workers any other file necessary for his own software to be executed.

Figure 4.3: Use of the addAttachedFiles function

There is no need to any other code modification.
In fact, the computation of the summation can be performed independently
since the trc variable (line 69, figure 4.2) is interpreted by MATLAB as a
reduction variable (see section 2.4.2). This means that the trace computation
of the single terms of the summation can be performed in parallel by the
worker, while the recollection and execution of the definitive sum of each
term is executed by the client without any effort by the user to explicitly
declare this operation in his code. The same thing happens for the number
of iterations and the other outputs returned by the gausstrexp function.



CHAPTER 4. COMPUTING THE TRACE OF F(A) 50

4.4 Numerical tests

For our second comparative test, we have decided to conduct the same test
executed in [6], with the same undirected networks, challenging the perfor-
mances of the serial algorithm against those of the parallel one.
As we have said before, all networks are obtained from real world applica-
tions, and we have computed their Estrada index with the optimal block
dimension kmin found in the [6] test, a large enough Nmax parameter to not
affect the computations, and a stop tolerance τ = 10−3. This means that the
iterations are terminated when the relative distance between the computed
upper and lower bounds for the trace are sufficiently close [6].
The adjacency matrices are all stored using MATLAB’s sparse storage for-
mat; for the four smallest networks, which have all less than 5000 nodes, we
have also computed their index using a dense structure.
Again, our computer presented an Intel(R) Xeon(R) CPU E5-2620 (2
CPUs, 12 physical cores with Intel hypertreading, for a total of 24 physical
and logical cores) processor, and we performed our tests increasing the num-
ber of worker from 2 to 24.
Their results have been presented by Professor Rodriguez at the interna-
tional 20th ILAS conference 2016, during the Minisymposium on Matrix
Methods in Network Analysis [5].

For all the computation involving sparse matrices, our parallel algorithm
revealed to be always faster than its serial twin.

Figure 4.4: Computation time and speedup for the Yeast network adjacency
matrix (2114 nodes, sparse); kmin block-size is equal to 60

For dense-structured matrices, this statement is not always true: in fact, in
some cases there is a minimum number of workers that has to be involved



CHAPTER 4. COMPUTING THE TRACE OF F(A) 51

Figure 4.5: Computation time and speedup for the Internet network adja-
cency matrix (22963 nodes, sparse); kmin block-size is equal to 8

Figure 4.6: Computation time and speedup for the Facebook network adja-
cency matrix (63731 nodes, sparse); kmin block-size is equal to 60



CHAPTER 4. COMPUTING THE TRACE OF F(A) 52

into the computation to have some performance increase. In figure 4.7 for
example, where we have reported the test results for the Estrada index com-
putation of the matrix Power, the actual speedup of the execution time kicks
in only when we use more than 4 workers inside the parpool.

Figure 4.7: Computation time and speedup for the Power network adjacency
matrix (4941 nodes, dense); kmin block-size is equal to 40

However, the average results are rather important, though the computations
peaked very high values of speedup: more than 9, for example, for the Face-
book adjacency matrix (see figure 4.6).
As inside the parfor construct we cannot use any type of Profiler like we did
in chapter 3 with the SPMD syntax, we have less information about the use
of computing resources by our algorithm.
What we have noticed, is that during the execution of the serial algorithm,
MATLAB seems not to use all the available processors to carry out the com-
putation; when executing the parallel algorithm instead, it exploits all the
resources to finish its job.
From figure 4.8, the impression is that only two processors are working: the
computational load switches between the cores leaving operating just two of
them per time. Figure 4.9 shows instead that during the parallel compu-
tation, all the processors are intensively exploited: in fact, as figure 4.103

illustrates, all the workers executed an even number of iterations, everyone
of them being working for more than the 80 percent of the time. However,
we did not investigate any further this aspect of our test, since, again, we do
not have very much information about MATLAB’s internal mechanisms.

3Figure 4.10 has been created through the use of the parTicToc timing utility by Sarah
Wait Zanereck, which can be found at [30].



CHAPTER 4. COMPUTING THE TRACE OF F(A) 53

Figure 4.8: Processors’ computational load during the serial computation
of the Estrada index of the Internet matrix (22963 nodes, sparse). The
computer is an Intel 5200U (2 physical cores with hyperthreading, for a total
of 4 logical and physical processors)



CHAPTER 4. COMPUTING THE TRACE OF F(A) 54

Figure 4.9: Processors’ computational load during the parallel computation
of the Estrada index of the Internet matrix (22963 nodes, sparse). The
computer is an Intel 5200U (2 physical cores with hyperthreading, for a total
of 4 logical and physical processors)



CHAPTER 4. COMPUTING THE TRACE OF F(A) 55

Figure 4.10: Some information about the worker’s executional load during
the parallel computation of the Estrada Index for the Internet network (22963
nodes, sparse). The machine is an Intel 5200U (2 cores with hyperthreading,
for a total of 4 processors)

Another remarkable observation is that while for the first tests the increase
in speedup is almost linear with increasing number of workers, in general
all the computations after reaching a maximum did not show any other im-
provement in their execution time.
We think that this feature may be related to the singular structures of the
matrices, that may be particulary suited for certain data distributions related
to a determined number of workers: thus, in this context, like for jacobi par
increasing the number of workers in the pool may not always lead to better
performances.
It is peculiar though, that all tests show a leveling in the performance of the
algorithm for parpools of more of 12 workers: it would seem that MATLAB
could not really take advantage of the use of logical cores as it does for the
physical ones.



Chapter 5

Conclusion

Our first goal when we started working on this bachelor thesis was to un-
derstand and explore the advantages, drawbacks and in general the overall
implications in the parallel implementations of linear algebra algorithms.
We soon realized that our intent actually involved the knowledge and un-
derstanding of several scientific fields, especially computer science and en-
gineering. Even when using an high level toolbox as MATLAB’s PCT, the
awareness of its implementation details played a major role in evaluating the
behaviour and performances of our software.
From the use of lowly-tuned math operations with codistributed arrays, to
an intensive use of processors with the parfor construct, to the mechanism of
implict multithreading, in many cases our predictions based on just the the-
oretical formulation of our algorithms had a surprising hidden side, leading
us to two main remarks.
On one hand, the use of multiple computing resources is becoming the next
step in the evolution of both software programming and hardware archi-
tecture design, requiring engineers and software developers to master the
concepts about parallel computing to really exploit the possibilities in terms
of performances that nowadays computers have to offer at different software
levels. This concerns not only the development of new softwares that are
able to take advantage of the parallel hardware characteristics, but even the
reformulation of the existent algorithms in such a way that keeps them com-
petitive in a parallel environment.
On the other hand, it is quite difficult to ask average computer users, even
with good programming skills and crafts, but who may not be expert com-
puter scientists, to struggle with all the aspects related to the realization
and, particularly, the optimization of parallel softwares. It is quite likely
that software and hardware companies will put great effort in realizing high-
level programs that solve this duties without any stress for the user: the

56



CHAPTER 5. CONCLUSION 57

Parallel Computing Toolbox and the Intel Math Kernel Library are perfect
examples of that.
Anyhow, for what concerns our applications and tests. we also realized that
parallel programming requires and intimate knowledge of both the problem
and the instruments through which the software is implemented. Many fac-
tors from the instruction set employed, to the paradigm implemented by the
programming language, to the architecture of the machine, can play a deter-
minant role in the whole performance of a program as parallelism can take
place at many levels.
Besides the negative (such as those of the parallelization of the Jacobi method)
and positive (such as those of the computation of the Estrada index) results
of our research, in a field like linear algebra a deeper understanding of the
internal functioning mechanisms of MATLAB would have brought more va-
lidity to our work.
However, it leaves open new prospectives for further researches in this topic,
such as the use of explicit multithreading for parallel computations [1], use of
different parallel programming models with various memory structures and
access, use of other data distributions to look how they affect the execution
performances using both the SPMD and parfor construct.



Bibliography

[1] Y.M Altman. Explicit multithreading in mat-
lab part 1, http://undocumentedmatlab.com/blog/

explicit-multi-threading-in-matlab-part1.

[2] Y.M. Altman. Accelerating MATLAB Performance: 1001 tips to speed
up MATLAB programs. CRC Press, 2014.

[3] Blaise Barney. Classification of parallel computers,
https://computing.llnl.gov/tutorials/parallel_comp/

parallelClassifications.pdf.

[4] Blaise Barney. Introduction to parallel computing, https://

computing.llnl.gov/tutorials/parallel_comp/.

[5] M. Bellalij, E. Cannas, A. Concas, C. Fenu, D. Martin, R. Reichel,
G. Rodriguez, H. Sadok, and T. Tang. Efficient computation of complex
networks metrics by block Gauss quadrature rules. 20th ILAS Confer-
ence 2016, Minisymposium on Matrix Methods in Network Analysis, KU
Leuven, Belgium, July 11–15, 2016, 2016.

[6] M. Bellalij, L. Reichel, G. Rodriguez, and H. Sadok. Bounding ma-
trix functionals via partial global block Lanczos decomposition. Applied
Numerical Mathematics, 94:127 – 139, 2015.

[7] Mike Croucher. Which matlab functions are multicore aware?, http:
//www.walkingrandomly.com/?p=1894.

[8] Vassilios V. Dimakopoulos. Parallel Programming Models. Springer New
York, New York, NY, 2014.

[9] J.J. Dongarra and D.W. Walker. The design of linear algebra libraries
for high performance computers. Aug 1993.

58



BIBLIOGRAPHY 59

[10] Anna Concas Edoardo Cannas. Risoluzione di sistemi lineari tramite
il metodo global lanczos, http://bugs.unica.it/~gppe/did/ca/

tesine/15cc.pdf.

[11] L. Elbouyahyaoui, A. Messaoudi, and H. Sadok. Algebraic properties of
the block GMRES and block Arnoldi methods. Electronic Transation
on Numerical Analysis, 33:207–220, 2009.

[12] Edric M Ellis. Matlab news group, http://it.mathworks.com/

matlabcentral/newsreader/view_thread/265302.

[13] G.H. Golub and G. Meurant. Matrices, Moments and Quadrature with
Applications. Princeton Series in Applied Mathematics. Princeton Uni-
versity Press, 2009.

[14] UPCRC Illinois. Parallel computing research at illinois the upcrc
agenda, http://rsim.cs.illinois.edu/Pubs/UPCRC_Whitepaper.

pdf.

[15] Hari Kalva, Aleksandar Colic, Adriana Garcia, and Borko Furht. Par-
allel programming for multimedia applications. Multimedia Tools and
Applications, 51(2):801–818, 2011.

[16] Cleve Moler. The intel hypercube part 1, http://blogs.mathworks.
com/cleve/2013/10/28/the-intel-hypercube-part-1/.

[17] Cleve Moler. Matlab incorporates lapack, http://it.mathworks.com/
company/newsletters/articles/matlab-incorporates-lapack.

html.

[18] Cleve Moler. Parallel matlab: Multiple processors and multiple
cores, http://it.mathworks.com/company/newsletters/articles/

parallel-matlab-multiple-processors-and-multiple-cores.

html.

[19] Cleve Moler. Why there isn’t a parallel matlab, http:

//www.mathworks.com/tagteam/72903_92027v00Cleve_Why_No_

Parallel_MATLAB_Spr_1995.pdf.

[20] D.A. Patterson. Computer Architecture: A Quantitative Approach. The
Morgan Kaufmann Series in Computer Architecture and Design. Else-
vier Science, 2011.

[21] G. Rodriguez. Algoritmi Numerici. Pitagora Editrice Bologna, Bologna,
2008.



BIBLIOGRAPHY 60

[22] G. Rodriguez and S. Seatzu. Introduzione alla matematica applicata e
computazionale. Pitagora, 2010.

[23] Gaurav Sharma and Jos Martin. Matlab R©: A language for parallel
computing. International Journal of Parallel Programming, 37(1):3–36,
2009.

[24] Donald J. Becker Thomas Sterling. Beowulf: A parallel workstation
for scientific computation , http://www.phy.duke.edu/ rgb/brahma/re-
sources/beowulf/papers/icpp95/icpp95.html.

[25] A.S. Tanenbaum. Architettura dei calcolatori. Un approccio strutturale.
Pearson, 2006.

[26] Intel Developer Team. Intel R© architecture instruction set exten-
sions programming reference, https://software.intel.com/sites/

default/files/managed/b4/3a/319433-024.pdf.

[27] Intel Support Team. Intel R© hyper threading technology, http://

www.intel.it/content/www/it/it/architecture-and-technology/

hyper-threading/hyper-threading-technology.html.

[28] Intel Support Team. Parallelism in the intel R© math kernel library,
https://software.intel.com/sites/default/files/m/d/4/1/d/8/

4-2-ProgTools_-_Parallelism_in_the_Intel_C2_AE_Math_Kernel_

Library.pdf.

[29] MathWorks Support Team. Which matlab func-
tions benefit from multithreaded computation?,
http://it.mathworks.com/matlabcentral/answers/

95958-which-matlab-functions-benefit-from-multithreaded-computation.

[30] Sarah Wait Zaraneck. partictoc, https://it.mathworks.com/

matlabcentral/fileexchange/27472-partictoc.


