
UNIVERSITY OF CAGLIARI

PhD PROGRAM IN MATHEMATICS AND

COMPUTER SCIENCE

Cycle XXXII

Numerical Linear Algebra applications in
Archaeology:

the seriation and the photometric stereo problems

Scientific Disciplinary Sector: MAT/08 Numerical Analysis

PhD Candidate: Anna Concas

PhD PROGRAM COORDINATOR:

Prof. Michele Marchesi

SUPERVISORS:

Prof. Giuseppe Rodriguez

Dr. Caterina Fenu

Final exam
Academic Year 2018-2019

Thesis defence: January-February 2020 Session

A.C. gratefully acknowledges Sardinia Regional Government for the financial support of
her PhD scholarship (P.O.R. Sardegna F.S.E. - Operational Programme of the Autonomous
Region of Sardinia, European Social Fund 2014-2020 - Axis III Education and training,
Thematic goal 10, Investment Priority 10ii), Specific goal 10.5.

Questa Tesi può essere utilizzata, nei limiti stabiliti dalla normativa vigente sul Diritto
d’Autore (Legge 22 aprile 1941 n. 633 e succ. modificazioni e articoli da 2575 a 2583 del
Codice civile) ed esclusivamente per scopi didattici e di ricerca; è vietato qualsiasi utilizzo
per fini commerciali. In ogni caso tutti gli utilizzi devono riportare la corretta citazione
delle fonti. La traduzione, l’adattamento totale e parziale, sono riservati per tutti i Paesi.
I documenti depositati sono sottoposti alla legislazione italiana in vigore nel rispetto del
Diritto di Autore, da qualunque luogo essi siano fruiti.

The proper place of Archaeology is the faculty of Mathematics.

David L. Clarke, 1968

Acknowledgments

Everything I have done during these three years, would not have been possible without
the support that I have received from many people.

Firstly, I wish to express my deepest gratitude to my supervisor, Professor Giuseppe
Rodriguez, for being a patient guide in this research experience, for his huge help and
immense knowledge. I could not have imagined having a better mentor! A very special
thank to my co-supervisor Dr. Caterina Fenu for being also a real friend! Without her
constant support and valuable advice, this research would not have been possible.

My gratitude is also extended to Prof. Raf Vandebril, who supervised my research
visit in Leuven, for his suggestions and for giving me the opportunity to join the Leuven
group. I would like to express my sincere gratitude to Prof. Lothar Reichel for the ongoing
collaboration and for the inspiring discussions during my stay in Kent. A very special thank
to Prof. Matteo Sommacal, my supervisor during my visit in Newcastle upon Tyne, for
the countless ideas and stimulating discussions, for the careful review of this thesis and for
having made me feel at home together with his beautiful family.

I gratefully acknowledge the Northumbria University and in particular the Department
of Mathematics, Physics and Electrical Engineering for the funding received that supported
my research visit in Newcastle.

A sincere thank to my high school Math teacher, Prof.ssa Perra. Without her, I surely
would never have the courage to start a scientific academic carrier after classical studies.

I am also extremely grateful to the whole group of people who were based in Viale
Merello, especially to the member of the CaNA (Cagliari Numerical Analysis) Group I
haven’t mentioned yet: Alessandro who was extremely helpful during my stay in Kent,
Federica, Luisa and Patricia.

My sincere appreciation to all the people I had the pleasure of meeting during this three
years and, more than anyone, the people I met in Newcastle with whom the time spent has
been memorable. In particular I wish to thank the italian group and especially Marta who
was a very good friend. I really hope to see all of them again!

I am incredibly thankful to all my friends and particularly to Sara for always comforting
me. Her sincere friendship is essential for me!

A heartfelt thank you to Francesco, my anchor in this experience and in life. His
determination is an ispiration for me!

Finally, I would like to deeply thank my parents Bruno and Teresa and my sister
Daniela (and also my two feline sisters Maia and Gioia) for being always by my side and for
supporting me throughout these years and the experiences far from home. Un ringraziamento
anche a mia nonna Giovanna, a tutto il resto della mia famiglia e alla famiglia di Francesco
che considero parte della mia.

vii

Abstract

The aim of this Thesis is to explore the application of Numerical Linear Algebra to
Archaeology. An ordering problem called the seriation problem, used for dating findings
and/or artifacts deposits, is analysed in terms of graph theory. In particular, a Matlab
implementation of an algorithm for spectral seriation, based on the use of the Fiedler vector
of the Laplacian matrix associated with the problem, is presented. We consider bipartite
graphs for describing the seriation problem, since the interrelationship between the units
(i.e. archaeological sites) to be reordered, can be described in terms of these graphs. In our
archaeological metaphor of seriation, the two disjoint nodes sets into which the vertices of a
bipartite graph can be divided, represent the excavation sites and the artifacts found inside
them.

Since it is a difficult task to determine the closest bipartite network to a given one,
we describe how a starting network can be approximated by a bipartite one by solving a
sequence of fairly simple optimization problems.

Another numerical problem related to Archaeology is the 3D reconstruction of the
shape of an object from a set of digital pictures. In particular, the Photometric Stereo (PS)
photographic technique is considered.

ix

Contents

Introduction 1

1 Mathematical Preliminaries 4
1.1 Some factorizations . 4

1.1.1 Null space, range and rank . 4
1.1.2 Eigenvalues and eigenvectors . 5
1.1.3 Singular value decomposition . 8
1.1.4 Polar decomposition . 10

1.2 Some classes of matrices . 10
1.2.1 Reducible and nonnegative matrices 11
1.2.2 Housholder transformations and QR factorization 12
1.2.3 Toeplitz and circulant matrices . 13

1.3 Graphs and complex networks . 14
1.4 A brief overview on permutations . 17
1.5 Computational complexity . 19

1.5.1 Complexity classes . 20

2 The seriation problem 23
2.1 Overview on the context and applications of seriation 23

2.1.1 The data matrix . 26
2.2 The seriation problem in terms of graph theory 27

2.2.1 The similarity matrix . 31
2.2.2 Connections between the seriation problem and other combinatorial

problems . 33
2.3 PQ-trees . 35

2.3.1 Matlab implementation of PQ-trees 36
2.4 A spectral algorithm for the seriation problem 39

2.4.1 Implementation of spectral seriation 46
2.4.2 Numerical experiments . 48

2.5 Seriation in the presence of imperfect data 51
2.5.1 The case of a multiple Fiedler value 52

2.6 Conclusions and future work . 63

3 A spectral method for “bipartizing” a network 65
3.1 Bipartite graphs and bipartivity measures 65
3.2 Spectral approximation of bipartite graphs 68

3.2.1 Approximating the spectral structure of a bipartite graph 70

xi

xii CONTENTS

3.3 A spectral bipartization method . 74
3.4 Anti-communities . 77
3.5 Computed examples . 79

3.5.1 The NDyeast network . 84
3.5.2 The geom network . 86

3.6 Conclusions and future work . 87

4 Photometric stereo under unknown lighting 89
4.1 Photometric Stereo and application to archaeology 89
4.2 Notation and classical assumptions . 91
4.3 Photometric stereo with known lights position 93

4.3.1 Hamilton–Jacobi formulation . 93
4.3.2 Poisson formulation . 94

4.4 Photometric stereo under unknown lighting 98
4.5 Determining the right orientation of the surface 101
4.6 Numerical experiments . 102

4.6.1 Synthetic data set . 102
4.6.2 Experimental data sets . 105

4.7 Conclusions and future work . 107

Conclusion 109

Bibliography 111

List of Figures

1.1 Euler diagram for P, NP, NP-complete, and NP-hard complexity classes of
computational problems. 22

2.1 PQ-tree over the set U = {1, . . . , 6} and the encoded permutations. 37
2.2 A PQ-tree corresponding to a pre-R matrix of dimension 10. 48
2.3 Processing of the Bornholm data set using the spectral algorithm. 48
2.4 Comparison between the sequential and the parallel versions of the spectral

algorithm. 49
2.5 Comparison between the sequential version of Algorithm 3 and the function

seriate from the R package Seriation from [85]. 50
2.6 Bandwidth reduction of a sparse matrix using the spectral algorithm. 51
2.7 Cycle graph with n = 5 nodes and the related bipartite graph. 53
2.8 Star graph with n = 6 nodes and related bipartite graph. 57
2.9 On the left: the star graph Ŝ6. On the right: the bipartite graph related with

the star graph Ŝ6. 63

3.1 Results of the spectral bipartization method for a test matrix with (n1, n2) =
(512, 256), sparsity ξ = 10−2 and perturbation η = 10−4. 80

3.2 Spectrum of the test matrix with (n1, n2) = (512, 256), sparsity ξ = 10−2

and perturbation η = 10−4. 81
3.3 Results of the spectral bipartization method for a test matrix with (n1, n2) =

(512, 256), sparsity ξ = 10−2 and perturbation η = 10−3. 81
3.4 Bipartition error ẼN for (n1, n2) = (512, 256) for unweighted and weighted

random graphs with sparsity ξ = 10−2. 84
3.5 Bipartition error ẼN for (n1, n2) = (512, 256) for unweighted and weighted

random graphs with perturbation η = 10−2. 84
3.6 Spectrum of the reduced adjacency matrix for the NDyeast network. 85
3.7 Analysis of the unweighted NDyeast network. 86
3.8 Spectrum of the reduced adjacency matrix for the geom network. 87
3.9 Analysis of the weigthed geom network. 87

4.1 Synthetic surface and data set composed by 7 pictures corresponding to a
different lighting condition. 103

4.2 Singular values of the data matrix and singular values of the same matrix
after 10% Gaussian noise is added. 103

4.3 Recovered rotated light directions and surface reconstruction. 104
4.4 Reconstruction error with Dirichlet and Neumann boundary conditions. . . 104

xiii

4.5 The SHELL data set and the light directions identified by the reconstruction
algorithm. 106

4.6 Three different views of the 3D surface reconstructed from the SHELL data set.106
4.7 Stela of the Ptolemaic period and its 3D reconstruction obtained by the

algorithm. 107
4.8 Three details of the Ptolemaic stela reconstruction. 108

List of Tables

2.1 Adjacency matrix for archaeological data originated from female burials
at the Germanic Bornholm site, Denmark [104, 105]. The rows report the
names of the tombs, the columns the identification codes of the found fibulae. 27

2.2 Functions in the PQser toolbox devoted to the manipulation of PQ-trees. . 38
2.3 Functions in the PQser toolbox devoted to the solution of the seriation

problem. 46
2.4 Tuning parameters for the PQser toolbox; the functions affected are re-

ported in parentheses, together with the default value of each parameter. . . 46

3.1 Average values of four indices for evaluating the results obtained by the
spectral bipartization algorithm, over 10 realization of the test networks with
densities ξ = 10−2 and η = 10−4 for three different pairs (n1, n2). 82

3.2 Average values of four indices for evaluating the results obtained by the
spectral bipartization algorithm, over 10 realization of the test networks with
densities ξ = 10−2 and η = 10−5 for three different pairs (n1, n2). 83

3.3 Average values of four indices for evaluating the results obtained by the
spectral bipartization algorithm, over 10 realization of the test networks with
densities ξ = 10−1 and η = 10−4 for three different pairs (n1, n2). 83

4.1 Influence of the distance between the object and the light source. 105

xiv

Introduction

Mathematics is widely used in Archaeology and it represents an almost indispensable
tool at any stage of archaeological procedures such as documentation, data recording
during excavations, and digital archiving, just to mention some of the several phases in
archaeological investigations.

A crucial part of the archaeologists’ work consists of dating findings and/or artifacts
deposits. The deposits may be graves in a prehistoric cemetery and may contain artifacts
such as pottery, jewellery or utensils that have been classified into types by considering
their material, shape, style of decoration, etc. When archaeological deposits cannot be
dated by deciphering inscriptions or applying physical or chemical techniques, the use of
mathematical and statistical techniques is crucial for solving the problem of sequencing the
archaeological sites in a chronological order.

A fundamental ordering problem of particular interest to archaeologists, is the so-called
seriation problem. By asking to find the best enumeration order of a set of elements
according to a given correlation function, so that elements with higher similarity are closer
in the resulting sequence, the seriation problem consists of ordering the archaeological sites
in a chronological order. It is based on the concept that archaeological units having similar
contents, as determined by the arrangement into types, should be closer in time than deposits
with dissimilar findings.

The pioneer of seriation is considered to be the Archaeologist Petrie who introduced
seriation to sequence, in a chronological order, tombs found in the Nile area at the end of XIV
century [152]. He used a cross tabulation of graves and objects found inside them. Initially,
the rearrangement of rows and columns of this contingency table was done manually. Later,
many different algorithms have been proposed to solve the seriation problem. In particular,
a matrix method was first developed in the 50s with the works of the archaeologist Brainerd
[25] and the statistician Robinson [158]. The proposed method is based on the ordering of
the similarity matrix that contains the correlations between the sites to be chronologically
reordered. Later, Kendall [108] proposed a procedure for directly ordering the data matrix
which is the simplest representation of archaeological data. See [165] for the description of
fairly recent development of the use of matrices and networks to solve the seriation problem.

A spectral algorithm, developed first by Barnard et al. [12] for computing an envelope-
reducing reordering of sparse matrices, was considered for the solution of the seriation
problem by Atkins et al. [6]. In this Thesis, we present a Matlab implementation of the above
algorithm for spectral seriation. The algorithm is based on the use of the Fiedler vector of the
Laplacian matrix associated with the problem, which encodes the set of admissible solutions
into a compact data structure called PQ-tree. In particular, we describe a Matlab toolbox for
spectral seriation and for manipulating the PQ-tree data structure containing all the possible
reorderings that solve the seriation problem in case of consistent data. Therefore, we point

1

2 INTRODUCTION

out that the presence of a multiple Fiedler value may have a substantial influence on the
computation of an approximated solution, in the presence of inconsistent data sets.

The seriation problem is modelled here in terms of graph theory. Indeed, in the archaeo-
logical application, seriation consists in finding the best arrangement of a set of the units, to
be reordered, whose interrelationship can be defined by a bipartite graph. A graph is said to
be bipartite if its nodes can be divided into two nonempty sets such that there are no edges
between nodes in the same set. In our archaeological metaphor of seriation, the two disjoint
nodes sets represent the excavation sites and the artifacts found inside them.

Bipartivity is a fundamental topological property of graphs and networks and determining
if a graph is bipartite or not, is equivalent to observe if the graph is two-colourable or not [20].
This perfect separation into two colours (or classes more in general) is rare in most of the
real-world situations. Hence, in the literature there have been some efforts to measure
the quantity of bipartivity a non-bipartite graph has [68, 95]. Some spectral approaches,
based on the eigedecompostion of the adjacency matrix or of other matrices that describe
the network, have been proposed by various authors for detecting approximately bipartite
structures in given networks [44, 51].

With the aim of finding an approximate solution to the the difficult task of determining
the “closest” bipartite network to a given one, we describe how a starting network can be
approximated by a bipartite one by solving a sequence of fairly simple optimization problems.
The proposed spectral “bipartization” algorithm detect an approximate bipartization and
produces a node permutation which highlights the possible bipartite nature of the initial
adjacency matrix identifying the two sets of nodes expected in a bipartite structure. The same
computational procedure can also be used to detect the presence of a large anti-community,
that is a group of nodes loosely connected internally but with many external links, in a
network and identify it.

Another application of Numerical Linear Algebra in Archaeology, considered in this
Thesis, is a classical problem in Computer Vision consisting of the reconstruction of the 3D
shape of an object from a set of 2D digital pictures. To solve this inverse problem many
different techniques have been used [97]. We consider a particular photographic technique
called photometric stereo (PS). PS exploits shading information when several light sources
illuminate an object and requires that the object is observed from a fixed point but under
different lighting conditions. The fact that PS uses only a fixed camera and a movable light
to acquire a set of digital pictures to generate 3D scans of the observed object, makes it an
efficient tool for 3D recording engravings and relieves.

While the traditional approach requires that the position of the light sources and the
illumination intensity used for taking the digital images are accurately known, we explore
photometric stereo under unknown lighting.

The Thesis is divided into 4 chapters and a brief description of the content of each one
is reported below.

Chapter 1 introduces preliminary notions of Numerical Linear Algebra and recall various
mathematical tools used in the rest of the Thesis. We remind some fundamental matrix
factorizations recurrent in various parts of the whole work. Few classes of matrices
are briefly analysed, together with basic concepts of graph theory. A brief outline on
permutations is given and we also consider some notions of computational complexity
theory since some problems considered are characterised to be difficult to solve.

INTRODUCTION 3

Chapter 2 discusses how the seriation problem can be described using the terminology
typical of graph theory. Focusing on the archaeological application of seriation, we
describe a Matlab implementation of a spectral algorithm together with the toolbox
that provides the functions to manipulate and visualize a compact data structure,
called PQ-tree, into which the set of admissible solutions of the seriation problem are
encoded.

Chapter 3 illustrates a spectral method for approximating bipartite networks which models
the interaction between two different types of object. The “bipartization” method ex-
ploits the spectral structure of bipartite graphs and determines a node permutation that
separates the nodes of a given network into two disjoint set, in order to approximate a
connected undirected graph by a bipartite one. An application of the algorithm to the
detection of a large anti-community is considered.

Chapter 4 describes the photometric stereo problem, with application to archaeology, in the
3D reconstruction of the shape of an object starting from a set of 2D digital pictures.
While the classical approach requires that the position of the light sources is accurately
known, we illustrate an approach for solving the photometric stereo problem under
unknown lighting.

Chapter 1

Mathematical Preliminaries

With the aim of making the Thesis self-contained, in this Chapter we briefly review
some notions and results of Linear Algebra that will be useful in the rest of the Thesis for
delineating how Numerical Linear Algebra can be used in the framework of Archaeology.

Although the definitions and results below are given in general for complex matrices,
we are concerned about matrices having real entries.

1.1 Spectral decomposition, singular value decomposition and
polar decomposition

Before recalling some of the most important factorizations, we quickly analyse few
fundamental concepts of Linear Algebra.

Given a set of vectors {v1, . . . ,vn} in Rm, the vectors vj are linearly independent if∑n
i=1 αivi = 0 implies α1 = · · · = αn = 0. On the contrary, the set of vectors is said

to be linearly dependent if at least one of the vectors in the set can be defined as a linear
combination of the others, i.e., a nontrivial combination of the vectors vi is zero.

Let {v1, . . . ,vn} vectors in Rm; the set of all linear combinations of these vectors is a
subspace called span of {v1, . . . ,vn}

span{v1, . . . ,vn} =
{ n∑
j=1

βjvj : βj ∈ R
}
.

A set of vectors in a vector space V is a basis if its elements are linearly independent and
every element of V is a linear combination of elements of the considered set.

1.1.1 Null space, range and rank

The range of a m×n matrix A, is the set of vectors, denoted here as ran(A), defined by

ran(A) = {y ∈ Rm : y = Ax for some x ∈ Rn}.

The fact that any vector given by the product Ax can be written as

b = Ax =
n∑
j=i

xjaj ,

4

1.1. SOME FACTORIZATIONS 5

where aj denotes the j-th column of A, leads to the characterization of ran(A) expressed
by the following result; see [176].

Theorem 1.1.1. ran(A) is the space spanned by the columns of A, i.e.,

ran(A) = span{a1, . . . ,an}

if A = [a1 · · ·an] is a column partitioning of A.

The nullspace of A, indicated with null(A) here, is the set of vectors defined by

null(A) = {x ∈ Rn : Ax = 0},

where 0 is the null vector in Rm.
The column rank of a matrix is the dimension of its space spanned by its columns and,

similarly, the row rank of a matrix is the dimension of the row space. We may also define
the column rank of a matrix A as the maximum number of linearly independent columns
and, in the same way, we may say that the row rank is the maximum number of linearly
independent rows of A. Column rank equals row rank for every m× n matrix A; a proof of
this statement can be found for example in [118]. We refer to this number as the rank of the
considered matrix A. Hence, the rank of a matrix A is defined by

rank(A) = dim(ran(A)),

i.e., the rank of a matrix is the dimension of its column (or rows) space.

1.1.2 Eigenvalues and eigenvectors

Definition 1.1.1. (Eigenvalues and eigenvectors). Let A ∈ Cn×n be a square matrix. An
eigenvector of A is a vector v 6= 0 ∈ Cn such that

Av = λv, λ ∈ C.

The scalar λ is called the eigenvalue associated to the eigenvector v.

From the definition it follows that the eigenvectors of a matrix A are the non-trivial
solutions of the linear system (A − λI)v = 0 and hence the eigenvalues are the roots of
the characteristic polynomial of A defined by pA(z) = det(A− zI). The set of these roots,
solutions of the characteristic equation det(A− zI) = 0, is the so-called spectrum of A and
denoted here as σ(A). The spectral radius ρ(A) is defined by

ρ(A) = max
i=1,...,n

{|λi| : λi ∈ σ(A)}.

By the fundamental theorem of algebra it follows that the characteristic polynomial has
exactly n roots, counted with multiplicity, i.e., every square matrix of order n has n, possibly
not distinct, eigenvalues. The algebraic multiplicity of an eigenvalue λ of A is defined to
be its multiplicity as a root of pA. An eigenvalue with algebraic multiplicity 1 is said to be
simple.

If an eigenvalue of a given matrix A of order n is known, then it is possible to find a
matrix of dimension n− 1 such that its spectrum contains the same eigenvalues of A except
for the one we are using for reducing the problem. This process is called deflation.

6 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Note that both the determinant and the trace of a matrix can be characterised in terms of
its eigenvalues. Indeed, if σ(A) = {λ1, . . . , λn} is the spectrum of a matrix A of order n,
then the determinant and the trace, denoted by det(A) trace(A), are equal to the product
and the sum of the eigenvalues of A respectively, counted with algebraic multiplicity

det(A) =
n∏
i=1

λi and trace(A) =
n∑
i=1

λi,

where the trace function is the sum of the diagonal entries of the considered matrix, i.e.,

trace(A) =
n∑
i=1

aii.

The set of eigenvectors corresponding to an eigenvalue λi of a matrix A ∈ Cn×n,
together with the zero vector, is a subspace of Cn called eigenspace and denoted here by
Eλi . The geometric multiplicity of λi is the dimension of the corresponding eigenspace
Eλi , i.e. the number of linearly independent eigenvectors associated with λi. The geometric
multiplicity can also be defined as the dimension of null(A− λiI) since this nullspace is
again the eigenspace Eλi .

In general, the algebraic multiplicity of an eigenvalue is at least as great as its geometric
multiplicity. An eigenvalue whose algebraic multiplicity exceeds its geometric multiplicity
is said to be a defective eigenvalue. A matrix with at least one defective eigenvalue is
referred to as a defective matrix. Nondefective matrices are also known as diagonalizable.

Theorem 1.1.2. (Spectral decomposition). A matrix A ∈ Cn×n is diagonalizable if and
only if there exists an invertible matrix V of order n and an n× n diagonal matrix Λ such
that

A = V ΛV −1. (1.1.1)

Proof. See [176].

The factorization (1.1.1) is called eigendecomposition or spectral decomposition of the
matrix A.

Hence, a matrix A of size n × n is diagonalizable if it has n linearly independent
eigenvectors and viceversa. If A not only has n linearly independent eigenvectors, but
they can also be chosen to be orthogonal, then A is said to be unitarily diagonalizable. In
such a case, there exists a unitary matrix Q (i.e., Q−1 = Q∗; a unitary real matrix is said
orthogonal) such that

A = QΛQ∗,

where Q∗ is the conjugate transpose of Q, i.e. Q∗ = Q
T . A class of matrices unitarily

diagonalizable is given by the Hermitian matrices. Recalling that a complex square matrix
A is Hermitian if A = A∗ (if A is real, then A is called symmetrix if A = AT), we have the
following well-known result, a proof of which can be found in [176].

Theorem 1.1.3. A Hermitian matrix is unitarily diagonalizable and its eigenvalues are real.

The following result states that the eigenvalues of a Hermitian matrix of order n are
interlaced with those of any submatrix of A obtained by removing rows and columns of A.

1.1. SOME FACTORIZATIONS 7

Theorem 1.1.4. (Cauchy’s interlacing theorem). Let A be an n× n Hermitian matrix and
let B be a principal submatrix of A of order m ≤ n. If λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn are
the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are those of B then

λj ≤ µj ≤ λn−m+j , for all j ≤ m.

We recall that if x is an eigenvector of a given matrix, then the Rayleigh quotient, defined
by

(Ax,x)
(x,x) ,

where (·, ·) denotes the Euclidean inner product on Cn, gives the corresponding eigenvalue.
The eigenvalues of Hermitian matrices have a characterization that is concerned with the
quadratic form expressed through the Rayleigh quotient, as the following theorem states.
See [83] for a proof.

Theorem 1.1.5. (Courant-Fischer Minimax Theorem). Let A ∈ Cn×n be a Hermitian
matrix and S be any k-dimensional subspace. Then

λk(A) = max
dim(S)=k

min
0 6=y∈S

yTAy
yTy ,

for k = 1, . . . , n.

The Hermitian matrices are not the only ones that are unitarily diagonalizable. Other
examples include unitary matrices and circulant matrices, just to mention some of them.

Considering that by definition, a matrix A is said to be normal if AA∗ = A∗A, the class
of unitarily diagonalizable matrices can be characterised in terms of the normal matrices, as
expressed by the following result.

Theorem 1.1.6. A matrix is unitarily diagonalizable if and only of it is normal.

In this brief recap of well-known definitions and results, we do not describe more
general factorizations involving the eigenvalues and eigenvectors such as the Schur and
Jordan decompositions. The interested reader can consult, for example, references [83, 176].

In some situations one may need only the approximation of few eigenvalues or wishes
to have a rough idea of where the eigenvalues lies in the complex plane by considering the
so-called localization theorems. A simple well-known localization result uses any matrix
norm to state that

‖λi‖ ≤ ‖A‖ , i = 1, 2, . . . , n

i.e., any eigenvalue of an n× n matrix belongs to the disc centered at the origin with radius
given by ‖A‖.

In the framework of the eigenvalues localization, the following theorem, due to Gersh-
gorin, may be useful to bound the spectrum of a square matrix in a more precise way.

Theorem 1.1.7. (Gershgorin’s Circle Theorem). Let A be a complex square matrix of order
n. Then the spectrum of A is such that

σ(A) ⊆
n⋃
i=1

Di

8 CHAPTER 1. MATHEMATICAL PRELIMINARIES

where Di is the i-th disc of the complex plane defined as

Di =
{
z ∈ C : |z − aii| ≤

n∑
j=1
j 6=i

|aij |
}

i = 1, . . . , n. (1.1.2)

The previous result, the first of three Gershgorin’s theorems, defines the so-called row
circles. Given a square matrix A of order n, the column circles are the sets defined by

Cj =
{
z ∈ C : |z − ajj | ≤

n∑
i=1
i 6=j

|aij |
}

j = 1, . . . , n (1.1.3)

and, applying the above theorem to AT , it follows that

σ(A) ⊆
n⋃
j=1

Cj .

Denoting by Sr and Sc the union of the row discs (1.1.2) and column discs (1.1.3), respec-
tively, i.e.

Sr =
n⋃
i=1

Di, Sc =
n⋃
j=1

Cj ,

it then follows that
σ(A) ⊆ Sr ∩ Sc.

The result below is knows as the second Gershgorin’s theorem.

Theorem 1.1.8. Suppose that there are k Gerschgorin discs (1.1.2) whose union S1 is
disjoint from all other n− k discs, so that Sr is given by the union of

S1 =
k⋃
i=1

Di, S2 =
n⋃

i=k+1
Di, S1 ∩ S2 = ∅.

Then S1 contains exactly k eigenvalues, (counted with their multiplicities) and S2 the
remaining n− k.

1.1.3 Singular value decomposition

Another fundamental decomposition, that will be useful in different parts of the Thesis,
is the singular value decomposition, shortened here as SVD. The existence of the SVD
for matrices was established in a linear algebra context independently by Beltrami [15],
Jordan [103] and Sylvester [171]. Schmidt [161] and Weyl [182] approached the decomposi-
tion from the framework of the integral equations, by developing an infinite-dimensional
generalization. For a survey on the history of the singular value decomposition see [169].

Definition 1.1.2. (Singular values and singular vectors). Given a matrix A ∈ Cm×n, a
number σ ≥ 0 is called a singular value for A if and only if there exist unit vectors u ∈ Cm
and v ∈ Cn such that

Av = σu and A∗u = σv.

The vectors u and v are called left-singular vectors and right-singular vectors of A, respec-
tively.

1.1. SOME FACTORIZATIONS 9

Theorem 1.1.9. (Singular value decomposition). LetA ∈ Cm×n be a complex matrix. Then
there exist two unitary matrices

U = [u1 · · · um] ∈ Cm×m and V = [v1 · · · vn] ∈ Cn×n

such that
A = UΣV ∗ (1.1.4)

where Σ = diag(σ1, . . . , σp) ∈ Rm×n with p = min{m,n}.

The identity (1.1.4) is called the Singular Value Decomposition (SVD) of the matrix
A. The diagonal matrix Σ contains the singular values of A conventionally ordered as
σ1 ≥ σ2 ≥ . . . σp and the columns of U and V are the corresponding (properly normalized)
left and right singular vectors, respectively.

The SVD has a geometric meaning. Specifically, given a matrix A, the semiaxis
directions of the hyperellipsoid E defined by E = {Ax : ‖x‖2 = 1} are given by the left
singular vectors and their lengths are the singular values of A. See [176] for a complete
description of the geometric interpretation of the SVD of a real matrix.

If U∗AV = Σ is the singular value decomposition of A ∈ Cm×n and m ≥ n, then,
from Definition 1.1.2, it follows immediately that, for i = 1, . . . , n

A∗Avi = σ2
i vi, (1.1.5)

AA∗ui = σ2
i ui. (1.1.6)

This shows that there is a connection between the SVD of A and the eigensystem of the
Hermitian matricesA∗A andAA∗. Specifically, from (1.1.5) it follows that the right singular
vectors of A are eigenvectors of A∗A and the identity (1.1.6) ensures that the left singular
vectors of A are eigenvectors of AA∗. Therefore, the nonzero singular values of A are the
square roots of the nonzero eigenvalues of both A∗A and AA∗. If A = A∗, then the singular
values of A are the absolute values of the eigenvalues of A.

Assume that A has dimension m× n. The number of zero singular values of A is p− r
where p = min{m,n} and r ≤ p, the number of nonzero singular values of A, is such that
r = rank(A). It can be shown that

ran(A) = span{u1, . . . ,ur} and null(A) = span{ur+1, . . . ,up}.

In a wide range of applications, the factorization (1.1.4), that is also known as the full
SVD, is rarely required especially for the fact that its computation is expensive. It is often
sufficient and, above all, faster to compute a reduced version of the SVD. The following
decomposition of a matrix considers only the columns of the matrices U and V associated
with nonzero singular values and hence it contains the essential singular value decomposition
information.

Definition 1.1.3. (Compact SVD). The compact SVD is the factorization

A = UrΣrV
∗
r ∈ Cm×n

where Ur and Vr are a m× r and n× r matrices respectively, with orthonormal columns
that are the left and right singular vectors, respectively, corresponding to the r nonzero
singular values of A.

10 CHAPTER 1. MATHEMATICAL PRELIMINARIES

An even more “economical” reduced version of the singular value decomposition is
obtained by considering only the first k singular values.

Definition 1.1.4. (Truncated SVD). The truncated SVD of A ∈ Cm×n is defined as the
matrix

Ak = UkΣkV
∗
k , Σk = diag(σ1, . . . , σk) ∈ Rk×k

where Σk is obtained by replacing with zeros the smallest n− k singular values with k ≤ r.
The matrices Uk and Vk are of size m× k and n× k, respectively.

The matrix Ak is a rank-k matrix and, in particular, it it the best rank-k approximation
of A in both the spectral and the Frobenius norm. This result is known as the Eckart-Young-
Mirsky theorem [62, 137]. The matrix Ak generally differs from the original one in all its
entries. See [82] for a generalization of the theorem for obtaining a best approximation of
lower rank such that a specified set of columns of the matrix remains fixed.

Even though there is a connection between the SVD and the spectral decomposition,
they have some fundamental differences. First of all, we saw that not all the matrices have
an eigendecomposition, whereas all matrices (even rectangular ones) have a singular value
decomposition; see Theorem 4.1 in [176]. Another difference between the two factorizations
is that while the eigenvalue decomposition uses just one basis (given by the set of the
eigenvectors) that is not orthogonal in general, the SVD uses two different orthonormal
bases the sets of left and right singular vectors.

1.1.4 Polar decomposition

The polar decomposition is the generalization to matrices of the polar representation of
a complex number z = a+ ib, given by z = reiθ where r =

√
a2 + b2 and eiθ is defined

by (cos(θ), sin(θ)) = (a/r, b/r).
The polar decomposition is closely related to the SVD and it is the representation of

a matrix as a product of a symmetric positive definite matrix and a unitary matrix as the
following result states.

Theorem 1.1.10. (Polar decomposition). Let A ∈ Cm×n with m ≥ n. Then there exists a
matrix U ∈ Cm×n with orthonormal columns and a unique Hermitian positive semidefinite
matrix H ∈ Cn×n such that A = UH .

Proof. See [91].

The matrix U is called the orthogonal polar factor and we refer to H as the symmetric
polar factor.

The polar decomposition states that any square matrix A can be factorized in the form
A = UH where U is orthogonal and H is symmetric and positive semidefinite. Note that if
A = UΣV T is the SVD of A, then A = (UV T)(V ΣV T) is its polar decomposition. See
also [83] for further discussion.

1.2 Some classes of matrices

This section collects a variety of definitions that are needed in the following Chapters.

1.2. SOME CLASSES OF MATRICES 11

Definition 1.2.1. (Permutation matrix). A permutation matrix P is a square binary matrix
obtained by permuting the rows of an identity matrix.

Permutation matrices represent permutation of elements and, in particular, the pre-
multiplication to a matrix A, to give the matrix PA, results in permuting the rows of the
considered matrix A. One obtains a columns permutation of A when considering instead
the product AP .

1.2.1 Reducible and nonnegative matrices

Definition 1.2.2. (Reducible matrix). A square matrix A of order n is reducible if there
exists a permutation matrix P such that the matrix B = PAP T has the upper block
triangular form

B = PAP T =
[
B11 B12
0 B22

]
,

where B11 and B22 are nonempty square submatrices of size k × k and (n− k)× (n− k),
respectively. A matrix is said to be irreducible if it is not reducible.

The reducibility of a matrix is a fundamental property and it is strictly related to the
connectivity of a graph as it will be explained below.

Definition 1.2.3. (Definiteness of a matrix). An n × n Hermitian matrix A is said to be
positive definite if x∗Ax > 0 for all nonzero vectors x ∈ Cn and positive semidefinite
if x∗Ax ≥ 0 for all nonzero x ∈ Cn, where x∗ denotes the conjugate transpose of the
vector x. Equivalent conditions for a Hermitian matrix A to be positive (semi)definite is
that λi(A) > 0 for all i (λi(A) ≥ 0 for all i). Negative definite and negative semidefinite
matrices are defined analogously.

Definition 1.2.4. A matrix A ∈ Rm×n is nonnegative if all its elements are nonnegative, i.e.
ai,j ≥ 0 for all i and j. If all the elements are strictly greater than zero, then A is said to be
positive.

The following classical result in matrix theory, proved by Perron and Frobenius, summa-
rizes fundamental spectral properties of nonnegative matrices.

Theorem 1.2.1. (Perron-Frobenius Theorem). Let A be a real, nonnegative matrix. If we
denote with ρ(A) the spectral radius of A, then

a) ρ(A) is an eigenvalue of A;

b) there is a nonnegative vector x such that Ax = ρ(A)x.

The following formulation of the Perron-Frobenius theorem consider an extension to
irreducible matrices.

Theorem 1.2.2. (Perron-Frobenius Theorem). IfA ∈ Rn×n is a nonnegative and irreducible
matrix then

a) ρ(A) > 0;

b) ρ(A) is an eigenvalue of A;

12 CHAPTER 1. MATHEMATICAL PRELIMINARIES

c) there is positive eigenvector x corresponding to ρ(A);

d) ρ(A) has algebraic multiplicity 1.

For further details on Perron-Frobenius theory see [16].
Regarding the eigenvalues localization for irreducible matrices the following theorem

can be mentioned.

Theorem 1.2.3. (3rd Gershgorin’s theorem or Taussky’s theorem). Let A be a n × n
irreducible matrix. If an eigenvalue of A lies on the boundary of of the union Sr =

⋃n
i=1Di

of all the Gershgorin’s disc, then it lies on the boundaries of each Di, i = 1, . . . , n.

1.2.2 Housholder transformations and QR factorization

In this subsection we quickly review some notions useful in various parts of the whole
Thesis.

Definition 1.2.5. (Householder matrix). Let v ∈ Rn a nonzero vector. A Householder
matrix is an n× n matrix of the form

H = 1− βvvT , β = 2
vTv .

The vector v in the previous definition is the Householder vector. Often, Householder
matrices are also known as Householder transformations or reflections since, if a vector x is
multiplied by a Householder matrix H , then it is reflected in the hyperplane given by the
orthogonal complement of span{v}. Householder matrices are orthogonal and symmetric
and are extensively used in numerical linear algebra for tridiagonalizing symmetric matrices.
In particular, Householder triangularization is one of the principal methods for computing
the QR decomposition of a matrix.

Theorem 1.2.4. (QR factorization). Let A ∈ Rm×n be a rectangular matrix. Then there
exist an orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n so that

A = QR. (1.2.1)

The identity (1.2.1) is referred to as the QR factorization and it is the basis for a particular
eigenvalue algorithm, the QR algorithm, which is an iterative method for approximating all
the eigenvalues of (not too large) matrices; see [83] for more details. The QR factorization
has a central role also in solving linear least squares problems. Just for completeness, we
briefly recall that a least squares problem consists of solving an overdetermined (m > n)
rectangular system of equations Ax = b, with A of size m× n, so that the 2-norm of the
residual r = b−Ax is minimized.

The QR factorization is strictly related to the well known Gram–Schmidt process for
orthonormalising a set of vectors. Indeed, the Gram-Schmidt iteration is the basis of a
numerical algorithm for computing QR factorizations. It is a process of making the columns
of a matrix orthonormal through a sequence of matrix operations that can be interpreted as
multiplication on the right by upper-triangular matrices; see [176] for further discussion on
the Gram–Schmidt QR decomposition. The Householder algorithm, based on the use of
Householder matrices, for determining the QR factorization of a matrix is numerically more
stable than the Gram-Schmidt orthogonalization. The Householder algorithm is a process

1.2. SOME CLASSES OF MATRICES 13

of making a matrix triangular by a sequence of unitary matrix operations. Given a matrix
A, the Householder method consists of applying a succession of Householder orthogonal
matrices Hj on the left of A, so that the resulting matrix

HnHn−1 · · ·H2H1A = R

is upper triangular. The product Q = H1H2 · · ·Hn−1Hn is an orthogonal matrix too, and
therefore A = QR is the QR factorization of the given matrix A.

1.2.3 Toeplitz and circulant matrices

A Toeplitz matrix T of order n is a matrix whose entries are constant along each diagonal,
that is

tij = ti−j , i, j = 1, . . . , n.

Toeplitz matrices are symmetric with respect to their antidiagonal, i.e., they belong to the
class of the so-called persymmetric matrices. A matrix B ∈ Rn×n is persymmetric if

ZnBZn = BT

where Zn is the commonly named flip or n-by-n exchange matrix, given by

Zn =

O 1

. .
.

1 O

 .
A circulant matrix is a special type of Toeplitz matrix in which each row vector is a cyclic
permutation one to the right relatively to the row above. Specifically, a circulant matrix C of
order n whose entries satisfy the relations

cij = ci−j , i, j = 1, . . . , n

ck−n = ck, k = 1, . . . , n− 1

and it takes the form

C =

c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1
cn−1 cn−2 . . . c1 c0

. (1.2.2)

Hence, a circulant matrix is fully specified by the vector c that appears as its first column.
The remaining columns are cyclic permutations of c with an offset equal to the column
index. The main property of circulant matrices is that they are diagonalized by a discrete
Fourier transform, i.e., by the normalized Fourier matrix F defined by

Fk` = 1√
n
ω−(k−1)(`−1), k, ` = 1, . . . , n

where ω := e
2πi
n is the minimal phase nth root of unit and “i” denotes the imaginary unit.

14 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Another property of a n× n circulant matrix is that its j-th normalized eigenvector is
given by

vj = 1√
n

(1, ωj , (ωj)2, . . . , (ωj)n−1)T (1.2.3)

where ωj = e
2πi
n
j is the jth power of ω. The corresponding eigenvalues are given by

λj = c0 + c1(ωj)n−1 + c2(ωj)n−2 + · · ·+ c1(ωj).

For a real symmetric circulant matrix, the real and imaginary parts of the eigenvectors
are themselves eigenvectors and they lead to the discrete cosine transform (DCT) and the
discrete sine transform (DST), respectively. See [157] where a Matlab toolbox for operating
with Toeplitz and circulant matrices is presented.

1.3 Graphs and complex networks

In this Section we review some mathematical concepts fundamental in graph and com-
plex network theories.

Relations between discrete quantities such as genes, people, proteins, or streets can be
described by networks which consist of nodes, representing the entities of the analysed
complex system, that are connected by edges describing the relations or interactions between
these entities. Networks arise in many applications, including genetics, ecology, epidemi-
ology, energy distribution, sociology, economy and telecommunication; see, e.g., [64, 67,
144] for discussions on networks and their applications. They are represented by graphs
which are defined as follows.

Definition 1.3.1. (Graph). Formally, a graph (or network) G is a pair of sets (V,E) where
V = {vi}ni=1 is a finite set whose elements are called nodes or vertices and E ⊆ V × V =
{ek}mk=1. The elements of the set E are called edges or arcs and ek = (ik, jk) represents an
edge from vertex vik to vertex vjk .

A graph is said to be weighted if each edge ek has a weight wk, unweighted if the
weights are either 0 or 1. A large value of the weight wk > 0 may indicate that edge ek is
important in the considered graph. For instance, in a road network, the weight wk may be
proportional to the amount of traffic on the road that is represented by the edge ek.

In this thesis we won’t consider complex networks, which are graphs satisfying particular
properties related to their topology.

Two vertices are said to be adjacent if there exists an edge connecting them and an arc is
incident to the nodes that connects. The number of edges connected to a node is called degree
of the considered vertex. A graph is called undirected if (ik, jk) ∈ E ⇐⇒ (jk, ik) ∈ E,
and directed otherwise. In an undirected graph, the weights associated with these “two-way
streets” edges are assumed to be the same while, as mentioned above, in unweighted graphs
all weights are set to one. In a directed graph edges have instead an orientation and an edge
starting from a node is an out-edge at that node, although an in-edge is an edge that arrives
at that node.

Networks highlight direct connections between nodes but frequently there are also
fundamental implicit connections in a network. If nodes are not explicitly linked by an
edge, but there are several intermediate nodes in the way between them or there are nodes in

1.3. GRAPHS AND COMPLEX NETWORKS 15

common, is it usual to assume that information can be passed from one to the other. The
following notions are related to these implicit connections.

A walk of length k is a sequence of nodes v1, v2, . . . , vk such that there is an edge
between vertex vi and vertex vi+1 for i = 1, 2, . . . , k − 1. Vertices and edges may be
repeated in a walk. An oriented walk is a walk in which every edge of the sequence is
oriented from vertex vi to vertex vi+1. A closed walk is a walk in which the last node of the
sequence coincides with the first one. A path is a walk with all vertices distinct.

The notion of path is the basis of the concept of connectivity which is a significant
property of a network. In fact, a graph is connected if there is a path connecting any two
nodes. In an undirected network it is simple to identify connectivity: if it is not connected
then there will be a part of the graph that is completely separated from the rest. For a directed
graph the connectivity can be strong or weak: a directed network is strongly connected if
there is an oriented path that connects any pair of nodes, weakly connected if the edges in
the path do not follow the same orientation. If a network is not connected then it can be
divided into components each of which is connected and therefore they are called connected
components. An algorithm for identifying them will be presented in the following.

Given a matrix A, is it possible to associate to it a graph having the indices of A as
nodes and oriented edges (i, j) for every entry aij 6= 0. Remembering that a matrix A is
irreducible if does not exist a permutation matrix P such that the matrix PAP T is block
triangular (see Definition 1.2.2), the following theorem emphasizes that there is a correlation
between the irreducibility of a matrix and the connectivity of the associated graph.

Theorem 1.3.1. A matrix A is irreducible if and only if the directed graph, related to it, is
strongly connected.

In this thesis we will consider simple graphs that are undirected networks without
self-loops (edges connecting nodes to themselves) and multiple edges (arcs between the
same pair of vertices).

There are some matrices devoted to represent a graph. The most commonly used is the
adjacency matrix, defined as follows.

Definition 1.3.2. (Adjacency matrix). The adjacency matrix A of an undirected weighted
simple graph G with n nodes is the n× n matrix A = {ai,j}ni,j=1, where

ai,j =
{
wk, if there is an edge ek between the nodes vi and vj with weight wk,
0, otherwise.

Since G is undirected and the weights associated with each direction of an edge are
the same, the matrix A is symmetric. The diagonal entries of A are zeroes since G does
not contain any self-loop. The largest possible number of edges of an undirected graph
with n nodes without self-loops is n2 − n, but typically the actual number m of edges of
such graphs that arise in applications, is much smaller. The adjacency matrix A, therefore,
is generally very sparse. If G is unweighted, then the entries of the adjacency matrix are
defined as

ai,j =
{

1, if (i, j) ∈ E,
0, otherwise.

Then, it is easy to see that in an undirected network the `th row or column of A has exactly
k` entries. The number k` is the degree of node ` and represents the number of nearest

16 CHAPTER 1. MATHEMATICAL PRELIMINARIES

neighbors that ` has. From the definition of adjacency matrix it is easy to see that for ` ≥ 1,
the (i, j) entry of A` gives the number of walks of length ` starting at node i and ending at
node j.

A matrix that can be used together with the adjacency matrix to construct the graph
Laplacian, that will be defined in Chapter 2, is the degree matrix that is a diagonal matrix
which contains information about the degree of each node.

Definition 1.3.3. (Degree matrix). Given a graph G with n nodes, the degree matrix D of G
is a n× n diagonal matrix whose entries are defined as

di,j =
{
di, if i = j,

0, otherwise
.

In particular, if G is a weighted graph, di equals the sum of the weights of the edges starting
from node i in the undirected network defined by A, that is di =

∑n
j=1 aij . In the case of an

unweighted graph, di is the number of nodes connected to it, that is the number of times an
edge is incident to that vertex.

In an undirected graph, this means that each loop increases the degree of a vertex by
two.Vertex degrees are more complicated in directed networks. In a directed graph, the
term degree may refer either to in-degree or out-degree that is, the number of nodes that can
reach one node or that can be reached from that node, respectively. Bearing in mind that the
adjacency matrix of a directed network has element ai,j = 1 if there is an edge from node i
to node j, in- and out-degrees can be written, respectively, as

din
i =

n∑
j=1

aj,i, dout
i =

n∑
j=1

ai,j .

The degree is used for defining the degree centrality. The notion of centrality of a node
first arose in the context of social sciences and is used for determining the most “important”
nodes in a network. The degree of a node can be used indeed to characterize and measure
the importance of a node in terms of connection with the rest of the network. This centrality
measure quantifies the ability of a node to communicate directly with others. Despite that,
this metric does not give global information on the graph, since it only counts the number
of neighbors of each node and, hence, it fails in taking into account the importance of the
nodes connected to the considered one, e.g., how well-connected they are in the network.

Besides the degree, there are other important quantities that describe global properties
of a given graph, such as the importance of a particular node within the network, or the ease
of traveling from one node to another. Since we are not interested in the computation of
centrality measures, the interested reader can refer to [64, 67].

By taking a different point of view of a graph, one can come up with another way of
representing a network in matrix form in terms of the incidence matrix whose elements
indicate if pairs node-edge are incident or not. The columns of this matrix are labeled by the
arcs and the rows are labeled by the nodes.

Definition 1.3.4. (Incidence matrix). Let G be a simple graph with |V | = n nodes and
|E| = m edges. The incidence matrix B of G is the n×m matrix such that

bi,j =
{

1, if node vi and edge ej are incident,
0, otherwise.

1.4. A BRIEF OVERVIEW ON PERMUTATIONS 17

B can be considered as a signless/unsigned incidence matrix to distinguish it from the
incidence matrix of a directed graph whose entries are such that bi,j = −1 if the edge ej
leaves vertex vi, 1 if it enters vertex vi and 0 otherwise.

The following type of graphs are used in Chapter 2 for describing the seriation problem
and they are in particular analyzed in Chapter 3.

The membership of nodes in groups can be represented by special graphs, namely the
bipartite graphs also called “two-mode” networks in the sociology literature. In a bipartite
network there are two kind of vertices, one representing the original nodes and the other
type representing the groups to which they belong with edges running only between vertices
of unlike kinds. In the case of affiliation networks, for example, the two types of vertex
represent people and the groups they belong to. In the case of a metabolic network the
different types of vertices represent metabolites and metabolic reactions, with edges joining
each metabolite to the reactions in which it participates. See [144] for further examples.
Formally, bipartite networks can be defined as follows.

Definition 1.3.5. (Bipartite graph). A graph G is a bipartite graph if its vertices can be
divided into two disjoint sets U and V containing n and m nodes, respectively, such that
every edge connects a node in U to one in V .

The following definition regards the matrix representation of a bipartite graph.

Definition 1.3.6. (Adjacency matrix of a bipartite graph). The adjacency matrix of a
bipartite graph whose parts contains n and m nodes, respectively, is of the form

AB = P

[
0n A
C 0m

]
P T , (1.3.1)

for a permutation matrix P , where 0n and 0m are null matrices of order n andm respectively.
In an undirected network C = AT and A ∈ Rn×m describes the connections in the graph.

There are many networks in real applications that are exactly or nearly bipartite; see
Chapter 3 for additional details.

1.4 A brief overview on permutations

In this Section we review a few notions of Combinatorics focusing, in particular, on
permutations. Specifically, we will consider only the concepts that will be useful in the rest
of the Thesis. The reader interested in an extensive analysis of elementary combinatorics,
can refer to [27].

The following definition is only one of the possible definitions of permutations. For
example, in algebra and particularly in group theory, a permutation of a set S is defined as a
bijection from S to itself.

Definition 1.4.1. (Permutation). A permutation is a linear ordering of the elements of a set
{1, 2, . . . , n}.

When one wants to stress the fact that the elements to be arranged are n, the act
of organizing the members of the considered set into a sequence or order is called n-
permutation.

18 CHAPTER 1. MATHEMATICAL PRELIMINARIES

In other words, a permutation lists all the elements of a set so that each element is listed
exactly once. For example if n = 3, all the possible permutations written as the following
tuples, i.e., finite ordered sequences of elements, which represent all the possible orderings
of the three-element set {1, 2, 3}

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1).

Note that permutations differ from combinations, which are collections of objects of a
set regardless of order. Hence, one could say that a permutation is an ordered combination.

The following simple statement is probably the best-known fact about permutations;
see [19].

Theorem 1.4.1. The number of permutations of n distinct objects is n!, i.e., the product of
all positive integers less than or equal to n.

Permutations are the elements π of the symmetric group Sn consisting of all bijections
from the set {1, 2, . . . , n} to itself, using composition as multiplication. Hence, for example,
the permutation πσ is the bijection obtained by first applying σ and then π.

The analysis of permutations of finite sets is a fundamental topic in the fields of combina-
torics and group theory; however, permutations appear and are studied in almost every branch
of mathematics and in various other fields of science. For example, in computer science,
they are used for analyzing sorting algorithms, in quantum physics are studied for describing
states of particles, in biology for describing RNA sequences and in telecommunications are
used in the allocation of telephone numbers to subscribers around the world.

In certain situations, additional restrictions may be imposed. In these cases, the problem
is related to permutations with constraints. Generally, the restriction consists in the fact
that only a small number of the total objects need to be ordered. Other common types of
constraints include restricting the type of objects that can be adjacent to one another, or
changing the ordering from linear to another topology (e.g. a round table instead of a line, or
a key-chain instead of a ring). Restrictions to few objects is equivalent to consider n given
distinct objects and searching for how many ways there are to place k < n of them into an
ordering. In this case we consider the k-permutations, or partial permutations, that are the
ordered arrangements of k distinct elements selected from the given set with n objects. And
the total number of partial orderings is given by the following result.

Theorem 1.4.2. Given n distinct objects, the number of possible different ways to place k
of them into an ordering is denoted here by Pnk and its value is given by the product of k
factors as follows

n(n− 1)(n− 2) · · · (n− k + 1) = n!
(n− k)! .

The product is known as the Pochhammer symbol also called falling or descending
factorial.

If π ∈ Sn is a permutation of the set {1, 2, . . . , n}, there are different notations for
representing it in a compact way. The two-line notation is an array consisting in two rows,
the first one lists the elements of the considered set while the second row contains for each
element the image below it. For example, if π ∈ S5 is a permutation given by

π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 5, π(5) = 4,

1.5. COMPUTATIONAL COMPLEXITY 19

then, its two-line form is

π =
(

1 2 3 4 5
2 3 1 5 4

)
.

Since the top line is fixed by considering the natural order or the elements of {1, 2, . . . , n},
one can drop the first row of the two-line notation and write the permutation π in one-line
notation as

π = (2 3 1 5 4).
For this kind of notation, the parentheses are generally omitted and used, instead, for

the cycle notation that expresses the permutation as a composition of cycles. The cycle
(i, j, k, . . . , l) means that π sends i to j , j to k, . . . , and l back to i. The process is then
iterated, selecting an element not in the cycle containing i, until all the elements of the
considered set have been used. Hence, cycle notation describes the effect of repeatedly
applying the permutation on the elements of the set. Then, the previous example in cycle
notation becomes

π = (1, 2, 3)(4, 5). (1.4.1)

The cycle notation allows us to represent the so-called cyclic permutations. A cyclic
permutation (or cycle) is a permutation of the elements of a given set X which maps the
elements of a subset U of X to each other in a cyclic way and leaves all the remaining
elements of the set in question unchanged. If the subset U contains k elements, the cyclic
permutation is called k-cycle. For instance, given X = {1, 2, 3, 4, 5}. the permutation
(1, 3, 2, 5, 4) that sends 1 to 3, 3 to 2, 2 to 5, 5 to 4 and 4 to 1 is a 5-cycle. The permutation
(1, 3, 2, 5), that fixes the element 4, is a 4-cycle. Conversely, the permutation (1.4.1) is not a
cyclic permutation since it separately permutes the triple {1, 2, 3} form the pair {2, 4}.

A permutation of the elements of the set {1, 2, . . . , n} can also be represented as an
n × n matrix. Hence, if π ∈ Sn we can associated to this permutation the matrix X(π)
whose entries xi,j are

xi,j =
{

1, if i = π(j),
0, otherwise.

The resulting matrix is a permutation matrix since it contains only zeros and ones with
exactly a unique entry 1 in every column and in each row; see 1.2.1.

1.5 Computational complexity

In this Section we concisely consider some notions of the computational complexity
theory, a subfield of theoretical computer science.

The primary goal of computational complexity theory is to classify and compare prob-
lems which have similar complexity with respect to a specific computation model and
complexity measure. A computational problem may be solvable by a mechanical application
of mathematical steps, such as an algorithm, and it is regarded as inherently difficult if its
solution requires significant resources, no matter which algorithm is used. Discussion of the
complexity of a computational problem implicitly refers to the complexity of an algorithm
for solving that problem and to the measure of complexity for evaluating the algorithm’s
performance.

Complexity theory attempts to formalise the distinction of computational problems
depending on their difficulty and to make it precise by introducing mathematical models of

20 CHAPTER 1. MATHEMATICAL PRELIMINARIES

computation to study the problems and by quantifying their computational complexity, i.e.,
the amount of resources needed to solve them, such as time and storage.

One of the most commonly used mathematical models in complexity theory is the Turing
machine developed by the logician Alan Turing in 1935. Many types of Turing machines,
such as deterministic, probabilistic, non-deterministic and quantum Turing machines, are
used to define complexity classes and hence for classifying the computational problems
according to their inherent difficulty.

Central to the development of computational complexity theory is the notion of decision
problem. Such a problem can be formalised as a yes-no question of the input values and it
corresponds to decide if the input belongs or not to a given set X . For instance, the problem
of deciding whether a given natural number is prime is a simple example of a decision
problem.

Computational problems can be classified according to their decidability. The resources
needed to realise an algorithm in order to decide an instance of a problem are typically
measured in terms of the number of processor cycles (i.e. elementary computational steps),
the amount of memory space (i.e. storage for auxiliary computations) and the number of
processors used in parallel computing required to give a solution. The methods of complexity
theory can be then useful not only in deciding how we can efficiently use such supplies, but
also for distinguishing which effectively decidable problems can be solved with efficient
decision methods. In this regard, it is customary to theoretically distinguish between the
class of feasibly decidable problems – i.e. those which can be solved in practice by an
efficient algorithm – and the class of intractable or undecidable problems, i.e. those which
lack an effective procedure that always leads to a correct yes-or-no answer and they may
thus be regarded as intrinsically difficult to solve.

Many of the problems studied in complexity theory are decision variants of optimization
problems.

1.5.1 Complexity classes

A complexity class can be defined as the set of decision problems for which there
exists a decision procedure with a given running time or running space complexity. Indeed
computational problems can be classified in terms of how much time or storage space is
needed to solve them as a function of the length n of the input. This first distinction allows the
definition of the time-complexity and space-complexity classes denoted by TIME(f(n)) and
SPACE(f(n)) respectively. The first one denotes the class of problems with time complexity
f(n), while the second class includes all the decision problems that can be solved by a
deterministic Turing machine using an amount of memory space of the order of f(n).

Considering the time-complexity class we briefly consider some of the classifications of
computational problems based on time bounds.

A feasibly decidable computational problem can be solved by a deterministic Turing
machine in polynomial time, i.e. in a number of steps which is proportional to a polynomial
function of the size of the input. The class of problems with this property is known as class
P, or polynomial time complexity class. Hence, the class P includes all the problems for
which there exists a decision algorithm whose time complexity is of polynomial order of
growth. The importance of such a class derives from the fact that it includes many “simple”
problems such as, for instance, the computation of the greatest common divisor, finding a
maximum matching and the problem of determining if a number is prime. Although the

1.5. COMPUTATIONAL COMPLEXITY 21

class P is usually associated with the class of computationally tractable problems, it also
includes many problems which cannot be solved in practice by computers due to the high
degree of the polynomial; see [24] for further details.

The P class can be formally shown to be distinct from other classes such as the class
EXP, or exponential time, which includes all the decision problems that have exponential
runtime, i.e., that are solvable by a deterministic Turing machine in O(2p) time, where
p = p(n) is a polynomial function of the length n of the input.

In this thesis some of the considered problem are included in another important complex-
ity class called class NP or non-deterministic polynomial time. This class includes problems
that are harder to solve than problem of P and hence, it contains highly intractable problems.
The NP class is a natural extension of class P obtained by replacing deterministic algorithms
with non-deterministic ones. In fact, it consists of those computational decision problems
which can be solvable by a non-deterministic Turing machine in polynomial time, i.e. in
a number of steps which is a polynomial function of the size of the input. Examples of
problems belonging to the NP complexity class, arise in numerous areas such as graph theory,
network design, algebra and number theory, game theory, logic, automata and language
theory.

It is easy to see that the complexity class P, containing all the problems deterministically
solvable in polynomial time, is contained in the NP class. A famous conjecture, namely the P
versus NP problem, states that P $ NP, i.e. P is properly contained in the NP class. Basically
this problem asks whether every problem whose solution can be verified in polynomial time,
can also be solved in polynomial time. The P versus NP question, raised in mathematical
logic and theoretical computer science during the middle of the twentieth century, is still
unsolved and proving or disproving the non-coincidence P 6=NP of these complexity classes
remain an important open problem in contemporary complexity theory and it is one of the
seven Millennium Prize Problems. See [166] for a survey on the history of the topic.

The NP class contains more problems than the P one, the hardest of which are called
NP-complete problems. An algorithm solving such a problem in polynomial time is also
able to solve any other NP problem in polynomial time. Formally, a decision problem is
NP-complete if it is NP and every problem in the NP class can be reduced to the considered
one, in polynomial time.

The most important P versus NP problem, asks whether polynomial time algorithms
exist for solving NP-complete, and by corollary, all NP problems. All known algorithms
for NP-complete problems require time that is super-polynomial in the input size, and it is
unknown whether there are any faster algorithms. A significant subclass of NP-complete
problems includes polynomial time approximation algorithms which search for a solution
that is within a certain constant factor of optimality.

Other computational problems are classified as belonging to the NP-hard complexity
class. NP-hard problems do not have to be elements of the NP class and indeed, they may
not even be decidable. For this kind of problems the most efficient known decision algorithm
has exponential time complexity in the worst case. Informally NP-hard (non-deterministic
polynomial time hard) problems are at least as hard as the hardest problems in the NP
complexity class. A more precise definition is that decision problem H is NP-hard when for
every NP problem L, there is a polynomial-time reduction from L to H [178].

An example of an NP-hard problem is the subset sum problem, that consists of the
decision if any non-empty subset of a given set of integers adds up to zero. Another example
is given by the optimization problem of finding the least-cost cyclic route through all nodes

22 CHAPTER 1. MATHEMATICAL PRELIMINARIES

of a weighted graph. This is commonly known as the traveling salesman problem and it will
be described more in details in Chapter 2 in relation to the seriation problem.

Many classical results and important open questions in complexity theory concern the
inclusion relationships which hold among the classes; see [151] for a complete description
of them as well as for a report on other time-complexity classes and all the space-complexity
classes. In Figure 1.1 the inclusion relationships among the considered major complexity
classes are depicted under the hypothesis of the non-coincidence and coincidence of the P
and NP classes in the P versus NP issue.

Figure 1.1: Euler diagram for P, NP, NP-complete, and NP-hard complexity classes of computational
problems. On the left the representation valid under the assumption that P 6=NP, while
the right side is valid under the assumption that P=NP.

Chapter 2

The seriation problem

2.1 The seriation problem: an overview on the historical con-
text and applications

Seriation is a ubiquitous, fundamental combinatorial ordering problem, asking to find
the best enumeration order of a set of units, according to a given correlation function, so that
elements with higher similarity are close to each other in the resulting sequence. The desired
order can be characteristic of the data, a chronological order, a gradient or any sequential
structure of the data. As it will be made clear hereinafter, we will state the seriation problem
from the mathematical point of view by considering it as the arrangement of units in a
sequence according to a “similarity” function and we will focus on chronological seriation
in archaeology.

The concept of seriation has been formulated in many different ways and the seriation
problem, along with seriation methods and algorithms, emerges and finds application, as
explained more in details below, in a wide range of contexts spanning from archaeology,
anthropology, to genomics and DNA sequencing, and, within mathematics, from complexity
theory to combinatorial optimisation, graph theory and operational research.

In this thesis, we will use the archaeological setting as a metaphor for the seriation
problem considering also the fact that seriation actually arose for the first time in the context
of archaeological studies, where it is typically formulated as the problem of dating excavation
sites (e.g., deposits, such as tombs in a necropolis) on the basis of the finds discovered
inside them (e.g., assemblage of artefacts in the deposits, such as grave goods in each tomb)
according to how these contents are related, and of determining their relative chronology
i.e., a dating which indicates if a given site is chronologically preceding or subsequent to
another. Archaeological finds are in turn classified according to their manufacturing style,
technical characteristics or typology, with the hypothesis that different types were produced
and “fashionable” only for a limited period of time. In general, relative chronologies are
devoid of a direction, in the sense that the units are placed in a sequence which can be read
in both directions. Relative dating methods, such as seriation, are vital when absolute dating
methods consisting of deciphering inscriptions or applying physical or chemical techniques
such as carbon dating, cannot be applied.

The first systematic formalisation of the seriation problem in archaeology was made
by an English Egyptologist, Sir W. M. Flinders Petrie, in 1899 [152]; his work on the
prehistoric Egyptian necropoleis in Naqada and Abydos, in the Nile area, represents the

23

24 CHAPTER 2. THE SERIATION PROBLEM

first example of a temporal ordering of burial places obtained from a combinatorial analysis
of archaeological data. Since common modern dating techniques such as stratigraphy or
radio carboning, were not available at that time, Petrie designed a relative dating procedure
to sequence the graves. Specifically, he examined about 900 burial sites and classified the
potteries found in the tombs according to their manufacturing style assigning them sequence
dates. Hence, he tried to reorder the artifacts according to their similarity, with the idea that
similar potteries would belong to ages closer in time under the assumption that different
objects continuously come into and go out of fashion. Then, the order of the tombs was
obtained by linking each tomb to the corresponding sequenced pottery element.

Observations and methods presented by Petrie are recognized for pioneering the idea of
sequencing objects. Indeed, Petrie’s work influenced several prominent American anthro-
pologists and archaeologists and his ideas have been pivotal in establishing a whole line of
research, with a reprise of interest from the 1950s with the works of Brainerd [25], Robin-
son [158], who also proposed a practical method for the seriation problem solution, and in
particular by Kendall who pioneered the dialogue between archaeologists and statisticians
and wrote several papers on the research of mathematical properties of the matrix analysis
used in archaeology; see [107–109]. See [153] for a review on the seriation problem in
archaeology with a mathematical perspective. This paper has inspired the work on seriation
explained in this thesis. A comprehensive description of the development of seriation in
archeology is presented by Ihm in 2005 [101]. Another review on seriation is given in [146],
where application of seriation in stratigraphy is discussed. An extensive survey of the
problem from an archaeologist’s point of view appears in [128], while overviews on the
application of mathematics to archaeology can be found in [11, 92, 110, 183].

As mentioned before, seriation has several applications in a wide range of different fields.
Although it was originally introduced for applications arising in archaeology, seriation can
also be used in paleontology for ordering the excavation sites on the basis of mammal
species whose remains are found in the sites [130]. Furthermore, seriation can be used for
data visualization and data combinatorial analysis as a method for studying the relevant
data sets in which is important the arrangement of a collection of objects [28, 100], with
applications in biology and bioinformatics [126]. In particular, in the bioinformatics setting,
seriation is used for large-scale expression pattern discovery in SAGE (Serial Analysis of
Gene Expression) data [141] and for identifying coherent local clusters with global patterns
in microarray gene expression profiles [174]. In this area of interest another significant
application of seriation, in use since the early 1990s, is in genomics and DNA sequencing [63,
92, 136]. In such field of study, seriation is applied in the construction of physical maps
by hybridisation in the context of genome sequencing [84]. Given a DNA sequence, a set
of so-called “clones” (each clone being a copy of a second DNA sequence containing a
single, specific fragment of the original DNA sequence), and a set of so-called “probes”
(each probe being a marker of a specific site on the original DNA sequence), a series of
“hybridisation” experiments is run to determine whether a certain clone contains a certain
probe, namely if the fragment carried by the clone contains the site indicated by the probe.
Clones are chosen to carry overlapping fragments of the original DNA sequence. Through
multiple hybridisation experiments, an hybridisation matrix is built, namely a (0,1)-matrix
indicating which are the probes included by each clone. Then, the seriation problem is that
of constructing a physical map of the original DNA sequence by ordering the probes, namely
the sites on the sequence.

In sociology, and more specifically in sociometry, seriation is used to rearrange data

2.1. OVERVIEW ON THE CONTEXT AND APPLICATIONS OF SERIATION 25

coming from sociometric tests for describing and evaluating social status and structure and,
hence, for finding group assemblage in sociograms [75]. In machine learning, seriation can
be adopted for determining the possible number of clusters in a set of objects or their cluster
tendency [87], with also applications to text data mining, for example, in order to derive
high-quality information from online newsgroup articles [55]. Techniques related to seriation
are also popular in several other fields: for example, in ecology where seriation techniques
are used, under the name ordination, for the arrangement or “ordering” of species and/or
sample units along gradients [2, 3]. Further applications of seriation include cartography
and graphics, psychology and psychometry for the study of confusion data [29].

In the mathematical discipline, uses of seriation are in the reordering of sparse matrices
to reduce their so-called envelope size [12], in recognition of interval graphs in graph theory
and network analysis [21, 116], in matrix reordering [131] and in ranking for ordering a
set of items given pairwise comparisons between these objects [73]. For an application
of seriation methods in operational research and optimization for rearranging data arrays
see [53]. A comprehensive historical overview of the development of seriation techniques
and a more exhaustive and complete list of applications can be found in a review article by
Liiv [123].

Given this variety of applications, some software packages have been developed in
the past to manipulate seriation data. Some of these packages have not undergone regular
maintenance, and do not seem to be easily usable on modern computers, like the Bonn
Archaeological Software Package (BASP) (http://www.uni-koeln.de/~al001/)
that includes functions for seriation, clustering, correspondance analysis and mapping
tools for archaeologists. Another seriation software for dating archaeological artifacts or
assemblages of objects, called OptiPath, is capable of performing a wide range of seriation
techniques including occurrence seriation, frequency seriation and shortest path seriation.
Continually in development and testing, it runs under Microsoft Windows and is freely
available for installation at http://terevaka.net/optipath/publish.htm. A
package called “seriation”, providing an infrastructure for seriation, is implemented in
the open source statistical software R [85] and uses different algorithms depending on
the seriation measure chosen to model the seriation problem. A software specifically
designed for the seriation problem in bioinformatics has been developed by Caraux and
Pinloche [32]. In this bioinformatics software package, called PermutMatrix and available
for free download, a data analysis of gene expression profiles is performed using various
seriation methods. In [124], Liiv et al. introduce a web-based tool for exploratory visual
analytics, called Visual Matrix Explorer (VME), that enables dynamic evaluation and
visualization of matrices, and allows the linking of different seriation results using some
explicative examples coming from psychology and paleontology. A seriation method,
based on an algorithm described by Brower and Kile in [26], is integrated in the statistical
analysis software, called PAST (PAleontological STatistics) presented in [86] and available
for free download at https://folk.uio.no/ohammer/past/. PAST integrates
functions developed for executing a range of standard numerical analysis computation used
in quantitative paleontology and ecology, and the seriation technique included in it, is applied
to reordering taxa (species) according to given samples.

In this Chapter, we present a Matlab implementation of a spectral method for the solution
of the seriation problem which appeared in [6]. This technique is based on the use of an
eigenvector, called Fiedler vector and associated to the eigenvalue, called Fiedler value of
the Laplacian matrix associated to the problem and it describes the results in terms of a

http://www.uni-koeln.de/~al001/
http://terevaka.net/optipath/publish.htm
https://folk.uio.no/ohammer/past/

26 CHAPTER 2. THE SERIATION PROBLEM

particular compact data structure called PQ-tree.
We further develop some numerical aspects of the algorithm in [6], concerning the

detection of equal components in the Fiedler vector and the computation of the eigensystem
of the Laplacian associated to a large scale problem. We also provide a parallel version of
the method. The package, named the PQser toolbox, described in Section 2.3 also defines
a data structure to store a PQ-tree and provides the Matlab functions to manipulate and
visualize it. The toolbox is compatible with Octave, except for the parallel implementation.
The results of our implementation of the spectral algorithm are then compared in Subsec-
tion 2.4.2 with those provided by a specific function in the R package mentioned above
and available at http://cran.r-project.org/web/packages/seriation/.
Finally, in Section 2.5 we discuss the implications of the presence of a multiple Fiedler
value, an issue which has been disregarded up to now, and we illustrate the discussion
with some numerical experiments considering a graphic method for finding the admissible
permutations in some particular cases involving graphs having double Fiedler value. In fact
as it will be made clear in the following, we will explain how the seriation problem can be
expressed in terms of finding the best, or an approximate, ordering of a set of units whose
interrelationship can be defined in terms of a bipartite graph.

2.1.1 The data matrix

In all the applications, seriation data are usually given in terms of a matrix, called data
matrix, whose rows or columns (or both) represent the elements to be ordered. Considering
the archaeological application, the rows of the data matrix are the archaeological units (e.g.,
the sites, deposits, tombs) and the columns represent the types of the archaeological finds
detected inside the units. Each unit is characterized by the presence of certain artifacts, which
are systematized in types. See [153] for an explanation on how to practically realize this
correlation and in what manner is it possible to construct the m×n data matrix representing
units/types.

In general, authors refer to the data matrix as either incidence matrix or abundance
matrix, depending on the archaeological data representation. In the first case, the data are
reported by using a binary representation, i.e., an element in position (i, j) is equal to 1 if
type j is present in the unit i, and 0 otherwise. In the second case, the data matrix reports the
number of objects belonging to a certain type in a given unit, or its percentage. So each entry
of an abundance data matrix represents the (relative) frequency or quantity of an artifact
type in the considered site. See [101] for a comparison between incidence and abundance
matrices in archeology.

In this thesis, we follow the typical terminology used in complex networks theory and
we refer to a binary representation of seriation data as an adjacency matrix; see Section 2.2
for further details. An example of an adjacency matrix illustrating seriation data, is given
in Table 2.1 that represents archaeological data acquired from female sepulchers of the
first Iron Age rediscovered in the Germanic site of Bornholm; see [153] and the references
therein.

Under the hypothesis that the sites (units) have been assembled in a particular moment
or in a short temporal interval, fixed a certain typology, the information obtained from the
study of the archaeological units are reported in the data matrix. And therefore, if the data
matrix represents types of found objects as columns, and the locations in which they are
found (graves, pits, etc.) as rows, we can find a chronological order for the locations by

http://cran.r-project.org/web/packages/seriation/

2.2. THE SERIATION PROBLEM IN TERMS OF GRAPH THEORY 27

Table 2.1: Adjacency matrix for archaeological data originated from female burials at the Germanic
Bornholm site, Denmark [104, 105]. The rows report the names of the tombs, the columns
the identification codes of the found fibulae.

G3 F27 S1 F26 N2 F24 P6 F25 P5 P4 N1 F23

Mollebakken 2 1 1 1 1 0 0 0 0 0 0 0 0
Kobbea 11 0 1 1 0 1 1 0 0 0 0 0 0

Mollebakken 1 1 1 0 1 1 0 1 1 0 0 0 0
Levka 2 0 1 1 0 1 0 0 1 1 0 0 0

Grodbygard 324 0 0 0 0 1 1 0 0 0 1 0 0
Melsted 8 0 0 1 1 0 0 1 1 0 1 0 0

Bokul 7 0 0 0 0 0 0 1 1 0 0 1 0
Heslergaard 11 0 0 0 0 0 0 0 1 0 1 0 0

Bokul 12 0 0 0 0 0 0 0 1 1 0 0 1
Slamrebjerg 142 0 0 0 0 0 0 0 0 0 1 0 1

Nexo 6 0 0 0 0 0 0 0 0 0 1 1 1

assuming that the types were fabricated, or were “in vogue” only for a short time, under the
hypothesis that different objects continuously come into and go out of fashion. In light of
this assumption, the purpose of determining a relative chronology for the excavation sites
results in obtaining an ordering of the rows and columns of the data matrix that places the
nonzero entries close to the main diagonal of the data matrix.

2.2 The seriation problem in terms of graph theory

In the first part of this Section, some definitions and results of spectral graph theory are
given. Subsequently, the rest of the section aims at delineating how the seriation problem can
be described using the terminology and definitions typical of graph theory; see Section 1.3.

The adjacency and incidence matrices defined in Chapter 1 (see Section 1.3) are not the
only useful algebraic representations of a graph, especially in the study of spectral graph
theory, that involves the investigation of the relationships between the topological properties
of a graph and the algebraic properties of the spectra of certain matrices associated with it.
This duality between topology and spectral domain has been widely studied in the field of
mathematics called algebraic graph theory. Several books and surveys on the topic have
already appeared, for example by Cvetkovic̀ et al. [45, 46], Biggs [17] and Godsil and
Royle [81]. Most of the early work involved the spectrum of adjacency matrices, although
we are more interested in the algebraic properties of the spectrum of the Laplacian matrix.

The graph Laplacian can be defined by means of either the adjacency matrix or the
incidence matrix.

Definition 2.2.1. (Laplacian matrix). The (unnormalized) graph Laplacian of a symmetric
matrix A ∈ Rn×n that represents a simple graph G formed by n nodes, is the symmetric
positive semidefinite matrix

L = D −A,

where D = diag(d1, . . . , dn) is the degree matrix.

28 CHAPTER 2. THE SERIATION PROBLEM

Explicitly, the entries of L are given by

`i,j =

di, if i = j,

−1, if i 6= j and there is an edge between vi and vj
0, otherwise.

Alternatively, we can write
`i,j = δi,jdi − ai,j ,

where δi,j is the Kronecker delta.
The graph Laplacian can also be written in terms of the incidence matrix B (see

Definition 1.3.4) as
L = BTB

and it can be shown that L is indeed a discrete analogue of the continuous Laplacian operator
∆ = ∇2, see [67] for some details on this correlation. For the correspondence between
the operator ∆ and the Laplacian matrix of a graph which discretizes the region where the
Laplace equation is studied, see also [47].

The Laplacian matrix is a very useful tool for analysing a graph. Its spectrum and, in
particular, its eigenvectors can reveal significant properties of the considered network. Note
that L = D − A is symmetric since D and A are both symmetric; the symmetry L = LT

also follows from the other definition of the graph Laplacian, L = BTB, in terms of the
incidence matrix B. Then, the spectrum of L is real.

Setting e = [1, . . . , 1]T ∈ Rn, it is immediate to observe that Le = 0, where 0 ∈ Rn
is the zero vector. Hence, 0 is an eigenvalue of the graph Laplacian with eigenvector e.
The Gershgorin discs of L are of the form ∆i = z : ‖z − di‖ ≤ di, where di is the degree
of node i. Then, the Gershgorin’s circle theorem 1.1.7 implies that all the eigenvalues
are non-negative and it can also be shown that they lie in the interval [0, 2dmax] where
dmax is the maximal degree of a node in the associated network; see [67]. Then, we can
order the real, non-negative eigenvalues of the Laplacian L as λ1 = 0 ≤ λ2 ≤ · · · ≤ λn,
with corresponding eigenvectors v1 = e,v2, . . . ,vn. The smallest eigenvalue of L with
associated eigenvector orthogonal to e is called the Fiedler value of the graph described by
F . The corresponding eigenvector is the so-called Fiedler vector.

Alternatively, the Fiedler value may be defined using the Courant-Fisher principle (see
Theorem 1.1.5), by

min
xT e=0, xTx=1

xTLx.

Then, a Fiedler vector is any vector x that achieves the minimum.

Disconnectivity of a network is related to the reducibility of its adjacency matrix and
expresses that no communication is possible between two nodes in a different component
that is a connected subgraph contained in the given graph; see Section 1.3. The Fiedler
value, is also known as algebraic connectivity and denoted by a(G). It gives information on
the connectivity of the considered graph and so its importance is due to the fact that it is a
good parameter to measure how well a graph is connected, as expressed by the following
well-known theorem.

Theorem 2.2.1. Let λ1 = 0 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian matrix
L of a graph G with n nodes. Then G is connected if and only if λ2 > 0.

2.2. THE SERIATION PROBLEM IN TERMS OF GRAPH THEORY 29

Proof. See [179].

This theorem is a consequence of the Perron-Frobenius theorem 1.2.2 for a nonnegative,
irreducible matrix. So, if the considered adjacency matrix is irreducible, that is, if the graph
is connected, then the Fiedler vector corresponds to the first non-zero eigenvalue of the
Laplacian matrix. Moreover, it can be proved (see [179]) that the multiplicity of the smallest
eigenvalue λ1 = 0 of the Laplacian matrix is equal to the number of connected components
of the graph.

The spectrum of L can also be used for enumerating spanning trees of a graph according
to one of the oldest theorems in Graph Theory, Theorem 2.2.2 , whose proof can be found
in [17]. A spanning tree of an undirected graph G is a subgraph and in particular a tree
(undirected graph in which any two vertices are connected by exactly one path) which
includes all the vertices of G with the minimum possible number of edges i.e. only the
edges that are necessary to connect all the nodes with only one walk. The following theorem
states that the determinant of any cofactor of the graph Laplacian is equal to the number of
spanning trees in the considered graph.

Theorem 2.2.2. [Kirchhoff’s theorem (Matrix-tree theorem).] Let u and v be nodes of a
graph G and indicate with L(u, v) the submatrix obtained from the Laplacian matrix L of
G by deleting row u and column v. Let τ(G) be the number of spanning trees of G, then

det(L(u, v)) = τ(G).

This result can be also used, alternatively to the Perron-Frobenius Theorem, to prove
that the Fiedler value is zero if and only if the graph is not connected [49]. Therefore, from
the consequent result it follows immediately that a not connected graph will not contain any
spanning tree.

Corollary 2.2.3. Let G be a connected graph having n nodes, without self-loops. Suppose
that σ(L) = {λ1, λ2, . . . , λn} is the spectrum of the Laplacian matrix L with λ1 = 0 and
that the non-zero eigenvalues of L are ordered in increasing order λ2 ≤ λ3 ≤ · · · ≤ λn.
Then

τ(G) = 1
n
λ2λ3 . . . λn

Laplacian eigenvectors were first studied by Fiedler [70–72] and independently by Do-
nath and Hoffman [57]. The Laplacian matrix of a graph and its eigenvalues can be used in
several areas of mathematical research, mainly discrete mathematics and more recently com-
binatorial optimization problems and have an interpretation in various physical and chemical
theories. See [139] for a survey on known results about the spectrum of the Laplacian matrix
of graphs with emphasis on the Fiedler value and its relation to numerous graph invariants,
including connectivity, maximum cut, diameter, mean distance and bandwidth-type param-
eters of a network. Most of the results on the connection between a(G) and invariants of
graphs are consequences of the well-known Courant-Fisher Theorem [71] which states that

a(G) = min
xT e=0, xTx=1

xTLx.

For example, the relation between the algebraic connectivity and the diameter diam(G) of a
graph G with n nodes, is represented by the lower bound

diam(G) ≥ 4
nλ2(G)

30 CHAPTER 2. THE SERIATION PROBLEM

proved in [140].
The Fiedler value, and in particular the associated eigenvector(s), can also be considered

in relation to the problem of graph partitioning that consists of dividing the nodes of a graph
into a number of disjoint groups, also called partitions. Indeed, the Fiedler vector has a very
important property given by the following Theorem from [70].

Theorem 2.2.4. [Fiedler, 1975.] Given G = (V,E) a connected graph with n nodes and
suppose L to be the graph Laplacian whose smallest eigenvalue is λ2 > 0. Indicating with
x = (x1, x2, . . . , xn)T the eigenvector associated to λ2 > 0, let k ∈ R and partition the
nodes in V into two sets

V1 = {i ∈ V |xi ≥ k}, V2 = {i ∈ V |xi < k}.

Then the subgraphs of G induced by the sets V1 and V2 are connected.

Therefore, this shows that a connected graph can be partitioned into two distinct con-
nected components using the sign of the entries of the Fiedler vector for a threshold value k;
this eigenvector solves a relaxation of an NP-hard discrete graph partitioning problem [39]
and it can also be shown that cuts based on the eigenvector associated to the Fiedler value
give an approximation to the optimal cut [39, 168].

Spectral clustering using the Fiedler vector can be applied in bioinformatics whose key
task is the accurate clustering of samples. In [90] a spectral algorithm based on the use of the
Fiedler vector for spectral clustering, is adopted for studying microarray datasets published
by cancer researchers. In this particular example the graph summarizes similarity of gene
activity across different tissue sample; see also [145, 154].

Another application of the Fiedler vector arise in image segmentation. In computer
vision, image segmentation is the process of partitioning a digital image into regions (sets of
pixels, also known as super-pixels) with the goal of obtaining a compact representation of a
picture into something that is more meaningful and easier to analyze. This problem can be
formulated as a partitioning problem since an image can be seen as a graph considering the
pixels as nodes; see [4, 164].

In this thesis we consider the use of the eigenvector associated to the Fiedler value, in
relation to the seriation problem considering the archaeological investigation. Further details
will be given below, in Section 2.4. In this application to the seriation problem we consider
bipartite graphs, since the interrelationship between the units we want to rearrange, can be
defined in terms of these particular networks defined in Section 1.3.

Recalling that a graph is bipartite if its vertices can be split into two disjoint subsets such
that only edges between nodes belonging to different sets can occur, in our archaeological
metaphor, the two disjoint nodes sets U and V represent the excavation sites (i.e. units)
and the found artifacts (i.e. the type of the findings), respectively. In particular, in this
interpretation of the seriation problem, the data matrix can be interpreted as the upper-right
block of the adjacency matrix (1.3.1) associated with the bipartite graph of size n + m.
Hence, the “adjacency” matrix A associated to the seriation problem, of size n × m, is
obtained by setting aij = 1 if the unit i contains objects of type j and 0 otherwise, and
therefore is exactly the upper-right block of (1.3.1).

In case the element aij takes a value different from 1, we consider it as a weight
indicating the number of objects of type j contained in unit i, or their percentage. In this
case, we denote A as the abundance matrix of the considered seriation problem.

2.2. THE SERIATION PROBLEM IN TERMS OF GRAPH THEORY 31

2.2.1 The similarity matrix

Let A be the (0, 1)-matrix from a given seriation problem. The first mathematical
definition of seriation was based on the construction of a symmetric matrix S known as
similarity matrix [25, 158], where the element sij describes, in some way, the likeness of
the nodes i, j ∈ U representing two archaeological units. One possible definition of the
similarity matrix is through the product S = AAT , being A the adjacency matrix of the
problem. In this case, sij equals the number of types shared between unit i and unit j. For
example, considering the adjacency matrix represented in table 2.1, the similarity matrix
will be

S =

4 2 3 2 0 2 0 0 0 0 0
2 4 2 3 2 1 0 0 0 0 0
3 2 6 3 1 3 2 1 1 0 0
2 3 3 5 1 2 1 1 2 0 0
0 2 1 1 3 1 0 1 0 1 1
2 1 3 2 1 5 2 2 1 1 1
0 0 2 1 0 2 3 1 1 0 1
0 0 1 1 1 2 1 2 1 1 1
0 0 1 2 0 1 1 1 3 1 1
0 0 0 0 1 1 0 1 1 2 2
0 0 0 0 1 1 1 1 1 2 3

. (2.2.1)

Clearly, with the matrix product AAT we are considering the similarity matrix on the
rows/units while by taking the product ATA the attention is devoted to the similarity matrix
on the columns that reports the likenesses between the types of the found artifacts and
therefore, each element is equal to the number of units shared by the considered types. In
the similarity matrix (see the example 2.2.1) the largest value on each row is the diagonal
element, which reports the number of types associated to each unit. By permuting the rows
and columns of S in order to cluster the largest values close to the main diagonal, one obtains
a permutation of the corresponding rows of A that places the units similar in types closer to
each other. This procedure does not provide an ordering for the types, i.e. for the columns
of the data matrix. Then for example, one can consider the similarity matrix on the columns
given by ATA and, by symmetrically permuting its rows and columns, obtain a permutation
of the columns of the data matrix A. It is worth noting that this operation of permuting rows
and columns of the similarity matrix is not uniquely defined so, in general, starting from a
data matrix and applying various permutations it is possible to obtain different orderings,
reasonable from an archaeological point of view, for the units.

Summarizing, one can map the set of pairwise relative measurements among the objects
to a similarity matrix which represents the information of the objects to be ordered. Then,
the seriation problem can be modeled as a discrete optimization problem, whose goal is
to find a permutation of the rows and columns of the similarity matrix which minimizes a
given objective function. Methods based on the similarity matrix differ from one to another
on how the similarity matrix is constructed or because of different objective functions used
for evaluate the found permutations of the seriation data matrix.

Another way of determining the similarity matrix is obtained by using the so-called
Robinson method developed by Robinson in 1951 [158]. The Robinson method is a statistical
technique that constructs, indeed, a similarity matrix different from the one defined through
the product between the data matrix and its transpose (or in the reverse order). It is based

32 CHAPTER 2. THE SERIATION PROBLEM

on the concept that each type of artifact used in a certain period eventually decreases in
popularity until it becomes forgotten. This method is probably the first documented example
of a practical procedure based on the use of the similarity matrix, so its description is
interesting in a historical perspective. In the original first formulation, it is applicable only to
abundance archaeological seriation data, although later various authors proposed several new
formulations of the Robinson method, some of them applicable also to incidence seriation
data; see [50, 94, 117].

The method, starting from an abundance matrix A ∈ Rn×m whose entries are in
percentage form so that the sum of the values in each row is 100, computes the similarity
matrix S by a particular rule, leading to a symmetric matrix of order n with entries between
0 (for rows with no types in common) and 200, which corresponds to units containing
exactly the same types. Specifically, the entries of S are computed as

si,j = 200−
n∑
k=1
‖ai,k − aj,k‖

and the similarity measured introduced is called Robinson’s Index of Agreement. Then, the
method searches for a permutation matrix P such that PSP T has its largest entries as close
as possible to the main diagonal. The same permutation is applied to the rows of the data
matrix A to obtain a chronological order for the archaeological units. Since, as already
remarked, the sequence can be read in both directions, external information given by the
archaeologists must be used to choose an orientation.

The procedure of finding a permutation matrix P is, again, not uniquely specified. One
way to deal with this problem was defined by Robinson who described an ideal arrangement
of the elements of the similarity matrix, the so called Robinson’s form. This structure of
the similarity matrix places larger values close to the main diagonal, and lets off-diagonal
entries be nonincreasing when moving away from the main diagonal. Precisely, a given
symmetric matrix S is in Robinson’s form, or is an R-matrix or a Robinson (similarity)
matrix, if and only if its entries nonincrease monotonically along rows and columns when
moving away the main diagonal, i.e. if and only if

sij 6 sik, if j 6 k 6 i, (2.2.2)

sij > sik, if i 6 j 6 k. (2.2.3)

Robinson’s matrices play a fundamental role in the seriation problem, since the goal of
seriation to order similar objects close to each other is best achieved by this special class
of similarity matrices. Even though R-matrices were introduced by Robinson to model the
seriation problem, they can also be used in the problem of building a consistent ranking of
a set of objects given pairwise comparisons between these items [73]. We refer the reader
interested in the application of Robinson’s matrices to data analysis and visualization, to [61]
and the references therein.

A symmetric matrix is said to be pre-R if and only if there exists a simultaneous
permutation of its rows and columns which transforms it into Robinson’s form. Hence,
pre-R matrices correspond to well-posed seriation problems.

In the literature, a distinction is made between Robinson similarities and Robinson dis-
similarities (or anti-Robinson) matrices whose values in all rows and columns are monotone
nondecreasing when moving away from the main diagonal. Formally, an n× n symmetric

2.2. THE SERIATION PROBLEM IN TERMS OF GRAPH THEORY 33

matrix D is in anti-Robinson’s form if and only if the following two conditions hold [100]

dik 6 dij if i 6 k 6 j, (2.2.4)

dkj 6 dij , if i 6 k 6 j. (2.2.5)

In an anti-Robinson matrix the smallest dissimilarity values appear on the main diagonal
since the dissimilarity between an element and itself is minimum. Since we are not interested
in anti-Robinson matrices, in the rest of the thesis we will only consider similarity matrices
in Robinson’s form, especially in Section 2.4.

The following matrices, excerpted from [153], are examples of R, not-R and pre-R
matrices:

6 4 2 2
4 8 5 3
2 5 9 4
2 3 4 7

 R-form,

6 4 9 2
4 8 5 3
9 5 9 4
2 3 4 7

 not-R,

9 2 5 4
2 6 4 2
5 4 8 3
4 2 3 7

 pre-R.

Note that the last matrix, which is pre-R, is obtained by applying the permutation P =
[e2, e3, e1, e4] (with ei the ith columns of the identity matrix) simultaneously, in order to
preserve the symmetry, to the rows and columns of the first matrix. Note that, understanding
if a given symmetric matrix is pre-R is often difficult, considering that not all symmetric
matrices can be brought into the Robinson’s form. For other interesting references on
R-matrices and their detection, see [36, 119, 120, 155, 163].

Seriation techniques based on the construction of the similarity matrix, are divergent
from other methods that involve directly the data matrix in finding units rearrangements;
see [153] for further details and references.

2.2.2 Connections between the seriation problem and other combinatorial
problems

The seriation problem is related to another combinatorial problem, namely, the NP-
hard travelling salesman problem (TSP). The origin of the TSP is enigmatic and it was
mathematically formulated by the mathematicians W.R. Hamilton and T. Kirkman who
worked on similar problems. It can be formulated as the problem of finding, given a list
of cities and the distances between each pair of cities, which is the shortest possible route
that visits each place and returns to the starting city. The relationship between these two
combinatorial problems, was first exploited by Wilkinson [184] who made rigorous the
connections between the TSP and the reordering of the similarity matrix considering the
seriation problem from this matrix point of view. Later some other authors examined the
analogy between these two combinatorial problems; see [58, 99]. Indeed, the TSP can
be formulated as the problem of finding the permutation of the rows and columns of a
symmetric connection matrix C whose entry cij represents the distance between the ith and
jth cities the salesman has to visit, that places smaller entries close to the main diagonal of
C. The basics of this formulation of the TSP is the same used for rearranging the similarity
matrix except for the constraint that the last visited city must coincide with the starting one
and for the fact that, while in the reordering of the similarity matrix the largest values are to
be placed near the main diagonal, in the TSP the smaller entries are considered; see [153]
for further details and references on the travelling salesman problem and its connection to
the seriation problem.

34 CHAPTER 2. THE SERIATION PROBLEM

In case of incidence seriation data, the seriation problem can be rigorously defined
in terms of the so-called consecutive ones problem [147], whose aim is to find all the
permutations of the rows of a binary matrix that place the 1’s consecutively in each column.
If such permutations exist, then the matrix is said to have the consecutive ones property (C1P)
for columns. The equivalent property for rows can be similarly defined. A (0, 1)-matrix
featuring the C1P is said to be in Petrie form, or in P-form, or to be a P-matrix (along rows,
or columns, or both). If a (0, 1)-matrix can be permuted to become a P-matrix, then it is said
to be a pre-P matrix. The following matrices are examples of P along rows, along columns,
along both rows and columns, not-P and pre-P matrices:

1 1 0 0 0 0
1 1 1 0 0 0
0 0 1 1 1 1
0 0 0 1 1 0
0 0 0 0 1 1

P -form along rows,

1 1 0 0 0 0
1 1 1 0 0 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1

P -form along both rows and columns

1 1 0 0 0 0
1 0 1 0 0 0
0 0 1 1 0 1
0 0 0 1 1 1
0 0 0 0 1 1

P -form along columns,

1 1 0 0 0 0
1 0 1 0 0 0
0 0 1 1 1 1
0 0 0 1 1 0
0 0 0 0 1 1

not-P .

The matrix
0 1 0 1 1 1
0 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
0 1 0 0 1 1

is pre-P and it is obtained by applying the permutations Pr = [e3, e4, e1, e5, e2] to the rows
and Pc = [e1, e3, e4, e5, e6, e2] to the columns of the third matrix which is in “complete”
P-form since it satisfies the C1P along rows and columns.

For more details about matrices with the consecutive ones property and algorithms for
their analysis, we refer the interested reader to [56] and the references therein. The problem
of verifying if a matrix possesses the consecutive ones property has applications in different
fields, such as computational biology and recognition of interval graphs [21, 38].

The connection between C1P and seriation has been first investigated by Kendall who
proved the following result which represents the first link between Petrie’s and Robinson’s
matrices [109].

Theorem 2.2.5. (Kendall, 1969.) LetA be a (0, 1) matrix and consider the similarity matrix
S = AAT . Given Π a permutation matrix, if ΠA has the consecutive ones in its columns
then ΠSΠT is in Robinson’s form.

From this it follows that if A is a (0, 1) Petrie matrix, then S = AAT is a Robinson
similarity matrix, but the converse is not true in general. It can also be proved that if A

2.3. PQ-TREES 35

is a pre-P data matrix and S = AAT is a similarity matrix in Robinson’s form, then A is
a P-matrix. Hence, checking if a data matrix has the C1P reduces somehow to a special
instance of Robinson similarity matrix recognition.

In an application to genetics, Fulkerson and Gross characterized pre-P matrices in terms
of recognition of interval graphs and give an algorithm for solving the seriation problem in
polynomial time [76]. They proved that the problem of determining whether an incidence
data matrix is pre-P, is a P problem. Empirical archaeological data that lead to a pre-P
data matrix are commonly called “perfect” data since, applying the algorithm of Fulkerson
and Gross, it is possible to solve the seriation problem in linear time. Indeed, the seriation
problem in terms of P-matrices, translates into the problem of finding the permutations
transforming a given (0, 1) data matrix into a P-matrix, if the matrix is pre-P, or that best
“approximate” a P-form if the matrix is not pre-P, i.e. in case of “imperfect” data. As a
consequence, pre-P seriation data matrices and pre-R similarity matrices correspond to
well-posed instances of the seriation problem.

In presence of perfect data, the spectral algorithm from [6] returns a classification of
the ordering permutations in terms of a compact data structure called PQ-tree described in
Section 2.3. The algorithm devised by Atkins and collaborators is improved and implemented
as a Matlab toolbox in [41], as described and discussed in Section 2.4. Specifically, given a
pre-R similarity matrix, it constructs a PQ-tree describing the set of all the permutations of
rows and columns that lead to an R-matrix.

However, perfect data are exceptionally rare in nature. In fact, in most cases the seriation
empirical data coming from real archaeological sites are imperfect, in the sense that the data
matrices are non in pre-P form. Hence, there is the problem of finding a permutation that
approximate a Petrie data matrix or a Robinson similarity matrix. Further details will be
given in Section 2.5.

2.3 PQ-trees

A PQ-tree is a data structure introduced by Booth and Lueker [21] to encode a family
of permutations of a set of elements and solve problems connected to finding admissible
permutations according to specific rules.

A PQ-tree T over a set U = {u1, u2, . . . , un} is a rooted, ordered tree whose leaves are
in one-to-one correspondence with the elements of U and their order gives a reordering of
the elements of the considered set. The internal (non-leaf) nodes of T are distinguished
as either P-nodes or Q-nodes. The only difference between them is the way in which
their children are treated and can be reordered. Namely, for a P-node, its children may be
arbitrarily reordered so all possible permutations of the children leaves are permitted; for a
Q-node only one order and its reverse are allowed since the children leaves may be ordered
only left-to-right or right-to-left. The root of the tree can be either a P or a Q-node.

We will represent graphically a P-node by a circle, and a Q-node by a rectangle, following
the same representation used in the paper by Booth and Lueker. The leaves of T will be
displayed as triangles, and labeled by the elements of U . The frontier of T is one possible
permutation of the elements of U , obtained by reading the labels of the leaves from left to
right.

We recall two definitions from [21]; the first one gives a further set of restrinctions on
the nodes of a PQ-tree.

36 CHAPTER 2. THE SERIATION PROBLEM

Definition 2.3.1. A PQ-tree is proper when each of the following conditions hold:

i) every ui ∈ U appears precisely once as a leaf. This is because PQ-trees are supposed
to represent permutations of a set, so it does not make sense for an element to appear
more than once or to not appear at all;

ii) every P-node has at least two children. In this way, long chains of nodes having only
a single child are ruled out;

iii) every Q-node has at least three children. This again eliminates chains but also serves
a more technical purpose. Indeed, as explained below, there is no real distinction
between a P-node and a Q-node in case of exactly two children, hence it is convenient
to remove this redundancy.

The rearrangement of the leaves of a PQ-tree can be better formalized using the following
definition.

Definition 2.3.2. Two PQ-trees are said to be equivalent if and only if one can be trans-
formed into the other by applying a sequence of the following two equivalence transforma-
tions:

i) arbitrarily permute the children of a P-node;

ii) reverse the children of a Q-node.

Hence, a PQ-tree represents in a compact way permutations of the elements of a set
through admissible reorderings of its leaves. Each transformation in Definition 2.3.2 specifies
an allowed reordering of the nodes within a PQ-tree. For example, a tree with a single
P-node represents the equivalence class of all permutations of the elements of U , while a
tree with a single Q-node represents both the left-to-right and right-to-left orderings of the
leaves. A tree with a mixed P-node and Q-node structure represents the equivalence class of
a constrained permutation, where the structure of the tree determines the constraints on the
admissible permutations.

Figure 2.1 displays a PQ-tree and the admissible permutations it represents and encodes.
A package for representing and manipulating PQ-trees is contained in the PQser toolbox.
Both the figure and the permutations encoded in the tree have been obtained by applying
specific functions contained in it.

The PQ-tree data structure has been exploited in a variety of applications, from archae-
ology and chronology reconstruction [6] to molecular biology with DNA mapping and
sequence assembly [84]. The first problem to which it was applied is in an algorithm for
testing the consecutive ones property (C1P) for matrices [21]; see Paragraph 2.2.2. We
recall that, in this case, one seeks to find a permutation of the rows of a matrix that places
the nonvanishing entries within each column consecutively in relation to the C1P on the
columns. If the consecutive ones property is sought on the rows then the aim is to find a
permutations of the columns of the given matrix that places the ones one after another in
each row.

2.3.1 Matlab implementation of PQ-trees

In this subsection we present a Matlab implementation of PQ-trees by describing the
package of our toolbox that defines a data structure to store a PQ-tree and provides also the
Matlab functions to manipulate and visualize it.

2.3. PQ-TREES 37

1 2 3 4 5 6

P node

Q node

leaf

1 2 3 4 5 6
1 2 3 6 5 4
1 3 2 4 5 6
1 3 2 6 5 4
2 1 3 4 5 6
2 1 3 6 5 4
2 3 1 4 5 6
2 3 1 6 5 4
3 1 2 4 5 6
3 1 2 6 5 4
3 2 1 4 5 6
3 2 1 6 5 4
4 5 6 1 2 3
4 5 6 1 3 2
4 5 6 2 1 3
4 5 6 2 3 1
4 5 6 3 1 2
4 5 6 3 2 1
6 5 4 1 2 3
6 5 4 1 3 2
6 5 4 2 1 3
6 5 4 2 3 1
6 5 4 3 1 2
6 5 4 3 2 1

Figure 2.1: On the left, a PQ-tree over the set U = {1, . . . , 6}; on the right, the 24 admissible
permutations encoded in the tree.

The PQser toolbox for Matlab is distributed as a compressed archive. It is avail-
able from Netlib (http://www.netlib.org/numeralgo/) as the na48 package and
also on the web page http://bugs.unica.it/~gppe/software/#pqser; it is
described in [41].

In the PQser toolbox, a PQ-tree T is a struct variable (i.e., a record) composed by
two fields. The first field, T.type, specifies the type of node, i.e., P, Q, or a leaf, in the case
of a trivial tree. The second field, T.value, is a vector which provides a list of PQ-trees,
recursively defined. In the case of a leaf, this field contains the index of the unit it represents.

For example, the graph in Figure 2.1 was obtained by the following piece of code

v(1) = pnode([1 2 3]); % create a P-node with three leaves
v(2) = qnode([4 5 6]); % create a Q-node with three leaves
T = pnode(v); % create a P node pointing to the previous two nodes
pqtreeplot(T) % visualize the PQ-tree

the resulting data structure for the PQ-tree is

T =
struct with fields:

type: ’P’
value: [1x2 struct]

and the permutations encoded in T and represented in the table in Figure 2.1, are extracted
by using the function pqtreeperms whose structure is summarized in Algorithm 2

perms_matrix = pqtreeperms(T)

The functions for creating a PQ-tree and used for manipulating this data structure are
listed in Table 2.2. As it is customary for graph-like data processing, most of these functions
are recursive. The function mnode creates an additional type of node, called M-node, which
is designed to deal with multiple Fiedler values; we will comment on it in the following, see
Subsection 2.5.1. The function pqtreegetnode is designed to extract a subtree from the
considered PQ-tree and allows one to plot the subtree in a a new figure, as explained below;
pqtreenodes converts the PQ-tree to the format used by the function treeplot defined

http://www.netlib.org/numeralgo/
http://bugs.unica.it/~gppe/software/#pqser

38 CHAPTER 2. THE SERIATION PROBLEM

pnode create a P-node
qnode create a Q-node
lnode create a leaf
mnode create an M-node
pqtreeplot plot a PQ-tree
pqtreeNperm number of admissible permutations in a PQ-tree
pqtreeperms extract all admissible permutations from a PQ-tree
pqtree1perm extract one admissible permutation from a PQ-tree
pqtreegetnode extract a subtree from a PQ-tree
pqtreenodes converts a PQ-tree to Matlab treeplot format

Table 2.2: Functions in the PQser toolbox devoted to the manipulation of PQ-trees.

in Matlab. Both of these two last functions are utilised by the function pqtreeplot and
are not intended to be called by a user. All the functions are documented via the usual Matlab
help command; as an example we report the help output for the function pqtreeplot
which allows to set some attributes of the plot:

help pqtreeplot

pqtreeplot plot a PQ tree.
pqtreeplot(T) plot in the current figure the PQ tree whose root
is T. If the user clicks on one node with the left mouse button,
the corresponding subtree is extracted, it is plotted in a new
figure, and it is saved to a variable in the workspace.
pqtreeplot(T,opts) optionally passes a set of options.

options:
opts.labelson if set to 1 (default) the values of the leaves are

displayed in the plot.
opts.fontsize sets the size of the font (default 10)
opts.markersize sets the size of the markers (default 8)

We now report in Algorithm 1 the structure of pqtreeNperm, a function which returns
the number N of all the permutations contained in the tree whose root T is given as input.
In the particular case of a leaf, only one permutation is possible (line 2–3). Otherwise, we
consider the vector c of size k, containing the children nodes of the root of T (line 5). The
algorithm calls itself recursively on each component of c (line 8). In the case of a Q-node the
number of permutations is doubled, because only one ordering and its reverse are admissible,
whereas for a P-node the number is multiplied by the factorial of k, since in this case all the
possible permutations of the children leaves are allowed. The same procedure is applied to
an M-node since this new type of node is momentary treated as a P-node; see Section 2.5
for details.

As an additional example of the functions included in our toolbox, in Algorithm 2 we
summarize the structure of the function that extracts all the N admissible permutations
encoded in the PQ-tree whose root T is given as input. The output of this function is a matrix
containing all the possible frontiers of the tree obtained by using the MATLAB default
function kron that computes the Kronecker tensor product. We recall that the Kronecker
product, denoted by the symbol ⊗, of A ∈ Cm×n and B ∈ Cp×q is the mp × nq block
matrix defined as A⊗B = (aijB).

Since all the admissible permutations are equivalent, in a way that will be explained
later in relation to the spectral algorithm for perfect seriation data, one can extract one of the

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 39

Algorithm 1 Compute the number of admissible permutations in a PQ-tree.

1: function N = pqtreeNperm(T)
2: if T is a leaf
3: N = 1
4: else
5: c = T.value, k = length(c)
6: p = 1
7: for i = 1, . . . , k
8: p = p ∗ pqtreeNperm(ci)
9: end for
10: if T is a Q-node
11: N = 2 ∗ p
12: else
13: N = factorial(k) ∗ p
14: end if
15: end if

possible boundaries of the PQ-tree by calling the function pqtree1perm.
The toolbox includes an interactive graphical tool for exploring a PQ-tree T . Indeed,

after displaying T by pqtreeplot, it is possible to extract a subtree by clicking on one
node with the left mouse button. In this case, the corresponding subtree is extracted by using
the function pqtreegetnode, it is plotted in a new figure, and it is saved to the variable
PQsubtree in the workspace. This feature is particularly useful when analyzing a large
PQ-tree, but it is not available when the toolbox is run from Octave.

2.4 Seriation in the case of perfect data: a spectral algorithm for
the seriation problem

In this section, considering the seriation problem in the presence of perfect data, we
review the spectral algorithm introduced in [6] for the seriation problem, and describe our
Matlab implementation. The algorithm uses the entries of the Fiedler vector of the Laplacian
matrix associated to the problem for finding all the possible reorderings of the nodes in the
considered seriation problem, as it will be explained in the rest of the section. In particular,
sorting the elements of the Fiedler vector reorders a similarity matrix in Robinson’s form in
the noiseless case, i.e. if the similarity matrix describing the seriation problem is in pre-P
form. This technique, based on the use of the eigenvector associated to the second smallest
eigenvalue of the Laplacian matrix, was introduced previously for the problem of reordering
a sparse matrix to reduce its envelope size [12].

Given the set of units U = {u1, u2, . . . , un}, we will write i 4 j if ui precedes uj in a
chosen ordering. In [6], the authors consider a symmetric bivariate correlation function f
reflecting the desire for units i and j to be close to each other in the sought sequence. The
aim is to find all index permutation vectors π = (π1, . . . , πn)T such that

πi 4 πj 4 πk ⇐⇒ f(πi, πj) ≥ f(πi, πk) and f(πj , πk) ≥ f(πi, πk). (2.4.1)

40 CHAPTER 2. THE SERIATION PROBLEM

Algorithm 2 Extract all admissible permutations from a PQ-tree.

1: function P = pqtreeperms(T)
2: if T.type is a leaf
3: P = T.value

4: else if T.type is a Q-node
5: w = T.value, lw: length of w
6: R = pqtreeperms(w1)
7: for i = 2, . . . , lw
8: S = pqtreeperms(wi)
9: R: a matrix constructed using the Kronecker tensor product
10: end for
11: P = [R; reverse(R)]
12: else
13: w = T.value, nw: length of w
14: for i = 1, . . . , nw
15: Wi = pqtreeperms(wi)
16: end for
17: PS: nw!× nw matrix with all the possible permutations of the nw elements
18: for k = 1, . . . , number of the rows of PS
19: p = PS(k, :)
20: R = W (p1)
21: for i = 2, . . . , nw
22: S = W (pi)
23: R: a matrix constructed using the Kronecker tensor product
24: end for
25: sR : number of the rows of R
26: if k = 1
27: P zeros matrix of order N× columns number of R
28: R composed by the first sR rows of P
29: iperm = sR+ 1
30: else
31: P (iperm : iperm+ sR− 1, :) = R

32: iperm = iperm+ iR

33: end if

It is natural to associate to such a correlation function a real symmetric matrix F , whose
entries are defined by fij = f(i, j). This matrix plays exactly the role of the similarity
matrix S discussed in subsection 2.2.1, as the following theorem states.

Theorem 2.4.1. A matrix F is an R-matrix if and only if (2.4.1) holds.

Proof. Let us assume that the permutation π which realizes (2.4.1) has already been applied
to the units. Then, since a permutation of the units corresponds to a simultaneous permutation

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 41

of the rows and columns of the matrix F , we obtain

i ≤ j ≤ k ⇐⇒ fij ≥ fik and fjk ≥ fik.

The first inequality fij ≥ fik is exactly (2.2.3). Keeping in mind the symmetry of F and
cyclically permuting the indices, we get from the second inequality

j ≤ k ≤ i ⇐⇒ fij ≤ fik,

which corresponds to (2.2.2).

If a seriation data set is described by an adjacency (or abundance) matrix A, we set
F = AAT to be the similarity matrix for the considered seriation problem. If F is pre-R,
as mentioned before, then there exists a row/column permutation that takes it into R-form.
Unfortunately, this property cannot be verified in advance, in general. It can be ascertained,
e.g., after applying the spectral algorithm on which this section is focused. Indeed, the
spectral algorithm represents an approach to recognize Robinson’s similarities. Other
different recognition algorithms, i.e., algorithm to decide whether or not a given matrix
is pre-R and then return an ordering that leads to a Robinson’s matrix, have been widely
considered. Some of them are based on variants of the well known graph traversal algorithm
Breadth-First Search (BFS) where nodes are explored by giving preference to those vertices
whose neighbors have been visited first; see [162] and references inward.

The authors’ approach in [6] (see also [66]) is to minimize the following penalty function

h(x) = 1
2

n∑
i,j=1

fij(xi − xj)2, x ∈ Rn,

whose value is small for a vector x such that each pair (i, j) of highly correlated units is
associated to components xi and xj with close values. Once the minimizing vector xmin
is computed, it is sorted in either nonincreasing or nondecreasing value order, yielding
xπ = (xπ1 , . . . , xπn)T . The permutation of the units π realizes (2.4.1).

Note that h does not have a unique minimizer, since its value does not change if a
constant is added to each of the components xi of the vector x. In order to ensure uniqueness
and rule out the trivial solution, it is necessary to impose two suitable constraints on the
components of the vector x. The resulting minimization problem is:

minimize h(x) = 1
2

n∑
i,j=1

fij(xi − xj)2

subject to
∑
i

xi = 0 and
∑
i

x2
i = 1.

The solution to this problem can be used as a heuristic for sequencing and it may be
obtained from the Fiedler vector of the Laplacian L of the correlation matrix F . Letting
D = diag(di) be the degree matrix, di =

∑n
j=1 fij , it is immediate to observe that

h(x) = 1
2

n∑
i,j=1

fij(x2
i + x2

j − 2xixj) = xTDx− xTFx.

This shows that the previous optimization problem can be rewritten as

min
‖x‖=1, xT e=0

xTLx (2.4.2)

42 CHAPTER 2. THE SERIATION PROBLEM

where L = D − F . The constraints require x to be a unit vector orthogonal to e. Since
L is symmetric, all the eigenvectors except e can be chosen to satisfy the constraints.
Consequently, a Fiedler vector is a solution to the constrained minimization problem.

The spectral algorithm by Atkins et al., is based on the following results which delineate
properties of the Fiedler vector of Robinson’s similarity matrices and show how to reorder
pre-R matrices by using the above heuristic.

Theorem 2.4.2. [Theorem 3.2 [6].] If F ∈ Rn×n is a Robinson similarity matrix then it has
a monotone Fiedler vector v, i.e. its entries are nonincreasing or nondecreasing.

The following Theorem (Theorem 3.3 from [6]) implies, under suitable assumptions,
that a reordering of the Fiedler vector takes a pre-R matrix to R-form.

Theorem 2.4.3. Assume that F ∈ Rn×n is a pre-R similarity matrix such that its Fiedler
value is simple with associated eigenvector v with no repeated entries. Let π1 and π2 be
the permutations induced by sorting the values of the Fiedler vector v in increasing and
decreasing order respectively. Then the matrices F1 and F2, obtained by applying the
found permutations to the rows and columns of F , are Robinson’s matrices and no other
permutations of F bring it to an R-form.

Thus, the aforementioned theorems show that sorting monotonically the Fiedler vector
of a pre-R similarity matrix reorders it as a Robinson matrix.

This confirms that the problem is well posed only when F is pre-R. Nevertheless, real
data sets may be inconsistent or imperfect, in the sense that they do not necessarily lead
to pre-R similarity matrices. In such cases, it may be useful to construct an approximate
solution to the seriation problem, and sorting the entries of the Fiedler vector generates an
ordering that tries to keep highly correlated elements close to each other. This is relevant
because techniques based on Fiedler vectors are used for the solution of different sequencing
problems [12, 84, 90, 106]. In particular, they are employed in complex network analysis,
e.g., for community detection and partitioning of graphs [64, 67]. Nevertheless, the solution
is not proved to be the “best” approximate to the seriation problem; we will discuss seriation
in case of imperfect data, in Section 2.5.

The algorithm proposed in [6] is based upon the above idea, and uses a PQ-tree to store
the permutations of the units that produce a solution to the seriation problem; our Matlab
implementation is described in Algorithm 3. Summarizing, this spectral algorithm for rec-
ognizing Robinson matrices consists of determining the Laplacian matrix L corresponding
to the given similarity matrix F associated to the considered seriation problem and then
sorting the entries of the Fiedler vector of L either in increasing or decreasing order gives
an ordering for the units/types depending on how F is constructed (see 2.2.1). Thus, if the
similarity matrix F̃ obtained after the reordering is in Robinson’s form, from Theorem 2.4.3
it follows, under suitable assumptions, that the starting similarity matrix F is pre-R whereas
if F̃ is not an R-matrix then F is not pre-R.

The algorithm starts by translating all the entries of the correlation matrix so that the
smallest one is 0 , i.e.,

F̃ = F − αeeT , α = min
i,j

fij ; (2.4.3)

see line 3 of Algorithm 3. This is justified by the fact that F and F̃ have the same Fiedler
vectors and that if F is an irreducible R-matrix such a translation ensures that the Fiedler

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 43

Algorithm 3 Spectral sort algorithm.

1: function T = spectrsort(F,U)
2: n = row size of F
3: α = mini,j fi,j , if α 6= 0, e = (1, . . . , 1)T , F = F − αeeT , end
4: call getconcomp to construct the connected components {F1, . . . , Fk} of F
5: and the corresponding index sets U = {U1, . . . , Uk}
6: if k > 1
7: for j = 1, . . . , k
8: v(j) = spectrsort(Fj , Uj)
9: end for
10: T = pnode(v)
11: else
12: if n = 1
13: T = lnode(U)
14: else if n = 2
15: T = pnode(U)
16: else
17: L = Laplacian matrix of F
18: compute (part of) the eigenvalues and eigenvectors of L
19: determine multiplicity nF of the Fiedler value according to a tolerance τ
20: if nF = 1
21: x = sorted Fiedler vector
22: t number of distinct values in x according to a tolerance τ
23: for j = 1, . . . , t
24: uj indices of elements in x with value xj

25: if uj has just one element
26: vj = lnode(uj)
27: else
28: v(j) = spectrsort(F (uj , uj), U(uj , uj))
29: end if
30: end for
31: T = qnode(v)
32: else
33: T = mnode(U)
34: end if
35: end if
36: end if

value is a simple eigenvalue of L. The operation of subtracting the smallest value from all
the correlation values does not change whether or not the given similarity matrix is pre-R.
In this way, the authors in [6] deal with the case when the Fiedler vector does not satisfy the
hypothesis in Theorem 2.4.3 proving that if F is a a pre-R irreducible matrix having zero

44 CHAPTER 2. THE SERIATION PROBLEM

smallest off-diagonal entry, then the Fiedler value is simple [6, Lemma 4.1 and Theorem 4.6].
Our software allows the user to disable this procedure (see Table 2.4 below) as he/she may
decide to suitably preprocess the similarity matrix in order to reduce the computational load.
Indeed, the translation procedure is repeated each time the algorithm calls itself recursively.

Algorithm 4 Determine the connected components of a graph.

1: function U = getconcomp(F)
2: preallocate the cell-array U , chlist =empty vector
3: root ={node 1}, list = root, n =row size of F
4: i = 0, flag = true (logical variable)
5: while flag
6: i = i+ 1
7: list = graphvisit(root, list)
8: U{i} = list

9: update chlist adding the nodes in list and sort the vector
10: flag = true if the number of elements in chlist is different from n

11: otherwise flag = false

12: if flag
13: choose the root for a new connected component
14: if there are no connected components left
15: exit
16: end if
17: list = root

18: end if
19: end while

If the matrix F is reducible, i.e. its support graph is not connected, the irreducible blocks
of F correspond to connected components and, then, the seriation problem can be decoupled
dealing with each of them independently [6, Lemma 4.2]. Lines 4–5 of the algorithm
detect irreducible blocks of the correlation matrix by using the function getconcomp.m,
which also identifies the corresponding index sets. The function, described in Algorithm 4,
constructs a cell array containing the vector of indices which identify each connected
component of the graph corresponding to the input similarity matrix. It calls the function
graphvisit.m, which visits a graph starting from a chosen node; see Algorithm 5. This
function explores the graph defined by an adjacency matrix beginning from the node “root”
given as input, and returns a list of the visited nodes. Note that these two functions, in order
to reduce the stack consumption due to recursion, use a global variable (a variable that is
visible and hence accessible throughout the program) to store the correlation matrix.

If more than one connected component is found, then the function calls itself on each
component, and stores the returned lists of nodes as children of a P-node (lines 7–10). If
the matrix is irreducible, the dimension n of the matrix is considered (lines 12–16). The
cases n = 1, 2 are trivial. If n > 2, the Laplacian matrix L is computed, as well as the
Fiedler value and vector (lines 17–18). Depending on the matrix being “small” or “large”
different algorithms are used. For a small scale problem the full spectral decomposition of
the Laplacian is computed by the eig function of Matlab. For a large scale problem, a small

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 45

Algorithm 5 Visit a graph starting from a node.

1: function list = graphvisit(root, list)
2: construct the list l of the indices of the nodes connected to the root
3: initialize an empty list nlist
4: find the elements of l which are not in list
5: add the new elements to list and to nlist
6: if nlist is not empty
7: sort list
8: for each node i in nlist
9: list = graphvisit(nlist(i), list)
10: end for
11: end if

subset of the eigenvalues and eigenvectors are evaluated using the eigs function, which
is based on a Krylov space projection method. The PQser toolbox computes by default
the eigenpairs corresponding to the three eigenvalues of smallest magnitude, since they are
sufficient to understand if the Fiedler value is simple or multiple, but the default value can
be modified. The choice between the two approaches is automatically performed and it may
be influenced by the user; see Table 2.4 in Section 2.4.1.

The algorithm determines the multiplicity of the Fiedler value according to a given
tolerance. If the Fiedler value is a simple eigenvalue of L, the algorithm sorts the elements
of the current list according to the reordering of the Fiedler vector and stores them as the
children of a Q-node. To deal with the case when the Fiedler vector has recurrent values, the
problem can be decoupled by applying the spectral algorithm recursively to each submatrix
of F identified by the indices corresponding to the set of repeated entries. Specifically, if
two or more values of the Fiedler vector are repeated the function invokes itself recursively
(line 28), in accordance with [6, Theorem 4.7]; on the contrary, the corresponding node
becomes a leaf (line 26). In our implementation we introduce a tolerance τ to distinguish
“equal” and “different” numbers: a and b are considered “equal” if |a− b| < τ . The default
value for τ is 10−8.

In the case of a multiple Fiedler value, our algorithm constructs an “M-node” (line 33).
This new type of node is introduced in order to flag this particular situation, which will be
further discussed in Subsection 2.5.1.

Algorithm 3 produces a PQ-tree whether the similarity matrix F , corresponding to the
considered seriation problem, is a pre-R matrix or not. If all the Fiedler values computed
during the recursive calls of the algorithm are simple, then the starting correlation matrix is
pre-R and any permutation encoded in the PQ-tree will take it to R-form. In the presence
of a multiple Fiedler vector the problem is not well posed and an approximate solution
is computed, as previously mentioned. We will describe this situation in the Section 2.5
concerning the seriation problem in case of imperfect data.

The number N of all the admissible permutations generated by the algorithm can be
obtained by counting all the possible boundaries of the tree using the function pqtreeN-
perm.m reported in Algorithm 1. In the case of a PQ-tree consisting of a single Q-node
N is equal to 2, because only the left-to-right order of the children leaves and its reverse
are possible. For a single P-node, the number of all the permutations is the factorial of

46 CHAPTER 2. THE SERIATION PROBLEM

the number of the children. An M-node is temporarily treated as a P-node, although we
experimentally observed that not all the permutations are admissible; this aspect is discussed
in Subsection 2.5.1.

2.4.1 Implementation of spectral seriation

The functions related to the implementation of the spectral algorithm described above and
included in the PQser toolbox are listed in Table 2.3. Besides the function spectrsort,
which implements Algorithm 3, there is a version of the same method called pspectrsort,
parallelized with respect to the irreducible blocks, which distributes the for loop at line 7
of the algorithm among the available processing units. In order to execute the function
pspectrsort, the Parallel Computing Toolbox must be present in the current Matlab
installation.

spectrsort spectral sort for the seriation problem
pspectrsort parallel version of spectrsort
fiedvecs compute the Fiedler vectors and values of a Laplacian
getconcomp determine the connected components of a graph
graphvisit visit a graph starting from a node
distinct sort and level the elements of a vector
lapl construct the graph Laplacian of a matrix
testmatr test matrices for PQser

Table 2.3: Functions in the PQser toolbox devoted to the solution of the seriation problem.

The function testmatr allows one to create some simple test problems. The remaining
functions of Table 2.3 are not likely to be used in the common use of the toolbox. They are
made available to the expert user, who may decide to call them directly or to modify their
content.

tau tolerance used to distinguish between “equal” and “different”
values (spectrsort and fiedvecs, def. 10−8)

translate apply translation (2.4.3) (spectrsort, def. true)
lrg used to select small scale or large scale algorithm (fiedvecs,

true if the input matrix is sparse)
nlarge if matrix size is below this value, the small scale algorithm

is used (fiedvecs, def. 1000)
neig number of eigenpairs to be computed when the large scale

algorithm is used (fiedvecs, def. 3)
maxncomp maximum number of connected components (getconcomp, def. 100)
bw half bandwidth of test matrix (testmatr, type 2 example, def. 2)
spar construct a sparse test matrix (testmatr, type 2 example, def. true)

Table 2.4: Tuning parameters for the PQser toolbox; the functions affected are reported in paren-
theses, together with the default value of each parameter.

The toolbox has some tuning parameters, which are set to a default value. They can be
modified by the user by passing to a function, as an optional argument, a variable of type
struct with fields chosen among the ones listed in Table 2.4. For example:

opts.translate = 0;
T = spectrsort(F,opts);

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 47

applies Algorithm 3 to a similarity matrix F omitting the translation process described in
(2.4.3).

To illustrate the use of the toolbox, we consider a similarity matrix R satisfying the
Robinson criterion

R =

200 150 120 80 40 0 0 0 0 0
150 200 160 120 80 40 0 0 0 0
120 160 200 160 120 80 40 0 0 0
80 120 160 200 160 120 80 40 0 0
40 80 120 160 200 160 120 80 40 0
0 40 80 120 160 200 160 120 80 40
0 0 40 80 120 160 200 160 120 80
0 0 0 40 80 120 160 200 160 120
0 0 0 0 40 80 120 160 200 150
0 0 0 0 0 40 80 120 150 200

and the pre-R matrix obtained by applying to the rows and columns of R a random permuta-
tion

F =

200 0 0 150 120 0 160 40 0 80
0 200 150 0 0 120 0 80 160 40
0 150 200 0 0 80 0 40 120 0

150 0 0 200 80 0 120 0 0 40
120 0 0 80 200 80 160 120 40 160
0 120 80 0 80 200 40 160 160 120

160 0 0 120 160 40 200 80 0 120
40 80 40 0 120 160 80 200 120 160
0 160 120 0 40 160 0 120 200 80
80 40 0 40 160 120 120 160 80 200

. (2.4.4)

The PQ-tree T containing the solution of the reordering problem is constructed by
calling the function spectrsort, which returns the resulting data structure:

T = spectrsort(F,opts)
T =

struct with fields:
type: ’Q’

value: [1x10 struct]

Using the function pqtreeplot

pqtreeplot(T)

we obtain the representation of the PQ-tree displayed in Figure 2.2.
In this particular case, the PQ-tree T consists of just a Q-node as a root, so only two

permutations of the leaves are allowed. They can be extracted from the tree using the
function pqtreeperms, whose output is

perms_matrix = pqtreeperms(T)
perms_matrix =

4 1 7 5 10 8 6 9 2 3
3 2 9 6 8 10 5 7 1 4

48 CHAPTER 2. THE SERIATION PROBLEM

10 7 6 9 8 2 1 4 5 3

Q node

leaf

Figure 2.2: A PQ-tree corresponding to a pre-R matrix of dimension 10.

Sometimes, a PQ-tree may contain a very large number of permutations. In such cases, the
function pqtree1perm extracts just one of the possible permutations, in order to apply it
to the rows and columns of the matrix F :

seq = pqtree1perm(T);
AR = F(seq,seq);

Since F is pre-R, we clearly reconstruct the starting similarity matrix R.

2.4.2 Numerical experiments

In this section we illustrate the application of the PQser toolbox to some numerical
examples. The experiments can be repeated by running the related Matlab scripts located
in the demo sub-directory of the toolbox. We also compare the toolbox to other existing
software.

0 5 10

0

2

4

6

8

10

12

Bornholm matrix

0 5 10

0

2

4

6

8

10

12

Permuted matrix

0 5 10

0

2

4

6

8

10

12

Reordered matrix

Figure 2.3: Processing of the Bornholm data set: the spy plot on the left shows the original matrix, a
permuted version is reported in the central graph, and on the right, we display the matrix
reordered by the spectral algorithm.

The first example is the numerical processing of the Bornholm data set, presented in
Table 2.1. We randomly permute the rows of the adjacency matrix and apply the spectral
algorithm to the similarity matrix on the rows/units, associated to the permuted adjacency

2.4. A SPECTRAL ALGORITHM FOR THE SERIATION PROBLEM 49

matrix. The resulting PQ-tree contains just a Q-node, so there is only one solution (actually,
this is a proof that the matrix is pre-R) which we use to reorder the permuted matrix. The
computational code is contained in the file exper1.m.

Figure 2.3 reports the spy plots which represent the nonzero entries of the initial matrix,
its permuted version, and the final reordering. It is immediate to observe that the lower band
of the reordered matrix is slightly narrower than that of the initial matrix, showing that the
spectral algorithm was able to improve the results obtained empirically by archaeologists.

The second numerical experiment concerns the comparison between the sequential and
parallel versions of the spectral algorithm in the solution of a large scale problem. The
experiment was performed on a dual Xeon CPU E5-2620 system (12 cores), running the
Debian GNU/Linux operating system and Matlab 9.2.

The function testmatr of the toolbox allows the user to create a block diagonal matrix
formed by m banded blocks, whose size is chosen by using a second input parameter. The
matrix is randomly permuted in order to hide its reducible structure.

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

450

sequential

parallel

2 4 6 8 10 12 14

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 2.4: Comparison between the sequential and the parallel versions of Algorithm 3: on the
left the execution time in seconds, on the right the parallel speedup, defined as the
ratio between the sequential and the parallel timings. The test matrix is of dimension
215 = 32768, the size of each reducible block is 2j , where j is the index reported in the
horizontal axis.

We let the size of the problem be n = 215 = 32768 and, for j = 1, 2 . . . , 15, we
generate a sequence of test adjacency matrices containing n2−j blocks, each of size 2j .

We applied the function spectrsort that implements Algorithm 3 to the above
problems, as well as its parallel version pspectrsort, and recorded the execution time;
see the file exper2.m. The number of processing units available on our computer was 12.

The graph on the left of Figure 2.4 shows that there is a significant advantage from
running the toolbox on a parallel computing system when the network associated to the
problem is composed by a small number of large connected components. This is confirmed
by the plot of the parallel speedup, that is, the ratio between the timings of the sequential
and the parallel implementations, displayed in the graph on the right in the same figure.

As a third numerical example, we choose to compare the results of our implemen-
tation of the spectral algorithm with those provided by the seriate function (with
method="spectral"), from the R package seriation [85] (http://cran.r-project.
org/web/packages/seriation/).

http://cran.r-project.org/web/packages/seriation/
http://cran.r-project.org/web/packages/seriation/

50 CHAPTER 2. THE SERIATION PROBLEM

We considered a well posed problem, represented by the pre-R similarity matrix (2.4.4).
The seriation R package requires a slightly different input, that is, a dissimilarity matrix
D rather than a similarity matrix F , but it is immediate to pass from one format to the other,
by first computing

H = (hij) = δeT + eδT − 2F,

where δ = diag(F) and e = [1, . . . , 1]T , and then setting D = (dij) with dij =
√
hij . The

function seriate correctly returns the permutation

3 2 9 6 8 10 5 7 1 4,

i.e., one of the two symmetric permutations reported at the end of the previous paragraph.
We also applied seriate to the Bornholm data set of Table 2.1. In this case, the

returned permutation leads to a matrix with a larger bandwidth than the reordered matrix
displayed in Figure 2.3. The non-optimality of the solution is confirmed by the value of
the function φ(L) = xTLx (see (2.4.2)) minimized by the spectral algorithm. Indeed,
φ(L̃) = 506 and φ(L′) = 655, being L̃ and L′ the Laplacians of the similarity matrices
produced by spectrsort and seriate, respectively.

5 6 7 8 9 10 11 12
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

spectrsort

R-seriation

5 6 7 8 9 10 11 12
10

-1

10
0

10
1

10
2

Figure 2.5: Comparison between the sequential version of Algorithm 3 and the function seriate
from [85]: on the left the execution time in seconds, on the right the ratio between the
timings of Algorithm 3 and of the function seriate. The size of the test matrix is 2j ,
with j = 5, . . . , 12. Each matrix is block diagonal, with 4 blocks of size 2j−2.

The other comparison we considered in this section, investigates the execution time
of our implementation of the spectral algorithm and the one included the R package. The
test matrix is the same one used in the experiment depicted in Figure 2.4. In this case n,
the size of the problem, ranges from 25 to 212; each of the test matrices is block diagonal,
with 4 blocks each of size n/4. The graph on the left of Figure 2.5 shows the computing
time for the two implementations. While the R package appears to be slightly faster for
small scale problems, the sequential version of spectrsort is increasingly faster as the
size of the problem gets large. The same trend can be observed in the graph on the right
of the same figure, which depicts the ratio between the two timings. This may be due to
the fact that Matlab is more likely to fully exploit the parallel processing capabilities of
multi-core/multi-processor architectures.

To conclude, we consider another important application of the reordering defined by the
Fiedler vector of the Laplacian, namely, the reduction of the bandwidth for a sparse matrix.

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 51

0 500 1000

0

200

400

600

800

1000

Initial matrix

0 500 1000

0

200

400

600

800

1000

Spectral reordering

0 500 1000

0

200

400

600

800

1000

Reverse Cuthill-McKee

Figure 2.6: Bandwidth reduction of a sparse matrix of size 1024: the three spy plots display the
initial matrix, the reordered matrix resulting from the spectral algorithm, and the one
produced by the symrcm function of Matlab.

The spectral algorithm can be indeed used for computing an envelope-reducing ordering of
sparse, symmetric matrices; see [12].

In our test, we generated with the Matlab function sprandsym, a sparse random
symmetric matrix of size n = 1024, having approximately 0.2% nonzero elements. Notice
that in this case the spectral algorithm must be applied to a matrix whose elements are taken
in absolute value, so we applied the sequential version of Algorithm 3 to the test matrix
with entries in absolute values. We then reorder it by using Algorithm 3 applying one of the
obtained permutations to its rows and columns. The computation is described in the script
exper3.m contained in the demo sub-directory.

The resulting matrix is depicted by displaying its nonzero pattern in Figure 2.6, where
it is compared to the reverse Cuthill-McKee ordering, as implemented in the symrcm
function of Matlab. The Cuthill-McKee algorithm is a variant of the standard breadth-first
search algorithm used in graph algorithms. It is used to permute a sparse matrix that
has a symmetric sparsity pattern into a band matrix form with a small bandwidth [43].
The reverse version renumbers the ordering obtained with the Cuthill-McKee but with the
resulting index numbers reversed [77]. This modification, in general, yelds to superior
performance efficiency than the original Cuthill-McKee ordering, although the bandwidth
remains unchanged [125].

The spectral algorithm appears to be less effective than symrcm, leading to a reordered
matrix with a wider band. This is due to the fact that spectrsort aims at placing the
largest entries close to the diagonal, and this does not necessarily produce the maximal
bandwidth reduction. Experiments with sparser matrices showed that quite often the two
methods produce similar results.

2.5 Seriation in the presence of imperfect data

In this section we consider the case when the seriation data coming from a given problem,
are imperfect and consequently the seriation problem is not well posed. Perfect data,
analyzed in the previous section, leading to pre-P data matrices or pre-R similarity matrices,
appear truly rarely in real situations. As a matter of fact, archeological or experimental data
always contain errors, and then, in most applications, the data matrix A is typically noisy
hence the pre-R assumption on the similarity matrix no longer holds. For that reason, the

52 CHAPTER 2. THE SERIATION PROBLEM

similarity between the objects to be reordered can be only approximatively measured.
For imperfect data, the seriation problem was shown to be NP-complete in [78]. The

spectral algorithm described in Section 2.4 is still applicable when the data deviate from
being perfect within certain limits. Indeed, the spectral solution is stable when the magnitude
of the noise remains within the spectral gap [73]. Even though the Fiedler vector can still
be used as a heuristic to find an approximate solution to the seriation problem, there is no
guarantee that it is optimal. Hence, devising efficient algorithms for dealing with imperfect
data, permuting rows and/or columns of a non pre-P data matrix or non pre-R similarity
matrix into the arrangement “closest” in some metric, to a P-form or an R-form respectively,
is deemed of great importance theory- and application-wise.

Fogel et al. in [74], explicitly wrote seriation as an optimization problem by proving
the equivalence between the seriation and the combinatorial 2-SUM problems. 2-SUM, see
e.g. [78] and the references therein, is a quadratic minimization problem over permutations.
They also proposed an approach based on convex relaxations for the 2-SUM problem, in
order to solve matrix ordering and improve the robustness of seriation solutions in a noisy
setting. Their results show in particular that 2-SUM is polynomially solvable for matrices
coming from serial data. The 2-SUM problem is related to the NP-hard quadratic assignment
problem (QAP) which is a combinatorial optimization problem introduced by Koopmans
and Beckman [114] as a mathematical model for the facilities location of economic activities.
Given n facilities and n locations, QAP involves a flow matrix A and a distance matrix B.
Hence, in QAP(A,B) the entryAij ofA represents the flow of activity between the facilities
i and j, while the entry Bij of the distance matrix, is the distance between the locations i
and j. Laurent and Seminaroti, in [121], modelled the seriation problem as an instance
of QAP(A,B), showing that if both matrices A and B are pre-R, one can find an explicit
solution to QAP by using a Robinsonian recognition algorithm to find Robinson orderings
of the two involved matrices. They also introduced a heuristic to solve the seriation problem,
based on a generalization of the similarity-first-search (SFS) algorithm [120], by finding
a “close” Robinson approximation of the original non-Robinson similarity matrix. In a
couple of works [134, 135], Meidanis and collaborators proposed an extension of the PQ
tree structure, the so-called PQR tree, which can point out possible obstructions when the
C1P does not hold. These trees generalize the PQ tree of Booth and Lueker; indeed, a PQ
tree is a PQR tree without R nodes whose presence indicates that the instance does not have
the consecutive ones property. As an additional advantage, PQR trees can help in some
cases to determine why the C1P is not valid pointing out specific sub-collections responsible
for its failure [173].

Since in some of our experiments, when testing our implementation of the spectral
algorithm, we observed the presence of a non simple Fiedler value of the Laplacian matrix
associated to the considered problem, in the following paragraph we analyse this situation
which highlights the presence of imperfect data.

2.5.1 The case of a multiple Fiedler value

As a particular case of the presence of imperfect seriation data, we discuss the situation
where the Fiedler value is a multiple root of the characteristic polynomial of the Laplacian
L. When this happens, the eigenspace corresponding to the smallest nonzero eigenvalue
of L has dimension larger than one, so there is no uniqueness in the choice of the Fiedler
vector, which can be any vector in the eigenspace.

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 53

1

2

3

5

4

1

2

3

4

5

1

2

3

4

5

Figure 2.7: On the left: the cycle graph C5. On the right: the bipartite graph related with the cycle
graph C5.

In [41], we conjecture that sorting the entries of one of the Fiedler vectors does not
necessarily lead to all possible index permutations, i.e., the factorial of the number n of
units. We experimentally observed that there may be some constraints that limit the number
of permutations deriving from the Fiedler vector, and this number appears to be related to
the structure of the eigenspace, and not simply to the multiplicity of the Fiedler value. We
will illustrate this issue by numerical experiments.

Here we present a first simple example to justify our conjecture represented by the
cycle or circular graph which is a graph, that we will indicate as Cn, whose n vertices are
connected in a closed chain. The number of edges in Cn equals the number of nodes and
every vertex has degree 2 since every node has exactly two edges incident to it. Hence
a cycle is a regular graph, i.e., a graph in which each vertex has the same degree. The
adjacency matrix A associated with Cn is given by

A =

0 1 0 . . . 0 1
1 0 1 0 . . . 0

0 1
. . .

.
...

... . . .
. . .

. . .
. . .

...

0
. . .

. . . 1
1 0 . . . 0 1 0

, (2.5.1)

while the n× n signless incidence matrix

E =

1 1 0 0
0 1 1 0 . . . 0
...

. . .
. . .

.
...

...
. . .

. . .
. . .

. . . 0
0 0 1 1
1 0 0 1

, (2.5.2)

can be interpreted as a data matrix of the considered seriation problem, that is, an element
equal to 1 in position (i, j) indicates that unit i contains type j objects. This means that E
is the upper-right part of the adjacency matrix of the related bipartite graph whose nodes

54 CHAPTER 2. THE SERIATION PROBLEM

sets represent the archaeological units and types of the findings, as explained in Section 2.2;
see Figure 2.7 for the representation of the cycle graph with n = 5 nodes and the related
bipartite graph.

The similarity matrix F = EET and its Laplacian L, that coincides with the Laplacian
of A, are respectively

F = EET =

2 1 0 . . . 0 1
1 2 1 0 . . . 0

0
. . .

. . .
.

...
...

. . .
. . .

. . .
. . . 0

0 . . .
. . .

. . .
. . . 1

1 0 . . . 0 1 2

, L =

2 −1 0 . . . 0 −1
−1 2 1 0 . . . 0

0
. . .

. . .
.

...
...

. . .
. . .

. . .
. . . 0

0 . . .
. . .

. . .
. . . −1

−1 0 . . . 0 −1 2

.

The matrix L, as well as F , is circulant, that is, it is fully specified by its first column, while
the other columns are cyclic permutations of the first one with an offset equal to the column
index [48]. A basic property of circulant matrices is that their spectrum is analytically
known. Considering the following discrete Fourier transform of the first column of the
Laplacian matrix L associated to the problem

L̂(ζ) = 2− ζ−1 − ζ−(n−1), (2.5.3)

the spectrum of L is given by

σ(L) = {L̂(1), L̂(ω), . . . , L̂(ωn−1)} (2.5.4)

where ω = e
2πi
n is the minimal phase nth root of unity, with i the imaginary unit.

The next results states the behavior of the eigenvalues of the Laplacian matrix in the
special case of a circular graph Cn.

Theorem 2.5.1. Let A be the adjacency matrix of a circular connected graph, with at least
n ≥ 3 vertices. Then the eigenvalues of the Laplacian matrix L = D −A are coupled, that
is

L̂(ωk) = L̂(ωn−k), k = 1, . . . , n− 1.
In particular, if n is odd, the smallest eigenvalues λ1 = 0 is the only simple eigenvalue.
Otherwise, the smallest eigenvalue λ1 = 0 and the largest one λn are the only simple
eigenvalues.

Proof. First, we recover a well known result in graph theory which states that the smallest
eigenvalue of the Laplacian is λ1 = 0. From (2.5.3) and (2.5.4), fixed k = 0, we obtain

L̂(1) = 2− 1− 1 = 0.

Next, let us consider k = 1, . . . , n− 1. From (2.5.3) and (2.5.4) we obtain

L̂(ωk) = 2− e−
2πi
n
k − e−

2πi
n

(n−1)k

= 2− e−
2πi
n
k − e

2πi
n
k

= 2− θk − θk, where θk = e−
2πi
n
k.

.

From this and the property ωk = ωn−k, the thesis follows.

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 55

Corollary 2.5.2. Let A be the adjacency matrix of a graph satisfying the hypothesis of
Theorem 2.5.1. Then the Fiedler value has multiplicity 2.

Let us consider the cycle graph with n = 5 vertices and edges and the seriation problem
described by the bipartite graph associated with C5, depicted on the right of Figure 2.7. The
nodes on the left represent the units, e.g., the excavation sites; the nodes on the right are the
types, which may be seen as the archaeological findings. The relationships between units
and types are represented by edges connecting the nodes.

This seriation problem is clearly unsolvable because each unit is related to surrounding
units by a connection to a common type and the two extremal units are related to each
other in the same way. At the same time, not all the units permutations are admissible. For
example, one may argue that the permutation π1 = (3, 4, 5, 1, 2)T should be considered
partially feasible, as it breaks only one of the constraints contained in the bipartite graph,
while the ordering π2 = (1, 4, 2, 5, 3)T has nothing to do with the problem considered.

In the considered example, the Laplacian matrix L associated with the problem is given
by

L =

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

and hence, its eigenvalues are

{L̂(1), L̂(ω), L̂(ω2), L̂(ω3), L̂(ω4)},

where L̂(ζ) = 2− ζ−1 − ζ−4 is the discrete Fourier transform of the first column of L and
ω = e

2πi
5 is the minimal phase 5th root of unity. And a simple computation shows that

L̂(1) = 0, L̂(ω) = L̂(ω4) = 2− 2 cos 2π
5 , L̂(ω2) = L̂(ω3) = 2− 2 cos 4π

5 ,

so that the Fiedler value L̂(ω) has multiplicity 2.
To explore this situation, we performed the following numerical experiment. We con-

sidered 10000 random linear combinations of an orthonormal basis for the eigenspace
corresponding to the Fiedler value. This produces a set of random vectors belonging to a
plane immersed in R5, which can all be considered as legitimate “Fiedler vectors”.

Each vector is sorted, and the corresponding permutations of indexes are stored in the
columns of a matrix. In the end, all the repeated permutations are removed. We obtain
the following 10 permutations (displayed as columns), i.e., much less than the 5! = 120
possible permutations,

perms =

3 5 5 2 2 1 4 4 3 1
2 1 4 1 3 5 3 5 4 2
4 4 1 3 1 2 5 3 2 5
1 2 3 5 4 4 2 1 5 3
5 3 2 4 5 3 1 2 1 4

56 CHAPTER 2. THE SERIATION PROBLEM

The obtained permutations reduce to 5 if we remove the permutations which are the
reverse of another one. This confirms our conjecture: when a Fiedler value is a multiple
eigenvalue, some constraints are imposed on the number of the admissible permutations of
the units.

It is relevant to notice that the results produced by the above procedure do not contain
the cyclic permutations of the units of the graph depicted in Figure 2.7. We can justify
this outcome by comparing the initial matrix F = AAT to the matrix F̃ , which results by
reordering F according to the output of the experiment

F =

2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2

 , F̃ =

2 1 1 0 0
1 2 0 1 0
1 0 2 0 1
0 1 0 2 1
0 0 1 1 2

 . (2.5.5)

Indeed, the spectral algorithm aims at moving the nonzero components close to the main
diagonal and this contrasts with the presence of non-zeros in the elements f51 and f15 of
the matrix F , while F̃ exhibits a smaller bandwidth than F . We also run the seriate
function from the R package seriation [85] on this ill posed problem, whose similarity
matrix is F . The R package returns the same matrix F̃ constructed with our approach. We
remark that spectrsort is not currently able to handle this “noisy” situation but, unlike
seriate, it issues a warning about the presence of a multiple Fiedler value, signalling that
the similarity matrix is not pre-R and hence the problem is not well posed.

Even in the application of the spectral algorithm to the reduction of the bandwidth of
sparse, symmetric matrices, the presence of a multiple Fiedler value constitutes a problem.
Indeed, for example, we were not able to correctly process the Matlab 60× 60 test matrix
bucky (representing the connectivity graph of the Buckminster Fuller geodesic dome),
because the associated Laplacian possesses a Fiedler value with multiplicity 3.

Since we did not find any reference to the problem of a multiple Fiedler value in the
literature, we are currently studying it, hence the rest of this paragraph is still a work in
progress. This is the reason why the PQser toolbox conventionally associates an M-node to
the presence of a multiple Fiedler value. In the software, the new type of node is temporarily
treated as a P-node. This leaves the possibility to implement the correct treatment of this
particular case of multiple Fiedler value, once the problem has been understood.

In order to investigate the particular situation when the Fiedler value is multiple we
are currently developing two methods: a graphic method and a Montecarlo method based
on repeated random samplings of linear combinations of an orthonormal basis for the
eigenspace corresponding to the multiple Fiedler value. The graphic method works, up until
now, only when the Fiedler value is double. Once the methods will be completed, we will
study also the case of a Fiedler value with multiplicity larger than 2.

As an example of the admissible permutations obtained from the reordering of the nodes
in a networks using the eigenvectors associated with a double Fiedler value, we considered
a modification of the star graph. The star graph on n nodes, denoted here with Sn, is a
connected graph with n vertices and n− 1 edges, where one vertex (the central one) has
degree n− 1 and the others n− 1 vertices have degree 1. A star graph is a special case of
a complete (i.e., every pair of distinct vertices is connected by an edge) bipartite graph in
which one set has one vertex and the other set contains n− 1 nodes.

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 57

2

3

4

6

5

1

1

2

3

4

5

6

1

2

3

4

5

Figure 2.8: On the left: the star graph S6. On the right: the bipartite graph related with the star
graph S6.

Without loss of generality we can assume that the first node is the center of the star so
that the adjacency matrix is of the form

A =

0 1 1 1 . . . 1
1 0 0 0 . . . 0
1 0 0 0 . . . 0
1 0 0 0 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 0

. (2.5.6)

Following the same approach used previously in the description of the cycle graph, the
upper-right part of the adjacency matrix of the bipartite graph related to the star graph
depicted in Figure 2.8 (for n = 6 nodes)

E =

1 1 1 1 . . . 1
1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

. . .
. . .

...
...

...
... . . .

. . . 0
0 0 1

∈ Rn×(n−1),

can be interpreted as data matrix of a considered seriation problem. The similarity and
Laplacian matrices are respectively

F =

n− 1 1 1 1 . . . 1
1 1 0 0 . . . 0
1 0 1 0 . . . 0
1 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 1

, L =

n− 1 −1 −1 −1 . . . −1
−1 1 0 0 . . . 0
−1 0 1 0 . . . 0
−1 0 0 1 . . . 0
...

...
...

...
. . .

...
−1 0 0 0 . . . 1

. (2.5.7)

58 CHAPTER 2. THE SERIATION PROBLEM

The Laplacian matrix, as well as the similarity one, is an arrowhead matrix that is a real
symmetric matrix which is zero except for its main diagonal, one row and one column. We
can consider arrowhead matrices of the form[

α zT
z B

]
(2.5.8)

where α is a scalar, z = [z1, . . . , zn−1]T is a vector of length n−1 andB is a diagonal matrix
of order n− 1 with elements b1, . . . , bn−1. From the Cauchy’s interlacing theorem 1.1.4 for
the eigenvalues of Hermitian matrices follows that its sorted eigenvalues interlace the sorted
elements bi of the diagonal matrix B. If b1 ≥ b2 ≥ · · · ≥ bn−1 and if the eigenvalues λi for
i = 1, . . . , n are sorted accordingly, then the following inequality holds

λ1 ≥ b1 ≥ λ2 ≥ b2 ≥ · · · ≥ λn−1 ≥ bn−1 ≥ λn.

If bi = bj for some i 6= j, the above inequality implies that bi is an eigenvalue of the
arrowhead matrix (2.5.8) considered.

Considering the Laplacian matrix (2.5.7) we can observe that it is an arrowhead matrix
of the form (2.5.8) with α = n− 1, z = [−1, . . . ,−1]T and B = In−1.

The following theorem explains the behaviour of the eigenvalues of the Laplacian matrix
in the case of a star graph Sn. We report the following results for completeness, even though
we are interested in a particular graph obtainable from the star network, by adding edges.

Theorem 2.5.3. Let A the adjacency matrix of a star graph Sn. Then the spectrum of the
Laplacian matrix L = D −A consist of the three eigenvalues 0, 1 and n where the second
one has multiplicity n− 2.

Proof. Let the Laplacian matrix (2.5.7) be given and consider a well known result which
states that the smallest eigenvalue of the Laplacian is λ1 = 0. From the Cauchy interlacing
theorem applied to the matrices L and I follows that the sorted eigenvalues λi (i = 1, . . . , n)
of L interlace the sorted element of the diagonal matrix I that is

λ1 ≤ 1 ≤ λ2 ≤ 1 ≤ · · · ≤ λn−1 ≤ 1 ≤ λn.

As we saw before, it follows that 1 is an eigenvalue of L with multiplicity n− 2. Moreover
n belongs to the spectrum of L, in fact v = [−(n− 1), 1, . . . , 1]T is a vector of length n for
which

Lv = nv.

Corollary 2.5.4. Let A be an adjacency matrix of a graph satisfying the hypothesis of
Theorem 2.5.3. Then the Fiedler value has multiplicity n− 2.

Corollary 2.5.5. The n − 2 Fiedler vectors of a star graph have null component in the
position corresponding to the central node index.

Proof. Without loss of generality we can assume that the first node is the central one of
degree n− 1. The coefficient matrix of the linear system associated with the Fiedler value
is of the form

L− I =
[
n− 2 −zT
−z 0

]
.

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 59

The first equation of the system implies that the sum of components of the Fiedler vectors is
0, while the remaining n− 1 show that their first component is always 0.

Since we are interested in the case when the Fiedler value has multiplicity 2, let us
consider a modified version of Sn obtained by adding n− 4 edges of the form {uiui+1|2 ≤
i ≤ n−3}, to the adjacency matrix (2.5.6). The adjacency matrix of the modified star graph,
denoted here by Ŝn, having n nodes and 2n− 5 edges is of the form

A =

0 1 1 1 · · · · · · 1
1 0 1 0 · · · · · · 0

1 1 0
. . . · · · · · ·

...

1 0
. . . 0 1 0

...
...

...
... 1

. . . 0
...

...
...

... · · · 0
. . . 0

1 0 0 0 · · · 0 0

. (2.5.9)

The data matrix is given by the signless incidence matrix

E =

1 1 1 1 · · · 1 0 · · · 0

1 0 0 0 · · · 0
. . . 0 0

0 1 0 0 · · · 0 1 1 0

0 0 1 0 · · · 0 0
. . . 1

...
...

...
. . .

. . .
... 0 0 1

...
...

... . . .
. . . 0

... 0 0
0 · · · · · · · · · 0 1 0 · · · 0

∈ Rn×(2n−5), (2.5.10)

that is again the block of the adjacency matrix of the bipartite graph, depicted in Figure 2.9,
which describes the connections between units and types. From the data matrix we can
compute the similarity matrix on the rows/units

F = EET =

n− 1 1 · · · · · · · · · · · · · · · 1
1 2 1 0 · · · · · · · · · 0
... 1 3 1

. . .
. . .

. . . 0
... 0

. . .
. . .

. . .
. . .

. . .
...

...
...

. . . 1 3 1 0
...

...
...

. . .
. . . 1 2 1

...
...

...
. . .

. . .
. . . 0 1 0

1 0 · · · · · · · · · · · · 0 1

,

60 CHAPTER 2. THE SERIATION PROBLEM

while the Laplacian matrix of A, that coincides with the Laplacian of S, is given by

L =

n− 1 −1 · · · · · · · · · · · · · · · −1
−1 2 −1 0 · · · · · · · · · 0
... −1 3 −1

. . .
. . .

. . . 0
... 0

. . .
. . .

. . .
. . .

. . .
...

...
...

. . . −1 3 −1 0
...

...
...

. . .
. . . −1 2 −1

...
...

...
. . .

. . .
. . . 0 1 0

−1 0 · · · · · · · · · · · · 0 1

. (2.5.11)

The following theorem explains the behaviour of the Fiedler value of the Laplacian matrix
in the case of the modified star graph Ŝn.

Theorem 2.5.6. Let A be the adjacency matrix of a modified star graph Ŝn. Then the
Fiedler value is equal to 1 and has multiplicity 2.

Proof. Without loss of generality we can assume that the first node is the central one of
degree n − 1. The added edges are of the form {uiui+1|2 ≤ i ≤ n − 3}. We prove
first that 1 is the Fiedler value. The Householder matrix associated with the eigenvector
v = [1, . . . , 1]T ∈ Rn is given by

Q =

1√
n

· · · · · · · · · 1√
n

... 1
n

(√
n

1−
√
n

)
+ 1 1

n

(√
n

1−
√
n

)
· · · 1

n

(√
n

1−
√
n

)
... 1

n

(√
n

1−
√
n

) . . .
. . .

...

...
...

. . .
. . .

...
1√
n

1
n

(√
n

1−
√
n

)
· · · · · · 1

n

(√
n

1−
√
n

)
+ 1

.

The matrix DL = QLQT , which is the deflated matrix with respect to the zero eigenvalue,
has the form

DL =
[

0 0T
0 L̃

]
where 0 is the null vector of length n− 1 and

L̃ =

3 0 1 · · · · · · · · · 1

0 4 0
. . .

. . .
. . . 1

1
. . .

. . .
. . .

. . .
. . .

...
...

. . . 0 4 0 1
...

...
. . .

. . . 0 3 0
...

...
. . .

. . .
. . . 1 2 1

1 · · · · · · · · · · · · 1 2

∈ R(n−1)×(n−1),

2.5. SERIATION IN THE PRESENCE OF IMPERFECT DATA 61

has the same eigenvalues of the matrix L. It is sufficient to show that the shifted matrix
L̃− In−1 is positive semi-definite. But this is clear noting the fact that

L̃− In−1 = L̂+ eeT , e = [1, · · · , 1]T ∈ R(n−1)

where L̂ = L(2 : n, 2 : n) and eeT are positive semi-definite matrices of order n− 1.
The eigenspace associated with the eigenvalue 1 has dimension 2, in fact

v1 = [0, 1, . . . , 1,−(n− 2)]T and v2 = [0, 1, . . . , 1,−(n− 3)]T

are two linear independent vectors of length n for which

Lvi = vi, i = 1, 2.

In the case of the derivation of the star graph obtained adding n−4 edges to its adjacency
matrix, an orthogonal basis for the eigenspace F corresponding to the Fiedler value, of
multiplicity 2, is given by

q1 = [0,−1, . . . ,−1︸ ︷︷ ︸
n−3

, n− 3, 0]T , q2 = [0,−1, . . . ,−1︸ ︷︷ ︸
n−2

, n− 2]T . (2.5.12)

For each x ∈ F , there is ỹ ∈ R2 such that x = Q2ỹ, whereQ2 = [q1,q2]. After immersing
ỹ in Rn by zero-padding, and completing the base Q2, we can write x = Qy, with y ∈ Rn
given by

y =
[
ỹ
0

]
=

y1
y2
0
...
0

 .

Looking at y it is clear that any permutation of its last n− 2 components is equivalent, and
that only the first 2 entries are relevant in sorting.

Then, every x ∈ F can be expressed as

x = [0,−α− β, . . . ,−α− β︸ ︷︷ ︸
n−3

, (n− 3)α− β, (n− 2)β]T , (2.5.13)

for α, β ∈ R. Since every vector in the eigenspace generated by the Fiedler vectors q1 and
q2 contains n− 3 coincident entries, the indexes associated with these components cannot
be ordered uniquely, because they all have the same value. This means that in the associated
PQ-tree they correspond to a P-node, originating (n− 3)! permutations. Specifically, the
admissible permutations are related to the possible reorderings of the entries of x and these
sortings depend on the values of the coefficients α and β in x. Then, for sorting the entries
of x, we have to consider the following cases

1. α, β > 0, with α < β;

2. α, β > 0, with β < α;

62 CHAPTER 2. THE SERIATION PROBLEM

3. α < 0 < β;

4. β < 0 < α;

5. α, β < 0, with β < α;

6. α, β < 0, with α < β.

In order to obtain only the admissible permutations ruling out the reverse ones, it can be
observed that we can consider only the first three cases, since the cases 4,5,6 are coupled
with 3,1,2 respectively, in the sense that they produce permutations which are the reverse of
the ones obtained from the first three cases. Therefore, focusing only on the first three cases,
we can compute the number of the admissible permutations. In case 1, when α, β > 0 with
α < β, there are two subcases depending on the sign of the entry (n− 3)α− β in x

• when 0 < α < β < (n− 3)α, the ordering we find for the entries of x is −α− β <
0 < (n− 3)α − β < (n− 2)β and then in this subcase there are (n− 3)! possible
permutations given by the presence of a “macro” node of length n− 3;

• when 0 < α < (n−3)α < β the ordering of the entries is−α−β < (n−3)α−β <
0 < (n − 2)β and, as in the previous subcase, there are again (n − 3)! admissible
permutations.

When α, β > 0 with β < α (case 2), the only possible reordering for the entries of x is
−α−β < 0 < (n−2)β < (n−3)α−β and then the admissible permutations are (n−3)!.
In case 3, when α < 0 < β, there are instead three possible subcases each one producing
(n− 3)! admissible permutations due to the presence of the (n− 3) “macro” node given by
the entry −α− β

• when α < −(n − 1)β < 0 < β the ordering of the entries in x is (n − 3)α − β <
0 < (n− 2)β < −α− β;

• when −(n − 1)β < α < −β the sorting for the entries is (n − 3)α − β < 0 <
−α− β < (n− 2)β;

• the last subcase is when −β < α and the only possible ordering for the entries is
(n− 3)α− β < −α− β < 0 < (n− 2)β.

Hence, the admissible permutations for the nodes in the case of the graph Ŝn are 3!(n− 3)!.
This number is smaller than n!, that represents all the possible permutations for n indexes.
Thus, again we can observe that also a double Fiedler value does not permit all the possible
permutations, but imposes a constraint. The allowed permutations we found using the graphic
method briefly explained above coincide with the ones obtained by using a Montecarlo
method relying on repeated random sampling of linear combinations of q1 and q2 in (2.5.12).
It can also be observed that in these admissible permutations node 1, that corresponds to
the value 0 in x, will never be in the first position in the resulting reorderings. In fact,
considering the previous 6 cases for the values of α and β, at least one entry of x is negative.

If we consider the modified star graph S6 with n = 6 nodes, represented in Figure 2.9,
the Fiedler vectors are

q1 = [0,−1,−1,−1, 3, 0]T , q2 = [0,−1,−1,−1,−1, 4]T

2.6. CONCLUSIONS AND FUTURE WORK 63

2

3

4

6

5

1

1

2

3

4

5

6

1

2

3

4

5

6

7

Figure 2.9: On the left: the star graph Ŝ6. On the right: the bipartite graph related with the star
graph Ŝ6.

and any vector x in the eigenspace associated with the Fiedler value is of the form

x = [0,−α− β,−α− β,−α− β, 3α− β, 4β]T

for α and β ∈ R. Following the above discussion on the reorderings of the components
of x for each of the first 3 cases on the values of the coefficients α and β ∈ R, we found
(n− 3)! = 6 admissible orderings and hence the allowed permutations of the nodes in the
considered graph illustrating a seriation problem. Concluding, the admissible permutations,
which we can found using both the graphic and the Montecarlo methods we are developing,
are 36 (i.e. 3!(n− 3)!) and not n! = 720.

2.6 Conclusions and future work

In this Chapter we presented a new Matlab toolbox principally aimed to the solution of
the seriation problem, but which can be applied to other related problems where one seeks
to reconstruct a linear ordering based on unsorted and possibly noisy, pairwise similarity
information.

Our software is based on a spectral algorithm introduced first in [12] for computing a
reordering for envelope size reduction of sparse, symmetric matrices and then applied to
the seriation and the consecutive ones problems by Atkins et al. [6]. The toolbox contains
an implementation of PQ-trees as well as some tools for their manipulation, including an
interactive visualization tool. The implemented spectral algorithm includes the possibility to
choose between a small scale and a large scale algorithm for the computation of the Fiedler
vector of the Laplacian associated to the considered seriation problem, and the software is
compatible with Octave. Further, a parallel version of the spectral method is provided.

We also point out the importance of the presence of multiple Fiedler values, a problem
which has not been considered before in the literature, and which has a significant influence
on the computation of an approximate solution to the seriation problem in presence of
imperfect seriation data.

64 CHAPTER 2. THE SERIATION PROBLEM

The use of the toolbox has been illustrated by practical examples, and its performance is
investigated through a set of numerical experiments, both of small and large scale.

Future work involves the study of seriation in a noisy setting, i.e. when the data matrix is
not pre-P or the similarity matrix is not in Robinson’s form. Some details have been given in
the end of the previous Section regarding the noisy setting represented by the situation when
the Laplacian of the similarity matrix associated with the considered seriation problem, has
multiple Fiedler value.

Another approach we are considering, which is still a work in progress, aims at studying
the seriation problem in the presence of imperfect data. This new line of research is based
on investigating the asymptotic behaviour of a block matrix representing a bipartite graph
associated to a given seriation problem, constructed from matrices obtained by properly
normalizing the rows and columns of the given (0, 1) seriation data matrix. Our purpose is
to develop a spectral algorithm capable of dealing with imperfect seriation data, by using the
same approach, which will be explained in Chapter 3, adopted for approximating a given
network by a bipartite graph.

Chapter 3

A spectral method for “bipartizing”
a network and detecting a large
anti-community

In Chapter 1 we recalled some fundamental definitions of graph and complex network
theory; see Section 1.3. All the systems, real or synthetic, consisting of entities that interact
pairwise can be described in terms of networks. A network consists of nodes, which
represent the entities of the system. Pairs of nodes are joined by links or edges describing a
particular kind of interconnection between those items. Networks, as already mentioned
in the first chapter, are represented by graphs G = {V, E ,W}, which are determined by
a set of vertices (nodes) V = {vi}ni=1, a set of edges E = {ek}mk=1, and a set of positive
weightsW = {wk}mk=1. Here ek = (ik, jk) represents an edge from vertex vik to vertex
vjk . The weight wk is associated with the edge ek. Also in this chapter, we will consider
connected undirected graphs without self-loops and multiple edges and, in particular, we will
focus again on bipartite graphs. More specifically, we are interested in the approximation of
bipartite graphs.

3.1 Bipartite graphs and bipartivity measures

A bipartite network involves objects that can be split into two disjoint groups with
connections occurring only across, but not within, the two groups. Specifically, a network G
is said to be bipartite if the set of vertices V that make up the graph can be partitioned into
two disjoint nonempty subsets V1 and V2 (with V = V1 ∪ V2), such that any edge starting
at a vertex in V1 points to a vertex in V2, and vice versa. This, in particular, excludes the
presence of self-loops in a bipartite graph.

Bipartite graphs model the interactions between two different types of objects. Many
systems can be naturally modelled as bipartite networks, such as reaction or biochemical
networks that model chemical reactions described by vertices representing chemical sub-
stances separated by nodes describing the chemical reactions. Another example is given by
the “two-mode” networks, that appear frequently in sociology and economics, in which two
disjoint sets of nodes are related by links representing the relationship between the elements
of both classes; see [64]. As an example we can mention the citation networks in which a
set of nodes gives the authors who cite (or are cited by) papers, which are represented as the

65

66 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

other set of nodes. A survey on mathematical properties and applications of bipartite graphs
in the areas of algebra, combinatorics, chemistry, communication networks and computer
science, was written by Asratian et al. [5].

There are various characterizations of bipartite graphs; the most widely used, obtained
by König [113] is expressed by the following Theorem, a proof of which can be found
in [54].

Theorem 3.1.1. A graph G is bipartite if and only if it has no cycle of odd length.

In [65] the authors provided another characterisation of bipartite networks given by the
result below.

Theorem 3.1.2. Let A be the adjacency matrix of a graph G. G is bipartite if and only if
trace sinh(A) = 0.

Bipartivity is an important topological property in graph theory. It has been studied also
as the 2-coloring problem [20]. Indeed, bipartite networks are also known as two-colourable
graphs, as we need only two colours, for example red and blue, to colour their nodes so
that red nodes are connected only to blue nodes, and vice versa. Hence, determining if a
graph can be colored with 2 colors is equivalent to determining whether or not the graph is
bipartite, and thus testing if a network is bipartite or not is computable in linear time using
breadth-first or depth-first search algorithms.

However, in many real-world situations the “perfect” separation into two classes, leading
to exact bipartite networks, is not always possible and consequently many networks in
real applications are only almost bipartite. Hence, it is therefore interesting to determine a
bipartite approximation of a non-bipartite graph, or measure the distance of a non-bipartite
graph from being bipartite.

In the literature there have been some attempts to characterise and quantify how much
bipartivity a non-bipartite graph has. The pioneer work of Holme et al. proposed the first
and more intuitive way of defining and measuring the bipartivity of a network [95]. This
measure is obtained by accounting for the fraction of links that “destroy” the bipartivity in
the network, whose deletion makes the graph perfectly bipartite. Such kind of links ek, in
the physics literature, are called “frustrated”, due to the relation of this problem with the
spin frustration in spin glasses; see [64]. In a bipartite network, all edges are “unfrustrated”
links. Let mfr be the number of links connecting nodes in the same subset and m the total
number of links in the network, then the bipartivity of a network can be measured using the
index

b = 1− mfr

m
. (3.1.1)

The aim consists in finding the best partition of the nodes in the network into two almost
disjoint subsets in such a way that the smallest value of (3.1.1) for all possible partitions
corresponds to the bipartivity of the considered network. Despite the simplicity of the
method, the computation of this index is an NP-complete problem since in non-bipartite
networks, computing the minimum number of edges whose deletion makes the graph
bipartite is an NP-hard optimization problem; see [188]. Some approximate algorithms
for computing this index have been reported in the literature. Holme and collaborators
have themselves proposed one of such computational approximations for calculating the
bipartivity of a network.

3.1. BIPARTITE GRAPHS AND BIPARTIVITY MEASURES 67

In 2005 Estrada and Rodríguez-Velázquez applied spectral graph theory to develop another
characterisation of graph bipartivity [68]. This bipartivity measure is based on the Estrada
index and on the concept of closed walks. The Estrada index of a graph G with adjacency
matrix A, is define as

E(G) =
n∑
j=1

(exp(A))jj = trace(exp(A)),

and, by the properties of the trace of a matrix and the matrix exponential, it can be expressed
as sum of the contributions deriving from odd and even closed walks, whose number is
counted by the hyperbolic sine and hyperbolic cosine matrix functions respectively

E(G) = trace(sinh(A)) + trace(cosh(A)).

From the fact that a bipartite graph does not contain any odd-length cycle (see Theorem 3.1.1)
and since every closed walk of odd length involves at least one odd cycle, it follows that a
bipartite network is characterised by the absence of odd closed walks. Thus, G is bipartite if
and only if

trace(exp(A)) = trace(cosh(A)).

Consequently, the measure of the network bipartivity is obtained by taking the proportion of
even closed walks to the total number of closed walks

b = trace(cosh(A))
trace(exp(A)) =

∑n
j=1 cosh(λj)∑n
j=1 exp(λj)

, (3.1.2)

where λj , for j = 1, . . . , n, are the eigenvalues of A. It is evident that b ≤ 1, with equality
if and only if the network is bipartite.

The computation of the bipartivity index (3.1.2) is computationally complicated since it
is defined in terms of the exponential and the hyperbolic cosine matrix functions. Hence,
Estrada and Gómez-Gardeñes proposed a new approach for quantifying the bipartivity of a
network. This measure, called spectral bipartivity index and obtained by considering only
the exponential matrix function, is given by

bs = trace(exp(−A))
trace(exp(A)) . (3.1.3)

We say that a splitting of the set of vertices V of a weighted undirected graph G into two
disjoint nonempty subsets V1 and V2 (with V = V1 ∪ V2), is a best bipartization of G if
the sum of the weights wk associated with edges ek = (i, j) that point from vertices vi
in V` (` = 1, 2) to vertices vj in the same set V` is minimal. We remark that the above
definition is analogous to the definition of a measure of bipartivity given by the spectral
bipartivity index (3.1.3). This index also can be applied to the weighted graphs considered
in the following.

The problem of discovering approximately bipartite structures in graphs and networks
has been considered by various authors. Most popular approaches are based on the eigen-
decomposition of the Laplacian matrix and in particular of the signless Laplacian matrix.
Let A be the adjacency matrix of a graph G and D the diagonal degree matrix; the matrix
Q = D +A is the so-called signless Laplacian matrix. Even though the Laplacian matrix
is studied extensively, the signless Laplacian matrix appears very rarely in the literature;

68 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

see [44] and references therein for a survey on this positive semi-definite matrix and its
spectrum. The smallest eigenvalue of the signless Laplacian matrix, denoted here as k(G),
is related to the bipartivity of a network as the following result from [44] highlights.

Theorem 3.1.3. [Cvetković et al, 2007.] The least eigenvalue of the signless Laplacian of a
connected graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple
eigenvalue.

The eigenvalue k(G) has been studied in [51] as a measure of non-bipartiteness of a
graph. Other spectral approaches consider the adjacency matrix associated with the graph. In
the case of a symmetric bipartite adjacency matrix, the signs of the entries of an eigenvector
associated with the smallest eigenvalue can be used to partition the graph, i.e., nodes that
correspond to positive entries belong to one set, and nodes that correspond to negative entries
belong to the other set; see [160]. In case the smallest eigenvalue is multiple, the splitting of
the nodes may vary according to the considered vector in the associated eigenspace. In [172],
the authors developed a spectral approach that can be used to identify hidden bipartite
substructures. In particular, they presented a method for discovering approximately bipartite
subnetworks in directed graphs. Some other attempts aiming at finding an approximate
bipartite structure, have been applied to protein-protein interaction (PPI) networks, which
model physical contacts between proteins in a cell and where the nodes are given by proteins
while the edges denote that two proteins have been observed to interact physically. In [142],
an algorithm was developed for finding bipartite substructure in PPI networks. The algorithm
exploits the presence of ± pairs in the spectrum of the adjacency matrix of a bipartite graph
(see Proposition 3.2.1 below) in order to identify approximate bipartite structures within PPI
undirected networks and was shown to be robust in the presence of noise.

In this chapter, after recalling some properties of bipartite graphs and their spectral struc-
ture, we will discuss a numerical method developed for determining a “good” bipartization
(V1,V2), i.e., a bipartization for which the sum of the weights wk associated with the edges
ek = (i, j) that point from a vertex vi in V1 to a vertex vj in V2, or vice versa, is fairly
small. Hence, we will describe how a given network can be approximated by a bipartite
one by solving a sequence of fairly simple optimization problems. The spectral method
also produces a node permutation which makes the possible bipartite nature of the initial
adjacency matrix evident, and identifies the two sets of nodes. The algorithm has to be
considered approximate, or “heuristic”, in the sense that it does not necessarily produce the
best possible bipartization. As it will be made clear in the following, the same bipartization
method may be used also to detect the presence of a large anti-community in a given network
and for its identification; see Section 3.4.

The contents of this chapter are based on our work [42].

3.2 The spectral structure of a bipartite graph and its approxi-
mation

This section discusses some properties of the adjacency matrix for an undirected bipartite
graph focusing on the spectral structure of a bipartite graph. Some inequalities that are
useful for the design of our bipartization method also will be introduced. The discussion in

3.2. SPECTRAL APPROXIMATION OF BIPARTITE GRAPHS 69

the first part of the chapter assumes that the vertices are suitably ordered and subsequently,
we will describe how to achieve such an ordering.

Assume for the moment that the undirected graph G = {V, E ,W} is bipartite, i.e., its
vertex set V can be split into two disjoint nonempty subsets V1 and V2 with n1 and n2 nodes,
respectively, such that there are no edges between the nodes in V1 and between the nodes in
V2. We may assume that n1 ≥ n2, otherwise we interchange the sets V1 and V2.

Let assume that the vertices in the set V are ordered so that the first n1 of them belong
to the set V1 and the remaining n2 nodes belong to V2. Then the adjacency matrix for the
graph G has the characteristic block structure

AB =
[
On1 C
CT On2

]
, (3.2.1)

where Ok denotes the k × k zero matrix, and C = [ci,j] ∈ Rn1×n2 with ci,j > 0 if the node
vi in V1 is connected to the node vn1+j in V2; otherwise ci,j = 0.

An algebraic property of the adjacency matrix of a bipartite graph is given by the follow-
ing well-known result, that is here adapted to our notation; see, e.g., [10, Theorem 3.14].

Proposition 3.2.1. Let G be an unweighted graph with n nodes. Then G is bipartite and the
adjacency matrix can be partitioned as in (3.2.1) if and only if the spectrum of the adjacency
matrix is symmetric with respect to the origin, i.e.,

σ(AB) = {λ1, . . . , λn2 , 0, . . . , 0︸ ︷︷ ︸
n1−n2

,−λn2 , . . . ,−λ1}, (3.2.2)

for some integers n1 ≥ n2 and non-negative numbers λ1 ≥ λ2 ≥ · · · ≥ λn2 . The claim
holds true also for weighted graphs, as long as the weights are positive.

Proof. For the sake of clarity, we give a quick sketch of the proof. The necessary condition
is straightforward. The sufficient condition can be proved by noting that, for k = 0, 1, . . .,
trace(A2k+1

B) = 0 if the spectrum is symmetric. Then, the positivity of the weights implies
that (A2k+1

B)i,i = 0, that is, the graph is bipartite since it does not contain odd cycles.

Remark 3.2.1. Under the assumption of Proposition 3.2.1, it is immediate to verify that if
λ is a nonzero eigenvalue of AB and q = [x

y], with x ∈ Rn1 and y ∈ Rn2 , is an associated
eigenvector, then (−λ, [x

−y]) is an eigenpair, too. This implies that λ is a singular value of
the block C in (3.2.1), while x and y are its left and right singular vectors, respectively, if
scaled to be of unit length.

Let n = n1 +n2 with n1 ≥ n2 ≥ 1. Then, the above observation gives us the possibility
to describe the spectral structure of AB in terms of the singular value decomposition of
the block C which describes the connections in the graph; see also [83, Section 8.6.1].
Let C = XD̃Y T be a singular value decomposition of C, where D̃ ∈ Rn1×n2 has D =
diag(λ1, . . . , λn2) as its upper block, and X = [X1, X2] ∈ Rn1×n1 and Y ∈ Rn2×n2 are
orthogonal matrices with X1 ∈ Rn1×n2 . Introduce the diagonal matrix

D = diag(D,On1−n2 ,−D),

and the orthogonal matrix

Q =
[
U1 U2 U1
V On2,n1−n2 −V

]
, (3.2.3)

70 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

where U1 = 1√
2X1, U2 = X2, and V = 1√

2Y , with UT1 U1 = V TV = 1
2In2 and UT2 U2 =

1
2In1−n2 . Then, the spectral factorization

AB = QDQT , (3.2.4)

takes the form[
U1 U2 U1
V On2,n1−n2 −V

]
diag(D,On1−n2 ,−D)

[
U1 U2 U1
V On2,n1−n2 −V

]T
. (3.2.5)

In the special case when the two nodes subsets have same cardinality n1 = n2, the
submatrices of (3.2.3) with n1 − n2 columns disappear, and hence the spectral factorization
(3.2.5) simplifies to

AB =
[
U1 U1
V −V

] [
D 0
0 −D

] [
U1 U1
V −V

]T
,

with U1U
T
1 = V V T = 1

2In1 .

3.2.1 Approximating the spectral structure of a bipartite graph

Let A be an adjacency matrix of an undirected graph. We would like to approximate the
given graph by a bipartite one, and therefore seek to approximate A by a matrix of the form
AB taking into account the spectral decomposition, having the form (3.2.5), of the adjacency
matrix of a bipartite graph. We do this in several steps and first we show some inequalities
that are applicable to diagonal eigenvalue matrices and are useful for delineating how the
eigenvalues of AB can be approximated, given those of the starting adjacency matrix A.

Proposition 3.2.2. Let α1 ≥ α2 ≥ · · · ≥ α` be a nonincreasing real sequence and let
β1, β2, . . . , β` be another real sequence. The distance between these sequences measured in
the least squares sense, (∑̀

i=1
(αi − βi)2

)1/2
, (3.2.6)

is minimal if and only if the βi are in nonincreasing order, i.e., if β1 ≥ β2 ≥ · · · ≥ β`.

Proof. Assume that both sequences are in nonincreasing order and that the distance can be
reduced by changing the order of the βi. Consider the pairs (α1, β1) and (α2, β2). Then

(α1 − β2)2 + (α2 − β1)2 ≤ (α1 − β1)2 + (α2 − β2)2

is equivalent to
α2(β1 − β2) ≥ α1(β1 − β2).

Assume β1 > β2. Then α2 ≥ α1, which is a contradiction unless α1 = α2. If the βj
are ordered arbitrarily, then we can reorder these coefficients pairwise until they form a
nonincreasing sequence. Each pairwise swap reduces (3.2.6).

3.2. SPECTRAL APPROXIMATION OF BIPARTITE GRAPHS 71

In our application of Proposition 3.2.2, we let α1 ≥ α2 ≥ · · · ≥ αn be the eigenvalues
of a given adjacency matrix A of order n = n1 + n2. The graph associated with this
matrix might not be bipartite. We would like the sequence of eigenvalues of the matrix
AB ∈ Rn×n, given by (3.2.1), to be close to the sequence α1, α2, . . . , αn and appear in ±
pairs. By Proposition 3.2.2, we know that the eigenvalues β1, β2, . . . , βn of AB should be
in nonincreasing order, and by Proposition 3.2.1 they vanish or appear in ± pairs. We know
from (3.2.5) that at least n1 − n2 eigenvalues of AB should be zero and via the following
Proposition we explain how to define the eigenvalues βj of AB that approximate the αi of
the given adjacency matrix A.

Proposition 3.2.3. Let {αj}nj=1, with n = n1 + n2 and n1 ≥ n2, be a real nonincreasing
sequence. Then the sequence {βj}nj=1 with elements

βj =

1
2(αj − αn−j+1), j = 1, 2, . . . , n2,

0, j = n2 + 1, . . . , n1,

−βn−j+1, j = n1 + 1, . . . , n,
(3.2.7)

is the closest sequence to {αj}nj=1 in the least squares sense consisting of at least n1 − n2
zeros and nonvanishing entries appearing in ± pairs.

Proof. The sequence {βj}nj=1 consists of n1 − n2 zero values and n2 ± pairs. Indeed, we
have

βj − βj+1 =

1
2(αj − αj+1) + 1

2(αn−j − αn−j+1), 1 ≤ j ≤ n2 − 1,
1
2(αn2 − αn1+1), j = n2,

0, n2 + 1 ≤ j ≤ n1 − 1,
βn2 , j = n1,

βn−j − βn−j+1, n1 + 1 ≤ j ≤ n− 1,

and it follows that the sequence is nonincreasing. It remains to establish that the βj defined
by (3.2.7) are the best possible. Consider the minimization problemsminβ

(
(αj − β)2 + (αn−j+1 + β)2

)
, 1 ≤ j ≤ n2,

minβ (β2), n2 + 1 ≤ j ≤ n1.
(3.2.8)

The solution sequence {βj}nj=1 is given by (3.2.7). Thus, the βj form a nonincreasing
sequence consisting of n1 − n2 zero values and n2 ± pairs. It is the closest such sequence
to the sequence {αj}nj=1 in the sense that it solves the minimization problems (3.2.8).

We would like to determine an approximation of the matrix A by a matrix of the form
(3.2.1), where we allow row and column permutations of the latter matrix. Define the
spectral factorization

AB = WBΛBW T
B , ΛB = diag(λ(B)

1 , λ
(B)
2 , . . . , λ(B)

n),

where WB is an orthogonal matrix and the eigenvalues are ordered according to

λ
(B)
1 ≥ λ(B)

2 ≥ · · · ≥ λ(B)
n .

72 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

We remark that only the first n1 eigenvalues are ordered as in (3.2.4). In the following we
will explain how to approximate the eigenvectors of AB given an orthogonal eigenvector
matrix of A.

Let us initially assume that the nonzero eigenvalues are distinct. If the eigenvectors
are made unique, e.g., by making their first component positive, a comparison with (3.2.5)
shows that

WB =
[
U1 U2 U1Z
V O −V Z

]
, ΛB =

D O O
O On1−n2 O
O O −ZDZ

 , (3.2.9)

where Z is the flip matrix

Z =

O 1

. .
.

1 O

 ∈ Rn2×n2 .

In the presence of multiple nonzero eigenvalues, the corresponding eigenvectors are not
uniquely determined, so the spectral factorization (3.2.9) is only one of several possible
distinct factorizations.

Let
A = WΛW T , Λ = diag(λ1, λ2, . . . , λn), (3.2.10)

be a spectral factorization of the adiacency matrix A of a given undirected graph, with an
orthogonal eigenvector matrix W and the eigenvalues ordered according to

λ1 ≥ λ2 ≥ · · · ≥ λn. (3.2.11)

Let us partition the eigenvector matrix W conformally with the eigenvector matrix WB of
AB , i.e.,

W =
[
W11 W12 W13
W21 W22 W23

]
.

We would like to to approximate the eigenvector matrix W of A by the eigenvector matrix
WB of AB . This suggests that we solve the minimization problem

min
UT1 U1=V TV= 1

2 In2
UT2 U2= 1

2 In1−n2

∥∥∥∥∥
[
U1 U2 U1
V O −V

]
−
[
W11 W12 W13Z
W21 W22 W23Z

]∥∥∥∥∥
F

, (3.2.12)

where ‖·‖F denotes the Frobenius norm. This problem can be split into the three independent
problems

min
UT1 U1= 1

2 In2

{‖U1 −W11‖2F + ‖U1 −W13Z‖2F }, (3.2.13)

min
V TV= 1

2 In2

{‖V −W21‖2F + ‖V +W23Z‖2F }, (3.2.14)

min
UT2 U2= 1

2 In1−n2

{‖U2 −W12‖2F }. (3.2.15)

3.2. SPECTRAL APPROXIMATION OF BIPARTITE GRAPHS 73

Problem (3.2.13) can be written as

min
XT

1 X1=In2

{∥∥∥X1 −
√

2W11
∥∥∥2

F
+
∥∥∥X1 −

√
2W13Z

∥∥∥2

F

}
. (3.2.16)

The following result shows how we can easily solve this minimization problem in the
Frobenius norm.

Proposition 3.2.4. The solution of problem (3.2.16) can be determined by computing the
singular value decomposition of W11 +W13Z and setting all singular values to one.

Proof. Consider the problem
min

XTX=I
‖X −W‖2F .

It can be written as

min
XTX=I

{trace(XTX)− 2 trace(XTW) + trace(W TW)}.

The first and last terms are independent of X . Therefore we obtain the equivalent linear
minimization problem

min
XTX=I

{− trace(XTW)}.

Similarly, the linear problem associated to the minimization problem (3.2.16) is given by

min
XT

1 X1=In2

{− trace(XT
1 (W11 +W13Z))}. (3.2.17)

Hence, the problem (3.2.16) is equivalent to determining the closest orthogonal matrix in
the Frobenius norm to the matrix W11 + W13Z. The solution is given by computing the
singular value decomposition PΣQT of W11 + W13Z and setting X1 = PQT ; see [91,
Theorem 4.1] for a proof of the latter statement.

The other two minimization problems (3.2.14) and (3.2.15) are solved similarly. In this way
we can obtain the eigenvector matrix in the spectral factorization (3.2.5) of AB .

Remark 3.2.2. We note that if PΣQT denotes the singular value decomposition of W11 +
W13Z, then we can express its polar decomposition by

W11 +W13Z = (PQT)(QΣQT).

Since the first factor PQT is the minimizer of (3.2.17), the deviation of QΣQT from the
identity matrix measures the quality of the approximation.

Remark 3.2.3. If some of the nonzero eigenvalues of A in (3.2.10) are multiple, the
corresponding columns of W11, W21, W13, and W23, are not uniquely determined. Anyway,
when approximating W11 +W13Z by X1, and W21 −W23Z by Y , those columns contain
linear combinations of the previous ones, and so they belong to the same space. Then, the
approximations X1 and Y will make factorization (3.2.9) valid.

74 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

3.3 A spectral bipartization method

In this Section we give an outline of a spectral bipartization method, based on the results
presented above. Our technique exploits the spectral structure (3.2.5) of a bipartite graph
to determine a node permutation that separates the two sets V1 and V2, and to construct a
bipartite approximation to a connected undirected graph G, having a perturbed bipartite
structure. The bipartization algorithm is exact whenever the input is the adjacency matrix of
a bipartite graph, however it has to be considered “heuristic”, as we were not able to prove
a complete convergence result for it, apart from the spectrum approximation theorems in
Section 3.2.

Let A be the adjacency matrix of a connected undirected graph G, and assume that its
spectral factorization

A = WDW T , D = diag(λ1, λ2, . . . , λn),

is available, where W is an orthogonal matrix and the eigenvalues are ordered by increasing
absolute value. There are three problems to deal with. First of all we have to estimate the
cardinality of the sets V1 and V2, then to suitably order the nodes in G, and the last step
consists in approximating the starting adjacency matrix by a matrix of the form (3.2.1). This
three stages in our procedure are briefly examined as follows.

1. The first step of our algorithm consists of finding the cardinalities of the two disjoint
node sets V1 and V2, i.e. the integers n1 and n2, unless they are known in advance.
We do this by identifying the number of eigenvalues that are approximately zero. In
principle, this could be done by detecting how many eigenvalues have absolute value
larger than a fixed tolerance, but this process is extremely sensitive to the choice of
the tolerance. In our numerical experimentation, we found it to be more reliable to
detect the largest gap between “small” and “large” eigenvalues.

To do this, we compute the ratios

ρi = |λi+1|
|λi|

, i = 1, 2, . . . , n− 1. (3.3.1)

Then, for suitably chosen constants R and τ , we consider the index set

J = {i ∈ {1, 2, . . . , n− 1} : ρi > R and |λi+1| > τ} . (3.3.2)

In our experiments, we set R = 102 and τ = 10−8. Therefore, an index i is in J if
there is a significant gap between λi and λi+1 (i.e. if ρi > R), and λi+1 is numerically
nonzero (i.e. if |λi+1| > τ). If the set J is empty, then we are not able to identify a
partition of the nodes, and consequently we consider the cardinality of the sets V1 and
V2 to be the same. On the contrary, we let k be the index defined by

ρk = max
i∈J

ρi,

and set
n2 =

⌈
n− k

2

⌉
, n1 = n− n2,

where dxe denotes the closest integer to the real number x.

3.3. A SPECTRAL BIPARTIZATION METHOD 75

The above approach is clearly not completely robust. Indeed, it can be easily tricked
by constructing particular numerical examples, for example by letting C in (3.2.1)
have singular values that decay to zero exponentially, or by introducing large gaps
in the spectrum of the adjacency matrix. Nevertheless, we found the procedure quite
accurate on networks stemming from real-world applications; see, e.g., Figures 3.6
and 3.8 in Section 3.5.

In order to avoid overflow, it may be preferable to use the reciprocal ratios ρ−1
i . This

is not required in our Matlab implementation, given the features of the programming
language.

2. The subsequent step is to find the sets V1 and V2, and reorder the nodes. Assume that
G is bipartite, but that its adjacency matrix A corresponds to a random ordering of the
nodes, so that

A = ΠABΠT ,

for a permutation matrix Π and a matrix AB of the form (3.2.1). Obviously, the
structure (3.2.1) is lost and in this case the spectral factorization (3.2.4) becomes

A = (ΠQ)D(ΠQ)T ,

i.e., the rows of the eigenvector matrix are permuted. In order to recover the structure
of the eigenvectors, let us partition the eigenvector matrix as

W := ΠQ =
[
W1 W2 W3

]
, (3.3.3)

with W1,W3 ∈ Rn×n2 and W2 ∈ Rn×(n1−n2).

Suppose first that n1 > n2 ≥ 1 and consider the matrix block W2. For (3.2.9) to be
valid, the last n2 rows of W2 must vanish. Sorting in descending order the 1-norms
of its rows concentrates the smallest entries in the lower block of W2. Applying the
corresponding permutation σ to the rows of W brings this matrix to the form (3.2.9)
and the adjacency matrix to the form (3.2.1), with the block C possibly permuted.

When n1 = n2 the block W2 is empty, so we consider the matrix W1 −W3Z. As
its first n1 rows should be exactly zero, we sort the 1-norms of its rows in ascending
order, and apply the obtained permutation σ to the rows of W .

After the reordering, the first n1 nodes are in the set V1, and the remaining n2 are
contained in the set V2. We note that applying the permutation σ to the rows and
columns of the initial adjacency matrix A highlights the presence in the graph of an
approximate bipartite structure.

3. The last step of our procedure consists in finally obtaining an approximation of the
adjacency matrix (3.2.1) of a bipartite graph from the computed spectral factorization
of the given adjacency matrix A. To do this we first approximate the eigenvector
matrix WB by solving the minimization problem (3.2.12), and then approximate the
eigenvalues in the spectral factorization (3.2.10) of the starting adjacency matrix A
of a given undirected graph, by scalars that appear in ± pairs by using Proposition
3.2.3. Specifically, we let the αj in the proposition be the eigenvalues (3.2.11) of
the adjacency matrix A The βj defined in the proposition are the eigenvalues of the
matrix D in (3.2.5), in the same order.

76 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

Algorithm 6 Spectral bipartization algorithm.

1: Require adjacency matrix A of size n, the user may optionally provide the cardinalities
n1 and n2 of V1 and V2

2: Ensure permutation σ which reorders the nodes, adjacency matrixAB of the approximate
bipartite graph
3: compute the spectral factorization A = WDWT , with λ1 ≥ · · · ≥ λn

// Step 1 of the algorithm
4: if n1, n2 are not provided
5: sort the eigenvalues by increasing absolute value
6: compute ρi, i = 1, . . . , n− 1 by (3.3.1)
7: construct set J by (3.3.2)
8: if J = ∅
9: n1 = dn/2e, n2 = n− n1

10: else
11: k = arg maxi∈J ρi

12: n2 = d(n− k)/2e, n1 = n− n2

13: end if
14: end if
// Step 2 of the algorithm
15: partition W =

[
W1 W2 W3

]
as in (3.3.3)

16: if n1 > n2

17: find the permutation σ which sorts the 1-norms of the rows of W2 decreasingly
18: else
19: find the permutation σ which sorts the 1-norms of the rows ofW1−W3Z increasingly
20: end if
21: apply the permutation σ to the rows of W
// Step 3 of the algorithm
22: approximate the eigenvectors of A by minimizing (3.2.12)
23: approximate the eigenvalues of A by ± pairs βi, by Proposition 3.2.3
24: set D = diag(β1, . . . , βn)
25: construct the adjacency matrix AB = WDWT of the bipartite graph

The above procedure, outlined in Algorithm 6, determines the eigenvectors and eigenvalues
of a matrix AB with the block structure

AB =
[
O C
CT O

]
, (3.3.4)

where the matrix C has real entries. The matrix AB may have a different number of nonzero
entries than A. In fact, not all nonzero entries may be positive. We can handle this issue in
the following ways:

• allow AB to be an adjacency matrix for a weighted graph with both positive and
negative weights;

• allow AB to be an adjacency matrix for a weighted graph with positive weights. We

3.4. ANTI-COMMUNITIES 77

achieve this purpose by replacing the matrix C in (3.3.4) by the closest matrix, C+,
in the Frobenius norm with nonnegative entries. The matrix C+ is obtained from C
by setting all negative entries to zero;

• requireAB to represent an unweighted graph. The closest such matrix in the Frobenius
norm to the matrix (3.3.4), is obtained by setting every entry of C to the closest
member of the set {0, 1}.

The last approach is the one adopted in the numerical experiments presented in Section 3.5.
Algorithm 6 can be applied only to small to medium sized problems, i.e., when it is

possible to compute a full spectral factorization of the given adjacency matrix A. For larger
problems, one may reduce the complexity of the computation by renouncing the third step
of the algorithm. Indeed, when n1 − n2 is not too large, a partial spectral factorization may
lead to constructing a basis for the null space of A, that is, to obtaining the matrix W2. This
would allow one to generate the permutation σ that takes the adjacency matrix to an almost
bipartite form, identifying the two sets V1 and V2.

3.4 Anti-communities

In this Section we consider an application of our bipartization method, that is the
detection of a large anti-community.

In many real-world networks, nodes frequently congregate together forming densely
connected groups which are poorly connected with other parts of the network or isolated
from them. This clusters are known as communities. For instance, in a social network
where edges represent friendship, nodes belong to groups formed by friends and inside
these groups it may be possible to find a relatively high density of connections but in many
cases these clusters are poorly connected to others groups in society. Communities may also
form because of similarities among the vertices. For instance, groups of proteins having
similar functions in a PPI network can be more highly connected among themselves than
with proteins which have different roles. An anti-community is, conversely, a node set
that is loosely connected internally, but has many external connections with the rest of the
network [67]. Community and anti-community detection in networks is a relevant problem
with applications in various fields, including physics, computer science, natural and social
sciences. Several methods have been developed to identify this kind of structures in networks
and some of them allow communities to overlap with each other; see [35, 122, 149, 156,
187]. In [69] a spectral method is used to detect simultaneously communities and anti-
communities. The identification of communities and their counterparts is predominant in the
investigation of the so-called meso-scale structures which represent middle-scale properties
in networks and differ from micro-scale and macro-scale structures which involve local and
global information respectively. Although considerable efforts have gone into the study of
community and anti-community structures, the detection of the so-called core-periphery
structures, attracts a continuing interest also in the mathematical community. In [159]
the authors presented a method for computing different possible cores and for identifying
multiple cores. The most popular notion of core-periphery structures was developed by
Borgatti and Everett [22] who proposed also a quantitative method to depict them. By
identifying a network’s core-periphery structure, one attempts to find which nodes are part
of a densely connected core and which are instead part of a sparsely connected periphery.

78 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

Then, in contrast to communities, the nodes in a core-perifery are also reasonably well-
connected to those in the periphery. Hence, for our purposes, the identification of a single
large anti-community can be understood as that of a core-periphery structure in the given
network.

Let us consider a symmetric matrix A of size n = n1 + n2 with a zero leading square
block of size n1. Then, A may be considered the adjacency matrix of a network with an
anti-community of n1 nodes which is a nodes set poorly connected internally, but with many
external connections. Then, the matrix A has the block form

A =
[
On1 C
CT B

]
, (3.4.1)

with C of size n1 × n2 and B a square matrix of order n2.
In the following, we denote by N (C) the null space of C, by R(C) its range, and by

B|N (C) the restriction of the submatrix B to N (C).
The succeeding result allows us to delineate the structure of the spectral factorization of

the adjacency matrix of a graph with a large anti-community.

Theorem 3.4.1. Let A be as in (3.4.1) and let x = [x1x2] be partitioned consistently with A.
Then the equation

Ax = 0 (3.4.2)

has ν = dimN (CT) linearly independent solutions with x2 = 0. Moreover, if

d = dim
(
R(B|N (C)) ∩R(CT)

)
≥ 1,

then there are also d linearly independent solutions to Ax = 0 with x2 6= 0, so that
dimN (A) = d+ ν.

Proof. Let k = rank(C) and consider the case n1 > n2 = k. Let us search for vectors x
such that Ax = 0. Then we have

A

[
x1
x2

]
=
[
On1 C
CT B

] [
x1
x2

]
=
[

Cx2
CTx1 +Bx2

]
. (3.4.3)

Since C is of full rank and n1 > n2, it follows from Cx2 = 0 that x2 = 0 and, hence,
CTx1 = 0. The latter implies that x1 is in the null space ofCT , which has dimension n1−n2.
Thus, the matrix A admits the following linearly independent eigenvectors corresponding to
the eigenvalue λ = 0,

x(i) =
[
un2+i

0

]
, i = 1, 2, . . . , n1 − n2,

where ui, i = 1, 2, . . . , n1, are the left singular vectors of C. Hence, λ = 0 has multiplicity
n1 − n2 = dimN (CT).

Let us now assume that k = n1 < n2. Then A may or may not have zero eigenvalues.
Indeed, for A to have a vanishing eigenvalue, the vector x2 ∈ Rn2 that appears in (3.4.3)
has to belong to the null space of C, which has dimension n2 − n1. Then, there will be zero
eigenvalues if and only if the system

CTy = −Bx2

3.5. COMPUTED EXAMPLES 79

has a solution.
If instead k = n1 = n2, i.e., if C is nonsingular, then λ = 0 implies that both x1 = 0

and x2 = 0. Hence, x = [x1x2] = 0, and all the eigenvalues of A are different from zero.
We finally turn to the case when the submatrix C is rank deficient, that is, k <

min{n1, n2}. The right-hand side of (3.4.3) is equivalent to

x2 ∈ N (C), CTx1 = −Bx2.

Let x be a nontrivial solution of (3.4.2). When x2 = 0, there has to be a vector x1 6= 0 with
CTx1 = 0. Since in this case the null space of CT has dimension n1 − k, there are n1 − k
linearly independent solutions of (3.4.2) with x2 = 0.

The existence of a solution x of (3.4.2) with a nonzero subvector x2 is equivalent to

dim
(
R(B|N (C)) ∩R(CT)

)
≥ 1.

This condition does not hold for most matrix pairs (B,C).

Remark 3.4.2. We note that if B = 0, then the equation Ax = 0 has exactly

dimN (C) + dimN (CT) = n− 2 rank(C)

linearly independent solutions.

Theorem 3.4.1 proves that if a network has a large anti-community (n1 > n2) then the
spectral decomposition of its adjacency matrix A = WDW T has the form

W =
[
E U2 F
G On2,n1−n2 H

]
, D =

D1 O O
O On1−n2 O
O O D2

 .
The structures of W and D are very similar to those of WB and ΛB in (3.2.9), respectively.
For this reason, the bipartization algorithm described in Section 3.3, is able to detect the
presence of a large anti-community and to order the nodes so that the adjacency matrix takes
the form (3.4.1). In case a group of nodes is only approximately an anti-community, the
algorithm produces an adjacency matrix that approximates (3.4.1).

To summarize, when n1 > n2, if a network is either bipartite or contains a large anti-
community, its adjacency matrix has zero eigenvalues. The converse is not true in general,
however if A has a multiple zero eigenvalue, then we can recognize the presence of one of
the two above cases by observing the structure of the eigenvector matrix.

3.5 Computed examples

In the following numerical experiments, we fix the integers n1 and n2, and construct
a random matrix A having the block form (3.2.1), with a sparse block C with density ξ.
The matrix is first perturbed, by replacing its (1,1) and (2,2) zero blocks by sparse matrices
of appropriate size and density η, and then “scrambled”, by applying the same random
permutation to its rows and columns.

We apply the algorithm of Section 3.2 to the matrix A either by supplying the cardinality
of the two sets V1 and V2 (this approach is referred to as specbip-n1), or letting the

80 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

method estimate n1 and n2 from the data; we refer to the latter approach as specbip.
Since the block (1,2) of the matrix returned by the method is generally permuted with
respect to the initial test matrix, the rows and columns are reordered according to the original
sequence of the nodes. The final reordering allows us to make a comparison between the
resulting matrix AB and the test matrix A.

The results obtained with our spectral algorithm are then compared to the ones obtained
by red-black ordering using the MatlabBGL library [80], a Matlab package implementing
graph algorithms. A matrix has a red-black ordering if the corresponding graph is bipartite.
To find a bipartite ordering, this software uses a breadth first search algorithm, starting from
an arbitrary vertex. The partition of the nodes is determined by forming a group containing
all the vertices having even distance from the node selected as root, and another group with
the vertices at odd distance from the root. This procedure is designed for bipartite networks,
not to produce an approximation when the bipartization is not exact.

0 200 400 600

0

100

200

300

400

500

600

700

test network

0 200 400 600

0

100

200

300

400

500

600

700

perturbed network

0 200 400 600

0

100

200

300

400

500

600

700

mixed network

0 200 400 600

0

100

200

300

400

500

600

700

reconstructed (specbip-n)1

0 200 400 600

0

100

200

300

400

500

600

700

reconstructed (specbip)

0 200 400 600

0

100

200

300

400

500

600

700

red-black ordering

Figure 3.1: (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2, η = 10−4.

Figure 3.1 displays the results for a test matrix with (n1, n2) = (512, 256), sparsity of
the block C ξ = 10−2, and perturbation η = 10−4 for the zero blocks (1,1) and (2,2) of the
starting matrix. In particular, it reports in the upper row a spy plot of the original test matrix,
the perturbed version, with random arcs in the (1,1) and (2,2) blocks, and the permuted
matrix that is fed to the bipartization methods. The bottom row shows the reconstructed
networks. The specbip-n1 approach, which receives the information about the cardinality
of the node sets, produces the matrix closest to the original. The general algorithm estimates
the cardinalities (ñ1, ñ2) = (492, 276), according to the number of “small” eigenvalues;
see Figure 3.2, where the absolute values of the eigenvalues are displayed in nondecreasing
order. This version of the spectral bipartization algorithm produces a slightly less accurate
approximation than the previous one, but is anyway much better than the matrix produced

3.5. COMPUTED EXAMPLES 81

0 200 400 600 800
10

-40

10
-30

10
-20

10
-10

10
0

Figure 3.2: (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2, η = 10−4.

by using the red/black ordering.

0 200 400 600

0

100

200

300

400

500

600

700

reconstructed (specbip-n)1

0 200 400 600

0

100

200

300

400

500

600

700

reconstructed (specbip)

0 200 400 600

0

100

200

300

400

500

600

700

red-black ordering

Figure 3.3: (n1, n2) = (512, 256), (ñ1, ñ2) = (396, 372), ξ = 10−2, η = 10−3.

In Figure 3.3 we show the results for a test matrix similar to the previous one, but with a
larger perturbation η = 10−3 on its zero blocks. The estimation of (n1, n2) is inaccurate in
this case, but the approximation produced by the specbib methods is quite close to the
unperturbed matrix, while the red/black ordering matrix is far from it.

Now, let

E = A−AB =
[
E11 E12
E21 E22

]
,

where E11 and E22 are square matrices of size n1 and n2, respectively, and let |M | denote
the number of nonzero elements of M . To evaluate the quality of the results obtained by
using our algorithms, we consider the following three indices

IB = 1− bs, EB = |E11|
n2

1
+ |E22|

n2
2
, EA = |E12|

|C|
.

The first two indices measure the distance of the resulting matrix AB from the adjacency
matrix of a bipartite graph; see (3.1.3) for the definition of the spectral bipartivity index

82 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

bs. The third index measures the approximation error with respect to the starting bipartite
network (3.2.1). To better evaluate the error in the bipartition, we introduce the fourth
index EN = ẼN/n1, where ẼN is the number of nodes from the set V1 that were incorrectly
ascribed to the set V2.

Tables 3.1, 3.2, and 3.3 report the average values of the above four quality indices over
10 realizations of the random test networks. Three different pairs (n1, n2) are considered and
each table refers to different densities ξ and η; T stands for the execution time in seconds.

Table 3.1: Results for ξ = 10−2, η = 10−4.

(256,128) specbip-n1 specbip red-black
IB 1.22e-16 1.89e-16 2.33e-03
EB 5.46e-04 6.74e-04 3.72e-03
EA 2.80e-01 2.79e-01 -
EN 1.45e-01 1.58e-01 2.76e-01
T 4.94e-02 5.05e-02 3.15e-04

(512,256) specbip-n1 specbip red-black
IB 1.11e-17 1.11e-17 2.98e-03
EB 1.13e-04 1.50e-04 3.39e-03
EA 4.84e-02 6.27e-02 -
EN 3.36e-02 5.96e-02 2.97e-01
T 2.77e-01 2.95e-01 4.94e-04

(1024,512) specbip-n1 specbip red-black
IB 7.77e-17 0.00e+00 4.17e-02
EB 9.92e-05 2.11e-04 4.75e-03
EA 1.06e-01 1.80e-01 -
EN 3.62e-02 1.15e-01 2.75e-01
T 1.92e+00 1.94e+00 8.67e-04

A comparison of the tables shows that the spectral bipartization algorithm is more
accurate than the red-black ordering method. At the same time, it is much slower than the
MatlabBGL function, as in our experiments we compute the whole spectrum of the given
adjacency matrix, without exploiting its sparsity. To be competitive with existing methods
for large-scale problems, the spectral method should be modified in order to perform its task
by suitable iterative methods, in order to take advantage of the structure of the adjacency
matrix.

From the tables, it can also be observed that knowing in advance the cardinality of the
two sets V1 and V2 leads in some cases to a substantial improvement in the quality of the
results.

To further investigate the behavior of the bipartition error, we construct a matrix A of the
form (3.2.1), letting n1 = 512 and n2 = 256, with a sparse random block C having density
ξ = 10−2. After randomly permuting the rows and columns, we apply our algorithms to
this matrix, as well as to those perturbed by replacing the (1,1) and (2,2) blocks by a sparse
matrix with density η = 10−6, 10−5, . . . , 10−3. The graph on the left of Figure 3.4 shows
the value of the bipartization error EN obtained when our two algorithms and the red-black
ordering method are applied to an unweighted graph; the graph on the right corresponds to a
weighted graph. All values are averaged over 10 realizations of the random test matrices.
Both graphs show that the bipartization determined by our approaches is closer to the

3.5. COMPUTED EXAMPLES 83

Table 3.2: Results for ξ = 10−2, η = 10−5.

(256,128) specbip-n1 specbip red-black
IB 1.11e-17 7.77e-17 1.68e-06
EB 6.68e-04 8.79e-04 3.36e-03
EA 2.70e-01 2.68e-01 -
EN 1.23e-01 1.49e-01 2.58e-01
T 4.39e-02 4.70e-02 1.01e-03

(512,256) specbip-n1 specbip red-black
IB 0.00e+00 2.22e-17 1.40e-04
EB 3.05e-05 1.91e-05 8.81e-04
EA 3.88e-02 2.38e-02 -
EN 1.87e-02 1.93e-02 3.16e-01
T 2.72e-01 2.77e-01 5.12e-04

(1024,512) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 4.04e-03
EB 1.91e-07 1.03e-05 1.07e-03
EA 1.73e-04 9.49e-03 -
EN 9.77e-05 9.47e-03 3.25e-01
T 1.91e+00 1.89e+00 9.52e-04

Table 3.3: Results for ξ = 10−1, η = 10−4

(256,128) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 7.71e-02
EB 0.00e+00 5.83e-04 1.35e-02
EA 2.43e-02 4.24e-02 -
EN 0.00e+00 2.58e-02 3.18e-01
T 5.56e-02 6.05e-02 3.07e-03

(512,256) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 1.44e-01
EB 0.00e+00 8.19e-04 8.01e-03
EA 8.02e-03 5.19e-02 -
EN 0.00e+00 4.47e-02 3.31e-01
T 2.77e-01 2.76e-01 1.08e-03

(1024,512) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 2.60e-01
EB 0.00e+00 1.04e-03 6.54e-03
EA 2.33e-03 9.04e-02 -
EN 0.00e+00 8.71e-02 3.28e-01
T 2.02e+00 2.07e+00 3.99e-03

correct one, with respect to red-black ordering. We can also observe that specbip-n1, that
receives the information about the cardinalities rather than estimating them by detecting the
largest gap between “small” and “large” eigenvalues, produces slightly better results. The
performance of all algorithms degrades as the perturbation becomes less sparse.

In Figure 3.5, we display the value of EN for the same examples, for a fixed η = 10−2,

84 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

0 10
-6

10
-5

10
-4

10
-3

0

50

100

150

200

250

specbip

specbip-n 1
red-black

0 10
-6

10
-5

10
-4

10
-3

0

50

100

150

200

250

specbip

specbip-n1

red-black

Figure 3.4: Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random graphs,
on the right weighted random graphs, both with ξ = 10−2, as a function of η =
0, 10−6, 10−5, . . . , 10−3.

10
-3

10
-2

10
-1

10
0

0

50

100

150

200

250

300

specbip

specbip-n1

red-black

10
-3

10
-2

10
-1

10
0

0

50

100

150

200

250

300

specbip

specbip-n1

red-black

Figure 3.5: Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random graphs,
on the right weighted random graphs, both with η = 10−2, as a function of ξ =
10−3, 10−2, 10−1, 1.

and letting the density ξ of the block C take values in [10−3, 1]. The red-black ordering
method is more accurate than the specbip algorithm for very sparse networks, while
providing the correct cardinality of the set V1 to specbip-n1 produces the best results.

3.5.1 The NDyeast network

In this paragraph, we illustrate the performance of the spectral bipartization algorithm
when applied to the detection of anti-communities by analyzing a case study. The NDyeast
network is an undirected graph which describes the protein interaction network for yeast,
each edge representing an interaction between two proteins [102]. The data set is available
at [148]. In the following we analyze this network, testing the presence of a bipartization or
of a large anti-community.

The NDyeast network has 2114 nodes and 2277 edges. In particular, there are 74
self-loops (nodes connected only to themselves) and 268 “isolated” nodes, i.e. vertices

3.5. COMPUTED EXAMPLES 85

disconnected from the network. We consider then the adjacency matrix resulting by removing
both the self-loops and the isolated nodes. This reduced adjacency matrix has size n = 1846,
and 149 connected components. They were identified by the getconcomp function from
the PQser Matlab toolbox [41], described in Algorithm 4.

In the case of a reducible adjacency matrix, the spectral bipartization algorithm should
treat each single connected component one at a time. Since most of the components in
the NDyeast network are very small, the majority of them having just 2 or 3 nodes, we
consider the only component with more than 10 nodes, which has 1458 nodes. We process
the reduced adjacency matrix A with our bipartization method.

The algorithm determines n0 = 564 zero eigenvalues (see Figure 3.6) and identifies two
sets of nodes with cardinalities n1 = 1011 and n2 = 447.

0 500 1000 1500
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 3.6: Spectrum of the reduced adjacency matrix for the NDyeast network.

The starting adjacency matrix is displayed in the top-left spy plot of Figure 3.7. The
top-right plot shows the same matrix after the ordering produced by the spectral bipartization
algorithm is applied to its rows and columns. This graph clearly displays that there is a large
group of nodes in the NDyeast network that do not communicate much among themselves,
that is, an anti-community. In the same graph we show the bipartization detected by the
algorithm by means of red lines.

Our algorithm can also be applied by supplying the values of (n1, n2), rather than
estimating them from the number of zero eigenvalues. If we do this by setting ñ1 = 800
and ñ2 = 658, we obtain the bottom left graph in the same figure. It shows that in the group
of the first 800 proteins, only four of them directly interact.

The bottom-right graph of Figure 3.7 displays the result of the red-black ordering method,
which does not supply any useful information.

We remark that a data set similar to NDyeast (but different) is available at [148]. It is
called simply yeast and represents the protein-protein interaction network in budding yeast.
The yeast network consists of 2361 nodes, 7182 edges such that 536 of them are self-loops)
and it refers to the paper [30]. By processing this data set with our spectral algorithm, we
obtain results very similar to the ones displayed in Figure 3.7.

86 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

0 500 1000

0

200

400

600

800

1000

1200

1400

0 500 1000

0

200

400

600

800

1000

1200

1400

0 500 1000

0

200

400

600

800

1000

1200

1400

0 500 1000

0

200

400

600

800

1000

1200

1400

Figure 3.7: Analysis of the NDyeast network: top-left, the starting adjacency matrix; top-right, the
node reordering produced by the spectral algorithm; bottom-left, the reordering induced
by the choice (ñ1, ñ2) = (800, 658); bottom-right, the output of the red-black ordering
method.

3.5.2 The geom network

We also applied the spectral bipartization algorithm to a weighted graph, namely, the
geom network This dataset It is extracted from the Computational Geometry Database
geombib by B. Jones (version 2002). Nodes represent authors and the value of the entry
(i, j) of the adjacency matrix is the number of papers coauthored by authors i and j. The
data set is available at [148].

The geom network has 7343 nodes and 11898 edges. After removing 1185 isolated nodes,
the network presents 875 connected components identified again with the getconcomp
function, the largest of which has 3621 nodes. We applied the bipartization method to the
reduced adjacency matrix associated with this largest connected component.

The eigenvalues are displayed in Figure 3.8; 533 of them are detected as being numeri-
cally zero, and the cardinalities of the two node sets are then n1 = 2077 and n2 = 1544.

3.6. CONCLUSIONS AND FUTURE WORK 87

0 1000 2000 3000 4000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 3.8: Spectrum of the reduced adjacency matrix for the geom network.

The left graph of Figure 3.9 reports the spy plot of the original adjacency matrix; the graph
on the right shows the matrix reordered by the spectral bipartization algorithm. The graph
highlights the presence of an anti-community of about 1000 authors, who did not collaborate
with each other when writing papers.

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

3500

Figure 3.9: Analysis of the geom network: on the left, the starting adjacency matrix; on the right,
the node reordering produced by the spectral algorithm.

3.6 Conclusions and future work

This chapter describes how an approximate bipartization of a given graph can be deter-
mined by solving a sequence of optimization problems. Some computed examples have been
given to illustrate the performance of the presented spectral method. This technique can also
be applied for detecting the presence of a large anti-community in a network and identifying

88 CHAPTER 3. A SPECTRAL METHOD FOR “BIPARTIZING” A NETWORK

it. Two case studies have been numerically analyzed for finding a large anti-community in
both unweighted and weighted networks. Future work is related to generalizing the spectral
method for finding approximate multi-partite structures. Indeed, bipartivity can also be
generalized to k-partivity. A graph is said to be k-partite if its vertices can be partitioned
into k non-empty, disjoint subsets V1, V2, . . . , Vk such that there is no edge between nodes
belonging to the same set.

Another possible future development involves the use of the spectral method described
in this chapter for solving the seriation problem in the presence of imperfect data by studying
the asymptotic behaviour of a stochastic block matrix as mentioned at the end of Chapter 2.

Chapter 4

Photometric stereo under unknown
lighting

The aim of this Chapter is to give an overview of a particular photographic technique,
called Photometric Stereo, for reconstructing the 3D shape of an object and of its application
in archaeology.

Recovering the shape of an object by using one or more 2D digital images as input,
is a classical fundamental problem in Computer Vision and in Applied Mathematics in
general. 3D recovery is frequently adopted in different application fields such as, for
example, topography for mapping the surfaces of the Earth and other planets [23], medicine
for medical images [89] and for the reconstruction of computed tomography [186], and
archaeology as will be described in the following.

4.1 Shape-from-Shading, Photometric Stereo and application
to archaeology

In Computer Vision all the methods for recovering the shape of an object belong to the
class of the so-called Shape-from-X techniques. The problems in this set of approaches
differ from one to another for the kind of input data, even though their common aim
is that of obtaining a 3D reconstruction of surfaces. Shape-from-X techniques include
Shape-from-Contour [177], Shape-from-Fractal Geometry [112], Shape-from-Motion [175],
Shape–from–Polarization [7], Shape-from-Shading [96], Shape-from-Stereo [93] and Shape-
from-Texture [79].

Shape-from-Shading (SfS) exploits shading information when one source illuminates an
object and hence, it deals with the recovery of the 3D shape of the observed object from a
gradual variation of shading in the given image; see [97, 111, 167]. Since only one picture is
available, the classical Shape-from-Shading problem is not well posed. The impossibility of
avoiding any ambiguity in recovering the 3D shape of an object from a single image, arises
from the difficulty met in distinguishing concave from convex surfaces. A way to solve this
problem and remove the uncertainty due to the presence of a single digital picture, is to
use more than one image. Woodham showed in [185] that two is the minimum number of
pictures to ensure well-posedness of the SfS problem introducing a novel technique, the one
analysed in this Chapter, called Photometric Stereo (PS).

Photometric Stereo is a SfS approach that uses multiple images of an object, taken

89

90 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

under different lighting directions. Specifically, it exploits shading information when several
sources illuminate the observed object and it requires that the object is observed from a
fixed point of view but under different lighting conditions. Photometric Stereo is opposite
to another possible approach to the SfS problem, namely the stereo vision photographic
technique. Indeed, stereo vision, sometimes generalized to multiple views or multi-view [60],
assumes the availability of different pictures of an object obtained varying the point of view
but taken under the same illumination. The pictures are typically acquired by a set of fixed
cameras, or extracted from the frames of a movie shot by a movable camera. Photometric
stereo (PS), on the other hand, uses a fixed camera and a movable light to acquire a set of
images that embed shape and color (albedo) information of the framed object [37].

Practical PS has some severe limitations. The ideal PS requires the position of the direc-
tion of the light sources and the illumination intensity used for acquiring the pictures, to be
accurately known [13]. Any deviation from this requirement often results in a reconstruction
affected by distortion. Various attempts have been made to estimate the lights position
directly from the data; see, e.g., [14, 34] where a new approach, based on the decomposition
of the effective lights into linear combination of special functions (spherical harmonics), is
proposed. Releasing the constraint on the knowledge of the precise positioning of the light
sources, makes the acquisition process much simpler. Since the first Shape-from-Shading
technique was developed by Horn in the early 1970s [98], many different approaches and
numerical algorithms have emerged. See [190] for a survey on different SfS techniques and
a comparison between SfS algorithms. For an updated review on numerical methods for
solving the SfS problem see [59]; see [1, 181] for surveys on PS techniques.

3D restoration has a wide application in archaeology; digital archiving of 3D objects,
representing archaeological discoveries, is fundamental in cultural heritage conservation.
The main application in our research is rock art documentation, in particular the decorations
in the “Domus de Janas” (Sardinian for “House of the Fairies” or “House of Witches”),
a particular kind of pre-Nuragic chamber tombs, typical of Sardinia, dated from the late
Neolithic and early Bronze Age. In an archaeological setting, a 3D restoration technique
easy to practically implement, like photometric stereo, is crucial because the findings are
frequently located in narrow positions and the current protocols exclude any physical contact
for creating replicas and, hence, extensive acquisition systems are not suitable. The difficulty
to access specific sites, often associated to a large number of items to be documented,
makes it impractical to use other 3D reconstruction techniques like the most popular one
represented by laser range scanning. Laser scanning has several drawbacks since it is
characterized by long acquisition time and large instrumentation cost. Moreover, the surface
should be sufficiently small to to fit into the detector and the need for the laser scanner
to be in close proximity to the finding, makes this technique not practical for recovering
the shape of sculptures or artifacts that have to be preserved. Because of the fact that PS
overcomes the disadvantages of laser scanning, this technique represents an efficient way to
generate accurate 3D scans of objects. Indeed, PS is not only a less invasive approach but
also an economical one. Therefore, the cheap instrumentation (only a camera, a tripod and a
hand-positioned lighting source) would allow for 3D recording in the most difficult sites and
also for parallel operation on different findings by a team of researchers. The research group
in Cagliari, have been devoted various papers to the application of PS to the archaeological
rock art documentation; see [52, 127, 180].

After introducing the notation adopted in this Chapter, we first review a model for the

4.2. NOTATION AND CLASSICAL ASSUMPTIONS 91

solution of the photometric stereo problem assuming that the light source position is a known
quantity. This is a realistic assumption in controlled conditions such as, for example, in
scientific laboratories. In uncontrolled settings this information is not always accessible.
Hence, in the remaining of the Chapter, we explore the photometric stereo problem under
unknown lighting conditions. The considered method was developed by Hayakawa [88]. It
represents the first work for dealing with the PS problem without an a priori knowledge of the
light source direction and it gave rise to other commonly named uncalibrated photometric
stereo approaches. Hayakawa showed that the lights position can be estimated directly
from the data, when at least 6 images of the observed object are available, under suitable
conditions. We will recall a theorem that gives sufficient conditions for the existence of the
solution and illustrate some numerical results for proving the effectiveness of the method.
Finally, we will describe possible future developments.

4.2 Notation and classical assumptions

When light interacts with matter on a macroscopic level, it can be absorbed, transmitted,
or reflected. Here we will take into account only the reflection phenomenon by considering
the fraction of light that is reflected.

A 3D reconstruction method based on the photometric stereo approach can recover the
shape of an object by first estimating the surface normal vectors and the surface reflectance
of the observed object from three or more pictures taken under different lighting conditions.
The images are acquired by using a fixed camera, a movable light source and, in order to
obtain an effective reconstruction, also the object has to be considered not in motion. By
using the extracted photometric data, the 3D surface is obtained by integrating the normal
vectors.

Let us consider an object, whose 3D shape has to be recovered, placed at the origin
of a reference system in R3. The object is observed from a fixed camera placed along the
z−axis so that the latter coincides with the optical axis, and it is directed from the object
to the camera. The light sources need to be placed sufficiently far from the object so that
the surface is uniformly illuminated and the lighting rays are parallel. Hence, the point of
view is assumed to be at infinite distance from the observed object, and different pictures
of the object itself are taken, each one corresponding to a different light direction. We
assume that each image has resolution (r + 2)× (s+ 2), and we let A to be the length of
the horizontal side of a picture. Assuming the pixels to be square, we let the length of the
vertical side be B = (s+ 1)h, with h = A/(r + 1). Hence, each picture defines a domain
Ω = [−A/2, A/2]× [−B/2, B/2], and induces the discretization

xi = −A/2 + ih, i = 0, . . . , r + 1, yj = −B/2 + jh, j = 0, . . . , s+ 1. (4.2.1)

We assume that the surface of the object is represented by a function of the type z = u(x, y),
with (x, y) ∈ Ω. Consequently,

∇u(x, y) =

∂u(x, y)
∂x

∂u(x, y)
∂y

 =
[
ux
uy

]
, n(x, y) = (−ux,−uy, 1)T√

1 + ‖∇u‖2
, (4.2.2)

denote the gradient of u and the normal vector to the surface of the object, respectively.

92 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

As it is customary, when it is useful to vectorize images we order the pixels lexicograph-
ically, i.e., stacking into a single vector the columns of the matrix containing the image. The
pixel of coordinates (i, j) takes the index k = (i− 1)s+ j, where k = 1, . . . , p, and p is the
number of pixels in the image. We will set either p = (r + 2)(s+ 2) or p = rs depending
on whether the boundary pixels are considered in the discretization or not. For each point in
the discretization of the domain Ω, we write indifferently

u(xi, yj) = ui,j = uk,

ux(xi, yj) = (ux)i,j = (ux)k,
uy(xi, yj) = (uy)i,j = (uy)k,
n(xi, yj) = ni,j = nk,

using the two-index notation to refer to the values on the grid, and the one-index notation to
identify the values after the vectorization.

We assume that q pictures are available, each one taken with light source placed at
infinite distance from the origin along the direction

`t =

`1t`2t
`3t

 , t = 1, . . . , q.

Each vector `t stems from the object to the light source and its Euclidean norm is proportional
to the light intensity. This introduces an undetermined proportionality constant in the
problem. The image vectors are denoted by m1,m2, . . . ,mq ∈ Rp.

The aim consists in reconstructing the 3D shape of the observed object. In particular,
we consider the Lambertian model according to which the light incident on a surface is
reflected equally in all directions [111]. A Lambertian surface appears equally bright from
any direction, for any illumination direction. Therefore, its reflected intensity is independent
of the viewing direction. Specifically, if the surface of the object is Lambertian, then the
light intensity observed at each point is proportional to the angle between the normal to the
observed surface at that point and the light direction. In particular, the surface obeys the
Lambert’s cosine law which can be stated as

ρ(x, y) 〈n(x, y), `t〉 = It(x, y), t = 1, . . . , q (4.2.3)

where the scalar ρk represents the albedo of the surface point at coordinates (x, y), which
keeps into account the partial light absorption of that portion of the surface, It(x, y) is the
light intensity at the same point in the tth image, and 〈·, ·〉 is the usual inner product in R3.
When the albedo is constant, the object is said to be a Lambertian reflector.

Note that real objects having a perfect Lambertian surface are rarely met in practice.
Indeed, Lambertian reflection surfaces are typically characterised also by specular reflection.
Specifically, there are reflection directions that do not obey the Lambert’s law. In these
situations it is used the so-called Phong’s model which is more complete and realistic
compared with the Lambertian one. This model is based on the linear combination of three
components of the reflected light, namely, the diffuse (i.e. the Lambertian component), the
specular and the ambient part.

The assumption on the surface, constrained to be Lambertian, simplifies the computation.
Relaxations of the photometric stereo problem to non-Lambertian reflectance models can be

4.3. PHOTOMETRIC STEREO WITH KNOWN LIGHTS POSITION 93

found in [40, 143]. See [52] for how to deal with technical photographic issues, related to
cameras, lights and computer screens, concerning the application of PS to real cases.

Summing up, the classical assumptions for the considered model are the following:

• the surface is Lambertian;

• the light sources are placed at infinite distance from the object;

• no portion of the surface is shaded in all the pictures otherwise the shape reconstruction
may have spherical distortion;

• the camera need to be sufficiently far from the object so that perspective deformations
can be neglected.

When the light sources directions and intensities are known, the photometric stereo
problem can be solved as a linear system as it will be explained in Section 4.3. One of the
simplifying assumptions that are typically used (together with the Lambertian model, distant
point light sources and ignoring shadows/inter-reflections) is the orthographic projection of
the scene onto the image sensor. Although the majority of the photometric stereo approaches
assumes an orthographic projection, the perspective projection has been shown to be a
more realistic assumption. Papadhimitri and Favaro [150] showed how to incorporate a
perspective camera model in a photometric reconstruction. In particular, they introduced
a novel perspective in uncalibrated photometric stereo showing that one can uniquely
reconstruct the normals of the object and the lights given only the input images and the
camera calibration (focal length and image center).

The methods discussed in this Chapter, assume an orthographic camera model and deal
with greyscale image. For a generalisation of existing greyscale photometric stereo (GPS)
techniques to the use with colour images see [13].

4.3 Photometric stereo with known lights position

In this Section we assume that the light sources position is known, i.e. the light directions
`t, t = 1, . . . , q, are given. In the following, we briefly recall the nonlinear differential
Hamilton–Jacobi model which is based on a continuous formulation of the Photometric
stereo problem and, subsequently we will consider, more in detail, the Poisson approach.

4.3.1 Hamilton–Jacobi formulation

The continuous formulation (4.2.3) of Lambert’s law leads to a Hamilton–Jacobi differ-
ential model; see [132, 133] for a thorough study. Here we briefly recall its construction.

Let us set the normal field to the surface and the light directions

n(x, y) = (−ux,−uy, 1)T√
1 + ‖∇u‖2

, `t =
(˜̀

t

`3t

)
, ˜̀

t ∈ R2, t = 1, . . . , q.

Then, the Lambert’s cosine law (4.2.3) becomes

ρ(x, y) 〈−∇u(x, y), ˜̀t〉+ `3t√
1 + ‖∇u(x, y)‖2

= It(x, y), t = 1, . . . , q,

94 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

or, equivalently,√
1 + ‖∇u(x, y)‖2It(x, y) + ρ(x, y)

(
〈∇u(x, y), ˜̀t〉 − `3t) = 0.

By imposing Dirichlet boundary conditions, we obtain a system of q first order nonlinear
PDEs of Hamilton–Jacobi type{

Ht(x, y,∇u(x, y)) = 0, t = 1, . . . , q,
u(x, y) = g(x, y), (x, y) ∈ ∂Ω.

Following [133], we obtain for t = 1

√
1 + |∇u(x, y)|2 = ρ(x, y)〈−∇u(x, y), ˜̀1〉+ `31

I1(x, y)

and then we substitute this expression in the other equations corresponding to t = 2, . . . , q,
to obtain (

〈−∇u(x, y), ˜̀1〉 − `31
)
It(x, y) =

(
〈−∇u(x, y), ˜̀t〉 − `3t) I1(x, y).

This shows that the minimal number of images for the problem to be well-posed is 2.
Nevertheless, if q = 2 the solution may not exist for particular light orientations. Considering
q > 2 leads to a least-squares approach, that may be effective to reduce the influence of
noise in experimental data sets, without making data acquisition significantly harder. In any
case, knowing accurately the lights position `t is a strong requirement.

After that the solution u(x, y) is computed, the albedo is given by

ρ(x, y) = It(x, y)
〈n(x, y), `t〉

, for any t = 1, . . . , q.

Conditions for the existence of solutions are discussed in [115], and in [133] the problem is
studied under more realistic assumptions; see also [170].

The main disadvantage of the Hamilton–Jacobi model is that the operator to be inverted
depends upon the data. The matrix of the linear system obtained through the discretization
may be singular or severely ill-conditioned in certain lighting conditions. However, this
problem can be tackled by suitably choosing the position of the light sources.

4.3.2 Poisson formulation

Here we consider the Poisson approach for the 3D reconstruction of a Lambertian
surface. This method follows a different strategy, composed by two main parts. The first step
consists of immediately discretizing Lambert’s law on a regular grid, in order to determine
the normal field to the surface by solving a matrix equation. After the photometric data
are extracted, then the components of the normal vectors are numerically differentiated to
obtain an approximate discretization of the Laplace operator. Finally, the 3D profile of the
observed object is recovered by solving a Poisson partial differential equation.

An advantage of this approach is that the computation can be decoupled into simpler
problems, allowing for the solution of the unknown lighting case, as it will be shown in
the next section. A drawback is that this procedure requires a larger number of images

4.3. PHOTOMETRIC STEREO WITH KNOWN LIGHTS POSITION 95

than the Hamilton–Jacobi formulation, i.e., at least 3. This is not a substantial problem in
applications, since usually dozens of images can be easily made available.

Let us apply discretization (4.2.1) to equation (4.2.3). We ignore for the moment the
boundary pixels, where we will impose suitable boundary conditions, and rearrange the
internal pixels by the lexicographical ordering. Denoting by ρk and nk, respectively, the
value of the albedo at the kth pixel and the (normalized) vector normal to the surface at the
same point, then the following relation holds at any point of each picture

ρknTk `t = mkt, k = 1, . . . , p, t = 1, . . . , q. (4.3.1)

The scalars mkt represent the radiation It(x, y) reflected by the small area near the kth
pixel when illuminated from the direction `t, that is, the components of the vectors
m1,m2, . . . ,mq ∈ Rp, containing the vectorized images.

By defining the matrices

D = diag(ρ1, . . . , ρp) ∈ Rp×p, N = [n1, . . . ,np] ∈ R3×p,

representing the albedo and the normal vectors field, respectively, and the matrices

L = [`1, . . . , `q] ∈ R3×q, M = [m1, . . . ,mq] ∈ Rp×q,

containing the light sources direction and the pictures, the equations (4.3.1) can be grouped
into the equation

DNTL = M (4.3.2)

which represents the matrix formulation of the Lambert’s law.
When the lights positions are known, i.e. the matrix L is given, we first compute

ÑT = ML†, (4.3.3)

where L† is the Moore-Penrose pseudoinverse of L [18]. Then, the matrices D and N ,
defining the albedo and the normal vectors, can be computed from the factorizationND = Ñ
by simply normalizing the columns of Ñ .

For the solution of (4.3.3) to be unique, it is necessary that q ≥ 3, from which we see
that the minimum number of images required to obtain the normal field by this approach is
3.

Once the field of the normal vectors to the surface is obtained, we consider the vectors

((ux)k, (uy)k,−1)T = − nk
(nk)3

,

obtained by normalizing to -1 the third component of the normals nk; see (4.2.2). We
numerically differentiate the first two components of the above vectors to obtain an approxi-
mation on the grid (4.2.1) of the Laplacian f(x, y) = uxx + uyy. To do that, we employ the
following formula, based on the second order centered finite differences approximation for
the first derivative

fi,j = f(xi, yj) ≈
(ux)i+1,j − (ux)i−1,j

2h + (uy)i,j+1 − (uy)i,j−1
2h . (4.3.4)

Now, the 3D profile of the object, represented by the explicit function z = u(x, y), can
be recovered by solving the Poisson partial differential equation

∆u(x, y) = f(x, y), (4.3.5)

96 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

where ∆ denotes the Laplace operator.
We start by imposing homogeneous Dirichlet boundary conditions on the solution and

discretizing the Poisson equation by a second order finite differences scheme. Consider the
equation (4.3.5) on the rectangle [−A/2, A/2]× [−B/2, B/2], with boundary conditions

u(x,−B/2) = φ1(x), u(x,B/2) = φ2(x), x ∈ [−A/2, A/2],
u(−A/2, y) = ψ1(y), u(A/2, y) = ψ2(y), y ∈ [−B/2, B/2],

which corresponds to assuming that the surface of the observed object is approximately flat
in a neighborhood of the boundary. Let u(xi, yj) = ui,j and f(xi, yj) = fi,j at each point of
the mesh (4.2.1). Then, the boundary values are denoted by ui,0 = φ1(xi), ui,s+1 = φ2(xi),
u0,j = ψ1(yj), and ur+1,j = ψ2(yj).

Discretizing the Poisson equation by the well-known 5 points scheme with stepsize h,
we obtain the linear system

ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j = f̃i,j , (4.3.6)

for i = 1, . . . , r and j = 1, . . . , s, with f̃i,j = h2fi,j . We remark that approximating fi,j by
(4.3.4) does not deteriorate the quality of the results, as both (4.3.4) and the 5 points scheme
produce an approximation of order O(h2). This assertion has been verified numerically.

By aggregating the mesh points ui,j by columns, we obtain the following pentadiagonal
system of size p = rs

Tu1 + Isu2 = b1,

Isui−1 + Tui + Isui+1 = bi, i = 2, . . . , r − 1,
Isur−1 + Tur = br,

(4.3.7)

where Is denotes the identity matrix of size s, with

T =

−4 1

1 −4
. . .

. . .
. . . 1
1 −4

 ∈ Rs×s, ui =

ui,1
ui,2
...
ui,s

 ∈ Rs, i = 1, . . . , r.

The right-hand side vectors are

bi =

f̃i,1
f̃i,2
...
...

f̃i,s

−

ui,0
0
...
0

ui,s+1

 ∈ Rs, i = 2, . . . , r − 1,

and

b1 =

f̃1,1
f̃1,2
...

f̃1,s

−

u0,1 + u1,0

u0,2
...

u0,s + u1,s+1

 , br =

f̃r,1
f̃r,2
...

f̃r,s

−

ur+1,1 + ur,0

ur+1,2
...

ur+1,s + ur,s+1

 .

4.3. PHOTOMETRIC STEREO WITH KNOWN LIGHTS POSITION 97

The system has the condensed representation

Au = b

where

A =

T Is

Is T
. . .

. . .
. . . Is
Is T

 ∈ Rp×p, u =

u1
u2
...
...

ur

∈ Rp, b =

b1
b2
...

br−1
br

 ∈ Rp.

The resulting square linear system of size p (number of pixels) can be solved by any general
direct or preconditioned iterative method suited for large sparse matrices [83], or, specifically,
by a fast Poisson solver [31, 33].

In practical photometric stereo, one usually focuses on the case of homogeneous Dirichlet
boundary conditions, which corresponds to assuming that the observed object stands on
a flat background. In this case the above description simplifies, considering that φ1(x) =
φ2(x) = ψ1(y) = ψ2(y) = 0.

When the value of the function u(x, y) on the boundary is unknown, there may be
information on the normal derivatives of the solution. This amounts to imposing the
following Neumann boundary conditions:

−∂u(x,−B/2)
∂y

= µ1(x), ∂u(x,B/2)
∂y

= µ2(x), x ∈ [−A/2, A/2], (4.3.8)

−∂u(−A/2, y)
∂x

= ν1(y), ∂u(A/2, y)
∂x

= ν2(y), y ∈ [−B/2, B/2]. (4.3.9)

Neumann boundary conditions are not sufficient to make the problem well posed. In fact,
the solution is determined up to an additive constant, so the slope of a point of the solution
has to be fixed arbitrarily.

In this case, the solution at the boundary is to be determined too, and the number of
unknowns ui,j increases from rs to p = (r + 1)(s+ 1). Equation (4.3.6) is still valid for
all the internal points of the grid, that is, for i = 1, . . . , r and j = 1, . . . , s, but it has to be
coupled with the discretization of the boundary conditions (4.3.8) and (4.3.9). To do this, we
employed a one-sided second order discretization, obtaining on the horizontal boundaries of
the domain

3ui,0 − 4ui,1 + ui,2 = µ̃1,i,

ui,s−1 − 4ui,s + 3ui,s+1 = µ̃2,i,

with µ̃1,i = 2hµ1(xi) and µ̃2,i = 2hµ2(xi), for i = 1, . . . , r. Similarly, on the vertical
boundaries, we get

3u0,j − 4u1,j + u2,j = ν̃1,j ,

ur−1,j − 4ur,j + 3ur+1,j = ν̃2,j ,

with ν̃1,j = 2hν1(yj) and ν̃2,j = 2hν2(yj), for j = 1, . . . , s. On the four corner points, we
perform a linear interpolation from the three neighbour nodes of the grid. The equation for
the corner with coordinates (x0, y0) is

u0,0 − u0,1 − u1,0 + u1,1 = 0.

98 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

Similar equations correspond to the other three corners of the rectangular domain.
The resulting linear system

Bu = c (4.3.10)

is defined by

B =

P Q S
S R S

.. .
. . .

. . .

S R S
S Q P

 , u =

u0
u1
...

ur
ur+1

 , c =

c0
c1
...

cr
cr+1

 ,

with

P =

1 −1

3
. . .

3
−1 1

 , Q =

−1 1

−4
. . .

−4
1 −1

 ,

S = diag(0, 1, . . . , 1, 0), and

R =

3 −4 1
1 −4 1

. . .
. . .

. . .

1 −4 1
1 −4 3

 .

The expression of the right-hand side is the following:

c0 =

0
ν̃1,1
...
ν̃1,s
0

 , cr+1 =

0
ν̃2,1
...
ν̃2,s
0

 , ci =

µ̃1,i
f̃i,1
...

f̃i,s
µ̃2,i

 , i = 1, . . . , r.

Remark 4.3.1. To make both the matrix B nonsingular and the solution unique, we substi-
tute in (4.3.10) the equation associated to a chosen internal point of the domain, say, (xi, yj),
with the equation ui,j = γ, where γ is the slope assigned to that point.

4.4 Photometric stereo under unknown lighting

The need for the accurate localization of the light sources with respect to the observed
object is a strong limitation for the practical application of the method described in the
previous section, and the problem with unknown lights position is more involved. The
uncalibrated photometric stereo problem consists in estimating the surface normal field
from a set of pictures, without knowing in advance the direction of the light sources.

4.4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING 99

The first work for solving the photometric stereo problem under unknown lighting, pro-
posed by Hayakawa [88], uses a singular value decomposition (SVD) technique to factorize
the data matrix, i.e. the matrix containing the pictures. After the Hayakawa’s approach,
many methods have been proposed for the uncalibrated photometric stereo problem. In
[34], the authors suggest an approach based on the use of low-order spherical harmonics for
Lambertian objects, while [14] proposes a method based on the decomposition of the light
intensity into a linear combination of spherical harmonics for recovering the 3D shape of
objects by performing a simple optimization in a low-dimensional space.

Generally, uncalibrated photometric stereo is sensitive to deviations from ideality such
as the presence of specular reflection and/or shadow. In [138] the authors proposed a robust
SVD method in order to overcome this problem.

In this Section, we describe our implementation of the SVD based approach by Hayakawa
for solving the uncalibrated photometric stereo problem. The method discussed below, as-
sumes a sufficiently distant point light source. This idealized setting is often violated, e.g.
by ambient light that is hard to prevent in a real setup. The ideas introduced for punctiform
lights can be easily generalised to more complicated illumination conditions. Yuille and
Snow [189] showed how the SVD approach can be extended to include ambient background
illumination.

The photometric stereo technique under unknown lighting conditions consists of com-
puting the rank-3 factorization

ÑTL = M, (4.4.1)

where Ñ = ND (see (4.3.2)), without knowing in advance the lights location. This problems
has not a unique solution. Nevertheless, there are some physical constraints which allow
one to find a meaningful solution.

Lemma 4.4.1. The matrices D, N , and L, containing the albedo, the normals to the
observed surface, and the lights directions, are determined up to a unitary transformation,
that is, (4.4.1) is satisfied by the matrix pair (QÑ,QL), for any orthogonal matrix Q ∈
R3×3.

Proof. Any matrix pair (A−T Ñ , AL), with A ∈ R3×3 nonsingular, satisfies (4.4.1). Since
the normal vectors nk are normalized, the norm of the kth column of Ñ equals the albedo
ρk, while ‖`t‖ is proportional to the light intensity. This implies that the transformation
matrix A has to be orthogonal.

The above Lemma suggests that the original orientation of the observed object cannot
be determined without further information. This fact should be expected, since only the
relative position between the object and the camera can be deduced from a set of images.
This indetermination imposes some care in the shape reconstruction, because there is
the possibility of axes reflections in the computation of the solution, which would alter
significantly the shape of the reconstructed object.

In what follows, it is not restrictive to assume ‖`t‖ = 1, t = 1, . . . , q. First of all,
we already noticed that there is an undetermined proportionality constant in the problem,
depending upon the unit of measure adopted for light intensity. Moreover, in the typical
experimental setting the pictures are taken using a flashlight at a fixed distance from the
object, which produces a constant light intensity across the observations. In particular
situations the light intensity may vary, for example when the size of the object requires the

100 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

use of the sun as a light source, taking pictures at different times of the day. In this case a
light meter can be used to obtain an estimate of ‖`t‖.

Let the “compact” singular value decomposition (SVD) [83] of the observations matrix
be

M = UΣV T , (4.4.2)

where Σ = diag(σ1, . . . , σq) is the diagonal matrix containing the singular values and
U ∈ Rp×q, V ∈ Rq×q are matrices whose orthonormal columns ui and vi are the left and
right singular vectors, respectively. In our application q � p, since the number of pixels in
an image is usually very large, while we would like to obtain a reconstruction using a set of
observations as small as possible. As we observed in the previous section, it is only required
that q ≥ 3.

When q is small (10–20), the SVD factorization can be computed efficiently by standard
numerical libraries; we used the svd function of Matlab [129] even for a quite large value
of p. In particular situations, in order to reduce the computation time, one may compute a
partial singular value decomposition by an iterative method; see, e.g., [8, 9].

Since experimental data are always affected by noise, factorization (4.4.2) may have
numerical rank r > 3, because of error propagation. In this case, a truncated SVD must
be adopted, by setting σ4 = · · · = σq = 0. We let W = [σ1u1, σ2u2, σ3u3]T and
Z = [v1,v2,v3]T , so that W TZ 'M . This choice produces the best rank-3 approximation
to the data matrix M with respect to both the Euclidean and the Frobenius norm [18]. The
constructive proof of the following theorem shows how to obtain the sought matrices Ñ and
L from this initial factorization.

Theorem 4.4.1. The normal vectors to the observed surface and the lights position can be
uniquely determined from (4.3.2), up to a unitary transformation, only if at least 6 images
taken in different lighting conditions are available.

Proof. Let us consider the initial rank-3 factorization W TZ = M described above, with
W = [w1, . . . ,wp] and Z = [z1, . . . , zq]. Given the assumption on the norms of the vectors
`t, we first determine a matrix B such that ‖Bzt‖ = 1 for each t = 1, . . . , q. This implies
solving the system of equations

diag(ZTGZ) = 1, (4.4.3)

where 1 = (1, . . . , 1)T ∈ Rq and G = BTB is a symmetric positive definite 3× 3 matrix.
The matrix G depends upon 6 independent parameters, say, its elements gij with i ≤ j. As
each equation in (4.4.3) is of the type

zTt Gzt =
3∑

i,j=1
zitzjtgij = 1,

the system (4.4.3) can be rewritten as the linear system

Hg = 1,

where g = (g11, g22, g33, g12, g13, g23)T and H is a q × 6 matrix, whose rows are[
z2

1t z2
2t z2

3t 2z1tz2t 2z1tz3t 2z2tz3t
]
, t = 1, . . . , q.

A necessary condition for the solution vector g to be unique is that q ≥ 6. This completes
the proof.

4.5. DETERMINING THE RIGHT ORIENTATION OF THE SURFACE 101

Remark 4.4.2. The requirement on the rank of the matrix H poses some constraints on
the lights disposition. For example, a very common experimental approach is to place
the light sources roughly on a circle around the camera, i.e., at a fixed distance δ from
the origin, on a plane parallel to the observation plane. This is equivalent to fixing angles
θ1, . . . , θq ∈ [0, 2π) and setting

`t = (cos θt, sin θt, δ)T√
1 + δ2

, t = 1, . . . , q.

This lights placement is not acceptable, because in this case the third column of the matrix
H would be a linear combination of the first two. So at least one light source should violate
this scheme. Placing the light sources at random positions around the object is often the
safest way to ensure that H is full-rank.

The above theorem shows that at least 6 images are needed to reconstruct a shape by
photometric stereo under unknown lighting, using this approach. Anyway, only a necessary
condition for the unique solvability is given. In fact, H can be rank-deficient even for q ≥ 6.

As the matrix B is determined up to a unitary transformation, we represent it by its
QR factorization B = QR. The “essential” factor R can be obtained by the Cholesky
factorization G = RTR [83], while Q cannot be uniquely determined; see Lemma 4.4.1.
We will discuss a reasonable choice for the matrix Q in the following section.

Finally, factorization (4.4.1) is solved by setting

Ñ = QR−TW and L = QRZ. (4.4.4)

By normalizing the columns of Ñ one obtains the diagonal albedo matrix D and the matrix
N , whose columns are the normal vectors. The integration of the normal vector field is then
performed by the approaches described in Section 4.3.

4.5 Determining the right orientation of the surface

As we already observed, the matrices Ñ and L can be determined only up to a unitary
transformation Q. It is nevertheless important to suitably choose Q, at least for two reasons.

First of all, the indetermination in the factorization (4.4.1) may introduce axes reflections
in the reference system centered at the object, with the result of capsizing the direction of a
part of the normal vectors.

Secondly, the integration procedures in Section 4.3 assumes that the function describing
the shape of the object is single-valued and explicit, that is, has the form z = u(x, y). The
matrix Q must introduce a rotation of the reference system which meets this assumption.

We propose a computational procedure that, when coupled to a good practice in taking
the pictures, leads to determining an effective rotation matrix Q. The shooting procedure
consists of ordering the pictures by letting the light source rotate counterclockwise around
the object, in the half space containing the camera. We assume that the first picture is taken
with the light at the right hand of the camera, but this is not restrictive. The angles between
the light positions do not have to be evenly spaced, and the light must not move exactly
on a circle; see Remark 4.4.2. What is important, is that the light positions are distributed
counterclockwise all around the object, and that the pictures are ordered according to this
sequence.

102 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

After determining the matrices N̂ = R−TW and L̂ = R−TZ by the procedure described
in Section 4.4, we consider the three columns ˆ̀

t of L̂, with t = 1, b q3c, b
2q
3 c, where bxc

denotes the integer part of x. Given the above shooting procedure, this vector triplet must
have a right-handed (or positive) orientation. This can be checked by the sign of the
determinant of the matrix formed by the vector triplet. If the determinant is negative, then
the factorization procedure introduced an axis reflection. To restore the original orientation
we change the sign of the third row of N̂ and L̂, which corresponds to inverting the direction
of the z axis.

Now we turn to determining the rotation matrix Q. To approximately identify the
direction of the camera as seen from the observed object, we set

v3 =
q∑
t=1

̂̀
t.

The vector v3 is assumed to be the direction of the z axis. The direction v1 of the x axis is
obtained by projecting ̂̀1 on the plane orthogonal to v3, and the y axis by computing the
cross product v2 = v3 ∧ v1. After normalizing the three vectors, the orthogonal matrix

Q =
[
v1 v2 v3

]
determines the sought rotation, which is used for computing the matrices Ñ and L in (4.4.4).

4.6 Numerical experiments

In this section we illustrate the performance of our implemented method for the solution
of the photometric stereo problem. All the computation were performed using Matlab 9.5
on a Debian GNU/Linux system. The 3D meshes were generated by our Matlab software,
and visualized by the MeshLab open source system for processing and editing 3D triangular
meshes (www.meshlab.net).

The algorithm described in the previous sections was tested both with synthetic and
experimental data sets, in order to investigate its performance not only when the assump-
tions on which the algorithm is based are met, but also in a real-world setting, where the
assumptions are only approximately verified.

4.6.1 Synthetic data set

In order to assess the accuracy attainable by the described computational approach in
the ideal situation when all the assumptions of the methods are satisfied, we resorted to a
synthetic dataset. We fixed a disposition of q = 7 light sources, placing them around the
object at angles (0, π4 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4), and generated a set of digital images by applying

the direct model (4.2.3) to the surface represented by the function

u(x, y) = 1
2ex sin(πx) sin(πy), (4.6.1)

on the square domain [−1, 1] × [−1, 1]. Each image is 101 × 101 pixels, and the albedo
equals 1

2 for x2 + y2 < 1
4 , and 1 otherwise. Figure 4.1 shows both the synthetic surface and

the corresponding data set.

www.meshlab.net

4.6. NUMERICAL EXPERIMENTS 103

Figure 4.1: The graph on the left represents a synthetic surface used to investigate the performance
of the algorithm; the data set used for the 3D reconstruction is composed by the 7
pictures on the right, each one corresponding to a different lighting condition.

1 2 3 4 5 6 7
10

-15

10
-10

10
-5

10
0

10
5

1 2 3 4 5 6 7

10
1

10
2

Figure 4.2: On the left, singular values of the data matrix M for the synthetic data set; on the right,
singular values of the same matrix after 10% Gaussian noise is added.

The graph on the left of Figure 4.2 displays the singular values of the data matrixM from
(4.3.2), showing that it clearly has numerical rank 3. Figure 4.3 shows the reconstruction of
the light vectors and of the model surface. The light vectors are recovered up to machine
precision, while the relative accuracy on the surface is 2.6 · 10−4, in accord to the quite large
step size h = 1

50 . The two errors are defined by

Elights = ‖L− L̃‖F
‖L‖F

, Esurface = ‖U − Ũ‖F
‖U‖F

,

where ‖ · ‖F is the Frobenius norm, (L,U) denote the exact matrices containing the light
vectors and the surface slopes, respectively, and (L̃, Ũ) the reconstructed matrices.

We repeated the same test after introducing 10% Gaussian noise in the right-hand side
M of (4.3.2). The presence of the noise is reflected in the singular values of M , depicted in
the graph on the right of Figure 4.2. Though its rank is 7, it is evident that the matrix M can
be well approximated by a rank 3 approximation. The computation is quite steady, as in this
case Elights = 3.6 · 10−3, while Esurface = 1.5 · 10−2.

The reconstruction in Figure 4.3 was obtained by imposing homogeneous Dirichlet
boundary conditions, which are exactly verified by model function (4.6.1). The error

104 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

Figure 4.3: On the left, reconstruction of the light vectors, on the right, the recovered surface.

Figure 4.4: Reconstruction error with Dirichlet (left) and Neumann (right) boundary conditions.

u(x, y)− ũ(x, y) between the model and the reconstruction is displayed in the graph on the
left of Figure 4.4. The graph on the right of the same figure shows the error corresponding to
exact Neumann conditions. In this case we fixed the value of the solution at the central point
of the domain, that is, γ = u(0, 0) = 0; see Remark 4.3.1. Neumann conditions produced a
less accurate reconstruction in proximity of the border of the domain, compared to Dirichlet
conditions.

To investigate how deviation from ideal lighting influences numerical results, we repeated
the above experiments, with Dirichlet conditions and without noise, positioning the light
sources at a finite distance κA from the object, where κ is a scale factor and A is the
horizontal width of the observed scene; in this particular example A = 2. The synthetic
images were generated by a model based on Lambert’s law, which considers incident light
rays, rather than parallel rays. The light directions were recovered by the procedure described
in Section 4.4.

When κ < ∞ the matrix M in (4.3.3) is full-rank, and this deteriorates the approxi-
mation accuracy of the rank-3 factorization constructed in Section 4.4. We measure the
closeness of the matrix M to being rank-3 by the ratio σ3/σ4 between the third and the

4.6. NUMERICAL EXPERIMENTS 105

Table 4.1: Influence of the distance between the object and the light source: the unit for the distance
κ is the scene width, the ratio σ3/σ4 represents “closeness to rank 3”, the errors are
relative in the Frobenius norm.

κ σ3/σ4 Elights Esurface

∞ 1.85 · 1015 1.00 · 10−15 2.69 · 10−4

1000 2.19 · 103 1.95 · 10−4 1.39 · 10−3

100 2.18 · 102 1.95 · 10−3 1.41 · 10−2

10 2.15 · 101 1.95 · 10−2 1.45 · 10−1

1 1.77 4.52 · 10−1 3.89

fourth singular value of M . Table 4.1 reports this ratio together with the errors Elights and
Esurface, for values of κ ranging from∞ to 1. For example, when κ = 10 the distance of the
light source from the origin is 10 times the width of the observed scene.

It is immediate to observe that when κ takes values close to 1, the error produced in the
light vectors approximation is amplified in the object reconstruction, leading to unacceptable
results. We observed that the algorithm may fail in some situation, as the deviation from
ideality can lead to a non positive definite matrix G in (4.4.3), causing an unrecoverable
error. This is one of the drawbacks of the algorithm that must be faces in future research.

The synthetic data set used in this experiment and the reconstructed object of Figure 4.4
are available at the web page http://bugs.unica.it/cana/software/ps3d, as
a .mat file (Matlab data file), and a .ply 3D model file, respectively.

4.6.2 Experimental data sets

An experimental data set partially satisfying the assumptions required by the reconstruc-
tion method was generated as follows. A seashell (approximate width 10cm) was placed
face up on a horizontal desk, with a tripod holding a camera about 1m above the seashell.
A black background was placed below the seashell, to reproduce homogeneous Dirichlet
boundary conditions for the observed surface. The desk was placed in the open air, under
direct sunlight, and rotated in order to take 20 pictures of the seashell with different lighting
directions, according to the shooting procedure described in Section 4.5. The resulting data
set is displayed in Figure 4.5.

While the relatively small distance between the camera and the object produces images
which cannot be represented through the orthographic projection model, the sunlight rays
can be assumed to be parallel. So the lighting verifies the assumption of Lambert’s model
and we expect the data matrix M to be approximately rank-3.

The digital pictures were recorded in raw mode at the resolution of 3477× 5220 pixels,
and for this particular numerical simulation they were scaled to 885 × 705 pixels. The
procedure described in Sections 4.4 and 4.5 identified 20 light vectors, displayed in the
graph on the right in Figure 4.5, that are compatible with the sunlight positions during the
shooting process.

Integrating the normal field by the Poisson equation (4.3.5), and imposing homogeneous
Dirichlet boundary conditions, one obtains the 3D model illustrated in Figure 4.6 by three
different views. Compared to the original, the model appears slightly deformed by the
deviation from the orthographic projection model, but the reconstruction is quite accurate and
the computing time negligible, 2.8 seconds on an Intel Core i7 computer. The deformation

http://bugs.unica.it/cana/software/ps3d

106 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

Figure 4.5: The SHELL data set, on the left, consisting in 20 images corresponding to different sun-
light directions; on the right we report the light directions identified by the reconstruction
algorithm.

Figure 4.6: Three different views of the 3D surface reconstructed from the SHELL data set.

induced by the camera system could be corrected by camera calibration techniques. The
SHELL data set and the reconstructed object are available at the web page http://bugs.
unica.it/cana/software/ps3d.

As a second experiment based on a real data set, we processed the images of a stela
of the Ptolemaic period, exhibited at the Museo Egizio in Torino, Italy (https://www.
museoegizio.it); see Figure 4.7. We thank the Museo Egizio, in particular Christian
Greco, director of the museum, and Marco Rossani, collection manager, for providing us
the data set, which is composed by 8 images. A black mask was added around the stela in
each image, in order to reproduce Dirichlet boundary conditions. The resolution of the raw
digital pictures is 7360 × 4912 pixels. The images were scaled to 1474 × 2208 pixels to
produce the result depicted on the right of Figure 4.7, where the surface is displayed after
removing the albedo. The computation took 16 seconds.

The pictures were taken in the exposition room, using an electronic flash as a light
source, so they do not satisfy the assumptions of the method, as both the camera and the
light source were at a quite small distance from the object. Indeed, while the bas-relief
details are accurately reproduced, the reconstructed surface is spherically warped, compared
to the flatness of the real stela.

Some details of the reconstructed surface are displayed in Figure 4.8. The left and

http://bugs.unica.it/cana/software/ps3d
http://bugs.unica.it/cana/software/ps3d
https://www.museoegizio.it
https://www.museoegizio.it

4.7. CONCLUSIONS AND FUTURE WORK 107

Figure 4.7: On the left, stela in honor of the general Callimachos, mentioning Cleopatra and Caesar-
ion; granite, Ptolemaic period, reign of Cleopatra VII, 39 BC. Thebes, Temple of Karnak
(Courtesy of Museo Egizio, Torino, Italy). On the right, 3D reconstruction obtained by
the algorithm described in the paper.

central pictures show how albedo removal can lead to a cleaner visualization of an engraving.
The image on the right is a part of the reconstruction obtained by processing a 800× 800
subimage of the original high resolution pictures. It shows a writing, located in the central
part of the stela. To obtain a neat representation of small writings one would need high
resolution images only of this part, but this would introduce difficulties in assigning boundary
conditions to the Poisson equation. We will face this problem in future work.

4.7 Conclusions and future work

In this chapter we consider an implementation of a method for solving the photometric
stereo problem under unknown lighting showing that, under the ideal assumptions upon
which Lambert’s model is based, it is possible to estimate the lights position if at least 6
images of an object are available, each one with a different light source position. We show
that this information can be effectively used to reconstruct a 3D model of the observed
object, and propose a procedure to avoid the indetermination in the direction of the normal
vectors, which is typical of photometric stereo.

The accuracy of the considered method is investigated through numerical experiments
on both synthetic and real data sets. Our experiments show that the algorithm is accurate
under ideal conditions, and that the lack from ideality produces, as expected, a spherical
deformation on the reconstructed surfaces.

Our future research work will be devoted to improving the method, in order to make

108 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

Figure 4.8: Three details of the Ptolemaic stela reconstruction: the first two show the same area with
and without albedo, the third one a part containing a writing.

it applicable to real shooting conditions, in particular when the light sources cannot be
positioned sufficiently far away from the observed object. Moreover, real time processing
of high resolution pictures requires a reduction in the computing time, especially for what
concerns the data matrix factorization and the solution of the final large linear system.
Another aspect that needs further work is the treatment of the boundary conditions required
for the solution of equation (4.3.5), whose knowledge is not available in many applicative
situations.

Conclusion

In this last part we summarise the results described in the whole Thesis, and focus on
some topics we are working on and planning to develop in future.

We have explored some of the applications of Numerical Linear Algebra in the field of
Archaeology. In particular, we have proposed a Matlab toolbox for solving the seriation
problem with possible application to all the other problems involving the sorting of similarity
(or dissimilarity) data. Our software contains an implementation of the PQ-tree data structure
which encodes all the possible orderings that lead to a solution of the problem. In case of
perfect data, the spectral algorithm uses the entries of the Fiedler vector of the Laplacian
matrix associated to the problem for finding all the possible reordering of the nodes (repre-
senting the units we want to reorder) in the considered seriation problem. When the data are
inconsistent (or imperfect) the seriation problem belongs to the NP-hard complexity class
and the spectral algorithm can be applied as a heuristic to find an approximate solution. In
the presence of imperfect seriation data, we highlight that if the Laplacian matrix associated
to the problem has a multiple Fiedler value then this situation may have influence on the
computation of an approximate solution to the seriation problem.

Regarding the seriation problem, future work involves the study of seriation in a noisy
setting. In particular, we are currently working on the situation when the Laplacian of the
similarity matrix associated with the considered seriation problem, has multiple Fiedler
value with the aim to delineate the possible constraints to the solution of the problem. Still
in a noisy setting, another line of research is based on investigating the asymptotic behaviour
of a block matrix representing a bipartite graph associated to a given seriation problem,
constructed from matrices obtained by properly normalizing the rows and columns of the
given binary data matrix. The purpose is to construct a spectral algorithm for solving the
seriation problem in the presence of imperfect data, by using the approach, described in
Chapter 3, used for approximating a given network by a bipartite graph.

Besides the study of the seriation problem in noisy settings, we are planning to work
also on seriation by node metrics.

In regards to the spectral bipartization method presented in Chapter 3, another future
development concerns its generalization for discovering approximate multi-partite structure.

In relation to the photometric stereo problem we have examined a standard approach
for its solution, based on the Poisson formulation of the problem. We have then explored
the PS problem under unknown lighting, showing that it is possible to estimate the lights
location if at least 6 images of an object are available, each one corresponding to a different
light direction. Future work will be devoted to improving the method, in order to make it
applicable in real situations when the lights cannot be positioned sufficiently far away from
the object whose 3d shape has to be reconstruct. Another aspect that need to be further
investigated, concern a reduction in the computing time required by the processing of high

109

110 CHAPTER 4. PHOTOMETRIC STEREO UNDER UNKNOWN LIGHTING

resolution pictures and the treatment of the boundary conditions required for the solution of
the Poisson equation considering for example reflective boundary conditions.

Bibliography

[1] J. Ackermann and M. Goesele. “A survey of photometric stereo techniques”. In:
Foundations and Trends R© in Computer Graphics and Vision 9.3-4 (2015), pp. 149–
254.

[2] A. J. B. Anderson. “Ordination methods in ecology”. In: The Journal of Ecology
(1971), pp. 713–726.

[3] M. J. Anderson and T. J. Willis. “Canonical analysis of principal coordinates: a
useful method of constrained ordination for ecology”. In: Ecology 84.2 (2003),
pp. 511–525.

[4] N. Archip, R. Rohling, P. Cooperberg, H. Tahmasebpour, and S.K. Warfield. “Spec-
tral clustering algorithms for ultrasound image segmentation”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer. 2005, pp. 862–869.

[5] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite graphs and their
applications. Vol. 131. Cambridge university press, 1998.

[6] J. E. Atkins, E. G. Boman, and B. Hendrickson. “A spectral algorithm for seriation
and the consecutive ones problem”. In: SIAM J. Comput. 28.1 (1998), pp. 297–310.

[7] G. A. Atkinson and E. R. Hancock. “Recovery of surface orientation from diffuse
polarization”. In: IEEE transactions on image processing 15.6 (2006), pp. 1653–
1664.

[8] J. Baglama and L. Reichel. “An implicitly restarted block Lanczos bidiagonalization
method using Leja shifts”. In: BIT 53 (2013), pp. 285–310.

[9] J. Baglama and L. Reichel. “Augmented implicitly restarted Lanczos bidiagonaliza-
tion methods”. In: SIAM J. Sci. Comput. 27 (2005), pp. 19–42.

[10] R. B. Bapat. Graphs and matrices. Vol. 27. Springer, 2010.

[11] J. A. Barcelo and I. Bogdanovic. Mathematics and Archaeology. CRC Press, 2015.

[12] S. T. Barnard, A. Pothen, and H. Simon. “A spectral algorithm for envelope reduction
of sparse matrices”. In: Numer. Linear Algebra Appl. 2.4 (1995), pp. 317–334.

[13] S. Barsky and M. Petrou. “The 4-source photometric stereo technique for three-
dimensional surfaces in the presence of highlights and shadows”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 25.10 (2003), pp. 1239–1252.

[14] R. Basri, D. Jacobs, and I. Kemelmacher. “Photometric stereo with general, unknown
lighting”. In: Int. J. Comput. Vis. 72.3 (2007), pp. 239–257.

111

112 BIBLIOGRAPHY

[15] E. Beltrami. “Sulle funzioni bilineari”. In: Giornale di Matematiche ad Uso degli
Studenti Delle Universita 11.2 (1873), pp. 98–106.

[16] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences.
Vol. 9. Siam, 1994.

[17] N. Biggs, N. L. Biggs, and B. Norman. Algebraic graph theory. Vol. 67. Cambridge
university press, 1993.

[18] Å. Björck. Numerical Methods for Least Squares Problems. Philadelphia: SIAM,
1996. ISBN: 0-89871-360-9.

[19] M. Bóna. Combinatorics of permutations. Chapman and Hall/CRC, 2016.

[20] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Vol. 290. Macmillan
London, 1976.

[21] K. S. Booth and G. S. Lueker. “Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms”. In: J. Comput. Syst. Sci. 13.3
(1976), pp. 335–379.

[22] S. P. Borgatti and M. G. Everett. “Models of core/periphery structures”. In: Social
networks 21.4 (2000), pp. 375–395.

[23] A. G. Bors, E. R. Hancock, and R. C. Wilson. “Terrain analysis using radar shape-
from-shading”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
25.8 (2003), pp. 974–992.

[24] D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice
Hall London, 1994.

[25] G. W. Brainerd. “The place of chronological ordering in archaeological analysis”.
In: Am. Antiq. 16.4 (1951), pp. 301–313.

[26] J. C. Brower and K. M. Kile. “Seriation of an original data matrix as applied to
paleoecology”. In: Lethaia 21.1 (1988), pp. 79–93.

[27] R. A. Brualdi. Introductory combinatorics. Pearson Education India, 1977.

[28] M. J. Brusco and S. Stahl. Branch-and-bound applications in combinatorial data
analysis. Springer Science & Business Media, 2006.

[29] M. J. Brusco and D. Steinley. “Clustering, seriation, and subset extraction of confu-
sion data”. In: Psychol. Methods 11.3 (2006), pp. 271–286.

[30] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, and
N. Zhang. “Topological structure analysis of the protein–protein interaction network
in budding yeast”. In: Nucleic acids research 31.9 (2003), pp. 2443–2450.

[31] B. L. Buzbee, G. H. Golub, and C. W. Nielson. “On direct methods for solving
Poisson’s equations”. In: SIAM Journal Numer. Anal. 7.4 (1970), pp. 627–656.

[32] G. Caraux and S. Pinloche. “PermutMatrix: a graphical environment to arrange gene
expression profiles in optimal linear order”. In: Bioinformatics 21.7 (1979). Package
available at http://www.atgc-montpellier.fr/permutmatrix/,
pp. 1280–1281.

[33] T. F. Chan and D. C. Resasco. “A domain-decomposed fast Poisson solver on a
rectangle”. In: SIAM J. Sci. Stat. Comput. 8.1 (1987), s14–s26.

http://www.atgc-montpellier.fr/permutmatrix/

BIBLIOGRAPHY 113

[34] C.-P. Chen and C.-S. Chen. “The 4-source photometric stereo under general unknown
lighting”. In: Computer Vision–ECCV 2006. Vienna: Springer, 2006, pp. 72–83.

[35] L. Chen, Q. Yu, and B. Chen. “Anti-modularity and anti-community detecting in
complex networks”. In: Information Sciences 275 (2014), pp. 293–313.

[36] V. Chepoi and B. Fichet. “Recognition of Robinsonian dissimilarities”. In: J. Classif.
14.2 (1997), pp. 311–325.

[37] P. H. Christensen and L. G. Shapiro. “Three-dimensional shape from color photo-
metric stereo”. In: Int. J. Comput. Vis. 13.2 (1994), pp. 213–227.

[38] T. Christof, M. Oswald, and G. Reinelt. “Consecutive ones and a betweenness
problem in computational biology”. In: International Conference on Integer Pro-
gramming and Combinatorial Optimization. Springer. 1998, pp. 213–228.

[39] F. R. K. Chung and F. C. Graham. Spectral graph theory. 92. American Mathematical
Soc., 1997.

[40] E. N. Coleman Jr. and R. Jain. “Obtaining 3-dimensional shape of textured and
specular surfaces using four-source photometry”. In: Computer graphics and image
processing 18.4 (1982), pp. 309–328.

[41] A. Concas, C. Fenu, and G. Rodriguez. “PQser: a Matlab package for spectral
seriation”. In: Numerical Algorithms 80.3 (2019), pp. 879–902.

[42] A. Concas, S. Noschese, L. Reichel, and G. Rodriguez. “A spectral method for
bipartizing a network and detecting a large anti-community”. In: Journal of Compu-
tational and Applied Mathematics (2019).

[43] E. Cuthill and J. McKee. “Reducing the bandwidth of sparse symmetric matrices”.
In: Proceedings of the 1969 24th national conference. ACM. 1969, pp. 157–172.

[44] D. Cvetković, P. Rowlinson, and S. K. Simić. “Signless Laplacians of finite graphs”.
In: Linear Algebra and its applications 423.1 (2007), pp. 155–171.

[45] D. Cvetković, S. Simic, and P. Rowlinson. An introduction to the theory of graph
spectra. Cambridge University Press, 2009.

[46] D. Cvetković, D. M. Cvetković, P. Rowlinson, and S. Simic. Eigenspaces of graphs.
66. Cambridge University Press, 1997.

[47] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of graphs. Vol. 10. Academic
Press, New York, 1980.

[48] P. J. Davis. Circulant Matrices. New York: Wiley, 1979.

[49] N. M. M. De Abreu. “Old and new results on algebraic connectivity of graphs”. In:
Linear Algebra Appl. 423.1 (2007), pp. 53–73.

[50] P. Dempsey and M. Baumhoff. “The statistical use of artifact distributions to establish
chronological sequence”. In: American Antiquity 28.4 (1963), pp. 496–509.

[51] M. Desai and V. Rao. “A characterization of the smallest eigenvalue of a graph”. In:
Journal of Graph Theory 18.2 (1994), pp. 181–194.

[52] R. Dessì, C. Mannu, G. Rodriguez, G. Tanda, and M. Vanzi. “Recent improve-
ments in photometric stereo for rock art 3D imaging”. In: Digital Applications in
Archaeology and Cultural Heritage (DAACH) 2 (2015), pp. 132–139.

114 BIBLIOGRAPHY

[53] S.B. Deutsch and J. J. Martin. “An ordering algorithm for analysis of data arrays”.
In: Operations Research 19.6 (1971), pp. 1350–1362.

[54] R. Diestel. “Graph theory. 2005”. In: Grad. Texts in Math 101 (2005).

[55] C. Ding and X. He. “Linearized cluster assignment via spectral ordering”. In: Pro-
ceedings of the twenty-first international conference on Machine learning. ACM.
2004, p. 30.

[56] M. Dom. “Algorithmic aspects of the consecutive-ones property”. In: (2009).

[57] W. E. Donath and A. J. Hoffman. “Algorithms for partitioning of graphs and com-
puter logic based on eigenvectors of connection matrices”. In: IBM Technical Dis-
closure Bulletin 15.3 (1972), pp. 938–944.

[58] J. E. Doran, J. Doran, and F. R. Hodson. Mathematics and computers in archaeology.
Harvard University Press, 1975.

[59] J.-D. Durou, M. Falcone, and M. Sagona. “Numerical methods for shape-from-
shading: A new survey with benchmarks”. In: Computer Vision and Image Under-
standing 109.1 (2008), pp. 22–43.

[60] C. R. Dyer. “Volumetric scene reconstruction from multiple views”. In: Foundations
of Image Understanding. Vienna: Springer, 2001, pp. 469–489.

[61] D. Earle. “Dendrogram seriation in data visualisation: algorithms and applications”.
PhD thesis. National University of Ireland Maynooth, 2010.

[62] C. Eckart and G. Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[63] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. “Cluster analysis and
display of genome-wide expression patterns”. In: P. Natl. Acad. Sci. U.S.A. 95
(1998), pp. 14863–14868.

[64] E. Estrada. The Structure of Complex Networks: Theory and Applications. Oxford
University Press, 2012.

[65] E. Estrada and J. Gómez-Gardeñes. “Network bipartivity and the transportation
efficiency of european passenger airlines”. In: Physica D: Nonlinear Phenomena
323 (2016), pp. 57–63.

[66] E. Estrada and D. J. Higham. “Network properties revealed through matrix func-
tions”. In: SIAM Rev. 52.4 (2010), pp. 696–714.

[67] E. Estrada and P. Knight. A First Course in Network Theory. Oxford University
Press, 2015.

[68] E. Estrada and J. A. Rodríguez-Velázquez. “Spectral measures of bipartivity in
complex networks”. In: Physical Review E 72.4 (2005), p. 046105.

[69] D. Fasino and F. Tudisco. “A modularity based spectral method for simultaneous
community and anti-community detection”. In: Linear Algebra and its Applications
542 (2018), pp. 605–623.

[70] M. Fiedler. “A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory”. In: Czech. Math. J. 25.4 (1975), pp. 619–633.

[71] M. Fiedler. “Algebraic connectivity of graphs”. In: Czech. Math. J. 23.2 (1973),
pp. 298–305.

BIBLIOGRAPHY 115

[72] M. Fiedler. “Laplacian of graphs and algebraic connectivity”. In: Banach Center
Publ. 25.1 (1989), pp. 57–70.

[73] F. Fogel, A. d’Aspremont, and M. Vojnovic. “Serialrank: Spectral ranking using se-
riation”. In: Advances in Neural Information Processing Systems 27. 2014, pp. 900–
908.

[74] F. Fogel, R. Jenatton, F. Bach, and A. d’Aspremont. “Convex relaxations for permu-
tation problems”. In: SIAM J. Matrix Anal. Appl. 36.4 (2015), pp. 1465–1488.

[75] E. Forsyth and L. Katz. “A matrix approach to the analysis of sociometric data:
preliminary report”. In: Sociometry 9.4 (1946), pp. 340–347.

[76] D. Fulkerson and O. Gross. “Incidence matrices and interval graphs”. In: Pac. J.
Math. 15.3 (1965), pp. 835–855.

[77] A. George. Computer implementation of the finite element method. Tech. rep. STAN-
FORD UNIV CA DEPT OF COMPUTER SCIENCE, 1971.

[78] A. George and A. Pothen. “An analysis of spectral envelope reduction via quadratic
assignment problems”. In: SIAM Journal on Matrix Analysis and Applications 18.3
(1997), pp. 706–732.

[79] J. J. Gibson. “The perception of the visual world.” In: (1950).

[80] D. Gleich. MatlabBGL - A Matlab Graph Library. URL: https://www.cs.
purdue.edu/homes/dgleich/packages/matlab_bgl/.

[81] C. Godsil and G.F. Royle. Algebraic graph theory. Vol. 207. Springer Science &
Business Media, 2013.

[82] G. H. Golub, A. Hoffman, and G. W. Stewart. “A generalization of the Eckart-Young-
Mirsky matrix approximation theorem”. In: Linear Algebra and its applications 88
(1987), pp. 317–327.

[83] G. H. Golub and C. F. Van Loan. Matrix Computation. 1989.

[84] D. S. Greenberg and S. Istrail. “Physical mapping by STS hybridization: Algorithmic
strategies and the challenge of software evaluation”. In: J. Comput. Biol. 2.2 (1995),
pp. 219–273.

[85] M. Hahsler, K. Hornik, and C. Buchta. “Getting things in order: an introduction to
the R package seriation”. In: J. Stat. Softw. 25.3 (2008), pp. 1–34.

[86] Ø. Hammer, D. A.T. Harper, and P. D. Ryan. “PAST: paleontological statistics
software package for education and data analysis”. In: Palaeontologia electronica
4.1 (2001), p. 9.

[87] T. C. Havens and J. C. Bezdek. “An efficient formulation of the improved visual
assessment of cluster tendency (iVAT) algorithm”. In: IEEE Transactions on Knowl-
edge and Data Engineering 24.5 (2011), pp. 813–822.

[88] H. Hayakawa. “Photometric stereo under a light source with arbitrary motion”. In:
JOSA A 11.11 (1994), pp. 3079–3089.

[89] S. E. M. Herrera, A. Malti, O. Morel, and A. Bartoli. “Shape-from-Polarization in
laparoscopy”. In: 2013 IEEE 10th International Symposium on Biomedical Imaging.
IEEE. 2013, pp. 1412–1415.

https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/
https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/

116 BIBLIOGRAPHY

[90] D. J. Higham, G. Kalna, and M. Kibble. “Spectral clustering and its use in bioinfor-
matics”. In: J. Comput. Appl. Math. 204.1 (2007), pp. 25–37.

[91] N. J. Higham. Matrix nearness problems and applications. Citeseer, 1988.

[92] F. R. Hodson, D. G. Kendall, and P. Tautu. Mathematics in the Archaeological and
Historical Sciences. Edimburg: Edimburg University Press, 1971.

[93] W. Hoff and N. Ahuja. “Surfaces from stereo: Integrating feature matching, disparity
estimation, and contour detection”. In: IEEE transactions on pattern analysis and
machine intelligence 11.2 (1989), pp. 121–136.

[94] F. Hole and M. Shaw. Computer analysis of chronological seriation. Vol. 53. 3. Rice
University, 1967.

[95] P. Holme, F. Liljeros, C. R. Edling, and B. J. Kim. “Network bipartivity”. In: Physical
Review E 68.5 (2003), p. 056107.

[96] B. K. P. Horn. “Height and gradient from shading”. In: International journal of
computer vision 5.1 (1990), pp. 37–75.

[97] B. K. P. Horn. “Obtaining shape from shading information”. In: Shape from Shading.
MIT Press. 1989, pp. 123–171.

[98] B. K. P. Horn. “Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view”. In: (1970).

[99] L. Hubert. “Seriation using asymmetric proximity measures”. In: British Journal of
Mathematical and Statistical Psychology 29.1 (1976), pp. 32–52.

[100] L. Hubert, P. Arabie, and J. Meulman. Combinatorial data analysis: Optimization
by dynamic programming. Vol. 6. SIAM, 2001.

[101] P. Ihm. “A Contribution to the History of Seriation in Archaeology”. In: Classifica-
tion—the Ubiquitous Challenge. Springer, 2005, pp. 307–316.

[102] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai. “Lethality and centrality in
protein networks”. In: Nature 411.6833 (2001), p. 41.

[103] C. Jordan. “Mémoire sur les formes bilinéaires.” In: Journal de mathématiques
pures et appliquées 19 (1874), pp. 35–54.

[104] L. Jørgensen. Bækkegård and Glasergård: two cemeteries from the Late Iron Age on
Bornholm. Vol. 8. Akademisk forlag, 1990.

[105] L. Jørgensen. “En kronologi for yngre romersk og ældre germansk jernalder på Born-
holm. Jørgensen, Lars”. In: Simblegård-Trelleborg. Danske gravfund fra førromersk
jernalder til vikingetid (1989).

[106] M. Juvan and B. Mohar. “Optimal linear labelings and eigenvalues of graphs”. In:
Discrete Appl. Math. 36.2 (1992), pp. 153–168.

[107] D. G. Kendall. “A mathematical approach to seriation”. In: Philos. Trans. R. Soc.
A-Math. Phys. Eng. Sci. 269.1193 (1970), pp. 125–134.

[108] D. G. Kendall. “A statistical approach to Flinders–Petries sequence-dating”. In: Bull.
Int. Stat. Inst. 40.2 (1963), pp. 657–681.

[109] D. G. Kendall. “Incidence matrices, interval graphs and seriation in archeology”. In:
Pac. J. Math. 28.3 (1969), pp. 565–570.

BIBLIOGRAPHY 117

[110] D. G. Kendall, F. R. Hodson, and P. Tautu. “Mathematics in the Archaeological and
historical sciences”. In: Edinburgh Uni (1971).

[111] R. Klette, K. Schlüns, and A. Koschan. Computer Vision: Three-dimensional Data
from Images. Singapore: Springer, 1998.

[112] J. J. Koenderink. “The structure of images”. In: Biological cybernetics 50.5 (1984),
pp. 363–370.

[113] D. König. “Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre”. In: Mathematische Annalen 77.4 (1916), pp. 453–465.

[114] T. C. Koopmans and M. Beckmann. “Assignment problems and the location of
economic activities”. In: Econometrica: journal of the Econometric Society (1957),
pp. 53–76.

[115] R. Kozera. “Existence and uniqueness in photometric stereo”. In: Appl. Math. Com-
put. 44.1 (1991), pp. 1–103.

[116] F. A. Kuentzer, A. S. Pereira, A. M. Amory, G. Perrone, S. R. M. Silva, J. .M. Dinis,
and R. .M. C. Almeida. “Optimization and analysis of seriation algorithm for order-
ing protein networks”. In: 2014 IEEE International Conference on Bioinformatics
and Bioengineering. IEEE. 2014, pp. 231–237.

[117] R. S. Kuzara, G. R. Mead, and K. A. Dixon. “Seriation of Anthropological Data: A
Computer Program for Matrix-Ordering”. In: American Anthropologist 68.6 (1966),
pp. 1442–1455.

[118] S. Lang. Linear Algebra. Springer, 1992.

[119] M. Laurent and M. Seminaroti. “A Lex-BFS-based recognition algorithm for Robin-
sonian matrices”. In: Discret. Appl. Math. 222 (2017), pp. 151–165.

[120] M. Laurent and M. Seminaroti. “Similarity-First Search: a new algorithm with
application to Robinsonian matrix recognition”. In: SIAM Discret. Math. 31.3 (2017),
pp. 1765–1800.

[121] M. Laurent and M. Seminaroti. “The quadratic assignment problem is easy for
Robinsonian matrices with Toeplitz structure”. In: Operations Research Letters 43.1
(2015), pp. 103–109.

[122] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. “Statistical properties
of community structure in large social and information networks”. In: Proceedings
of the 17th international conference on World Wide Web. ACM. 2008, pp. 695–704.

[123] I. Liiv. “Seriation and matrix reordering methods: an historical overview”. In: Stat.
Anal. Data Min. 3.2 (2010), pp. 70–91.

[124] I. Liiv, R. Opik, J. Ubi, and J. Stasko. “Visual matrix explorer for collaborative
seriation”. In: Wiley Interdisciplinary Reviews: Computational Statistics 4.1 (2012),
pp. 85–97.

[125] W. H. Liu and A. H. Sherman. “Comparative analysis of the Cuthill–McKee and the
reverse Cuthill–McKee ordering algorithms for sparse matrices”. In: SIAM Journal
on Numerical Analysis 13.2 (1976), pp. 198–213.

[126] P. M. Magwene, P. Lizardi, and J. Kim. “Reconstructing the temporal ordering of
biological samples using microarray data”. In: Bioinformatics 19.7 (2003), pp. 842–
850.

118 BIBLIOGRAPHY

[127] C. Mannu, G. Rodriguez, G. Tanda, and M. Vanzi. “Nuovi sviluppi nelle tecniche
di stereofotometria 3D di incisioni e rilievi. Applicazioni nella tomba XV di Sos
Furrighesos, Sardegna”. In: Prospects for the Prehistoric Art Research, 50 Years
Since the Founding of Centro Camuno. Proceedings of the XXVI Valcamonica
Symposium, September 9–12, 2015. Ed. by F. Troletti. ISBN: 978-1-4673-1159-5.
Capo di Ponte, Italy: Centro Camuno di Studi Preistorici, 2015, pp. 285–288.

[128] W. H. Marquardt. “Advances in archaeological seriation”. In: Advances in archaeo-
logical method and theory. Elsevier, 1978, pp. 257–314.

[129] Matlab ver. 8.4. The MathWorks, Inc. Natick, MA, 2014.

[130] D. Mavroeidis and E. Bingham. “Enhancing the stability and efficiency of spec-
tral ordering with partial supervision and feature selection”. In: Knowledge and
information systems 23.2 (2010), pp. 243–265.

[131] W. T. Jr McCormick, S. B. Deutsch, J. J. Martin, and P. J. Schweitzer. “Identification
of Data Structures and Relationships by Matrix Reordering Techniques”. In: ERIC
(1969).

[132] R. Mecca and J.-D. Durou. “Unambiguous photometric stereo using two images”.
In: International Conference on Image Analysis and Processing. Springer. 2011,
pp. 286–295.

[133] R. Mecca and M. Falcone. “Uniqueness and approximation of a photometric shape-
from-shading model”. In: SIAM J. Imaging Sci. 6 (2013), pp. 616–659.

[134] J. Meidanis and E. G. Munuera. “A simple linear time algorithm for binary phy-
logeny”. In: Proc. of the XV International Conference of the Chilean Computing
Society. 1995, pp. 275–283.

[135] J. Meidanis, O. Porto, and G. P. Telles. “On the consecutive ones property”. In:
Discrete Applied Mathematics 88.1-3 (1998), pp. 325–354.

[136] B. G. Mirkin and S. N. Rodin. Graphs and Genes. Vol. 11. Biomathematics. Springer-
Verlag, 1984.

[137] L. Mirsky. “Symmetric gauge functions and unitarily invariant norms”. In: The
quarterly journal of mathematics 11.1 (1960), pp. 50–59.

[138] D. Miyazaki and K. Ikeuchi. “Photometric stereo under unknown light sources using
robust SVD with missing data”. In: 2010 IEEE International Conference on Image
Processing. IEEE. 2010, pp. 4057–4060.

[139] B. Mohar, Y. Alavi, G. Chartrand, and O.R. Oellermann. “The Laplacian spectrum
of graphs”. In: Graph theory, combinatorics, and applications 2.871-898 (1991),
p. 12.

[140] Bojan Mohar. “Eigenvalues, diameter, and mean distance in graphs”. In: Graphs
and combinatorics 7.1 (1991), pp. 53–64.

[141] O. Morozova, V. Morozov, B. G. Hoffman, C. D. Helgason, and M. A. Marra. “A
seriation approach for visualization-driven discovery of co-expression patterns in
Serial Analysis of Gene Expression (SAGE) data”. In: PloS one 3.9 (2008), e3205.

[142] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. “A lock-and-key model
for protein–protein interactions”. In: Bioinformatics 22.16 (2006), pp. 2012–2019.

BIBLIOGRAPHY 119

[143] S. K. Nayar, K. Ikeuchi, and T. Kanade. “Surface reflection: physical and geometrical
perspectives”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 7
(1991), pp. 611–634.

[144] M. Newman. Networks. Oxford university press, 2018.

[145] A. Y. Ng, M. I. Jordan, and Y. Weiss. “On spectral clustering: Analysis and an
algorithm”. In: Advances in neural information processing systems. 2002, pp. 849–
856.

[146] M. J. O’Brien and R. L. Lyman. Seriation Stratigraphy and Index Fossils: The
Backbone of Archaeological Dating. Kluwer, 2002.

[147] M. Oswald and G. Reinelt. “The simultaneous consecutive ones problem”. In: Theor.
Comput. Sci. 410.21-23 (2009), pp. 1986–1992.

[148] Pajek datasets- Notre Dame Self-Organized Networks Database. 2004. URL: http:
//vlado.fmf.uni-lj.si/pub/networks/data/ND/NDnets.htm.

[149] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. “Uncovering the overlapping com-
munity structure of complex networks in nature and society”. In: nature 435.7043
(2005), p. 814.

[150] T. Papadhimitri and P. Favaro. “A new perspective on uncalibrated photometric
stereo”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2013, pp. 1474–1481.

[151] C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[152] W. M. F. Petrie. “Sequences in Prehistoric Remains”. In: J. R. Anthropol. Inst. 29
(1899), pp. 295–301.

[153] P. Piana Agostinetti and M. Sommacal. “Il problema della seriazione in archeologia”.
In: Rivista di Scienze Preistoriche LV (2005), pp. 29–69.

[154] A. Pothen, H. D. Simon, and K. P. Liou. “Partitioning sparse matrices with eigenvec-
tors of graphs”. In: SIAM journal on matrix analysis and applications 11.3 (1990),
pp. 430–452.

[155] P. Préa and D. Fortin. “An optimal algorithm to recognize Robinsonian dissimilari-
ties”. In: J. Classif. 31.3 (2014), p. 351.

[156] U. N. Raghavan, R. Albert, and S. Kumara. “Near linear time algorithm to detect
community structures in large-scale networks”. In: Physical review E 76.3 (2007),
p. 036106.

[157] M. Redivo-Zaglia and G. Rodriguez. “smt: a Matlab toolbox for structured matri-
ces”. In: Numer. Algorithms 59.4 (2012). DOI: 10.1007/s11075-011-9527-9, pp. 639–
659.

[158] W. S. Robinson. “A method for chronologically ordering archaeological deposits”.
In: Am. Antiq. 16.4 (1951), pp. 293–301.

[159] M. P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha. “Core-periphery
structure in networks”. In: SIAM Journal on Applied mathematics 74.1 (2014),
pp. 167–190.

http://vlado.fmf.uni-lj.si/pub/networks/data/ND/NDnets.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/ND/NDnets.htm

120 BIBLIOGRAPHY

[160] R. Roth. “On the eigenvectors belonging to the minimum eigenvalue of an essentially
nonnegative symmetric matrix with bipartite graph”. In: Linear Algebra and its
Applications 118 (1989), pp. 1–10.

[161] E. Schmidt. “Zur Theorie der linearen und nichtlinearen Integralgleichungen”. In:
Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten. Springer,
1989, pp. 190–233.

[162] M. Seminaroti. “Combinatorial Algorithms for the Seriation Problem”. PhD thesis.
CentER, Tilburg University, 2016.

[163] M. Seston. “Dissimilarités de Robinson: algorithmes de reconnaissance et d’approximation”.
PhD thesis. Aix Marseille 2, 2008.

[164] J. Shi and J. Malik. “Normalized cuts and image segmentation”. In: Departmental
Papers (CIS) (2000), p. 107.

[165] A. Shuchat. “Matrix and network models in archaeology”. In: Mathematics Maga-
zine 57.1 (1984), pp. 3–14.

[166] M. Sipser. “The history and status of the P versus NP question”. In: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing. ACM. 1992,
pp. 603–618.

[167] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. “A survey of methods
for volumetric scene reconstruction from photographs”. In: Proceedings of the 2001
Eurographics Conference on Volume Graphics. Vienna: Springer, 2001, pp. 81–100.

[168] D. A. Spielman and S. H. Teng. “Spectral partitioning works: Planar graphs and
finite element meshes”. In: Proceedings of 37th Conference on Foundations of
Computer Science. IEEE. 1996, pp. 96–105.

[169] G. W. Stewart. “On the early history of the singular value decomposition”. In: SIAM
review 35.4 (1993), pp. 551–566.

[170] G. Stocchino. “Modelli Matematici e Algoritmi Numerici per la Photometric Stereo”.
Bachelor’s Thesis in Mathematics, University of Cagliari. Available at http:
//bugs.unica.it/~gppe/did/tesi/15stocchino.pdf. 2015.

[171] J. J. Sylvester. “A new proof that a general quadric may be reduced to its canonical
form (that is, a linear function of squares) by means of a real orthogonal substitution”.
In: Messenger of Mathematics 19 (1889), pp. 1–5.

[172] A. Taylor, J. K. Vass, and D. J. Higham. “Discovering bipartite substructure in
directed networks”. In: LMS Journal of Computation and Mathematics 14 (2011),
pp. 72–86.

[173] G. P. Telles and J. Meidanis. “Building PQR trees in almost-linear time.” In: Elec-
tronic Notes in Discrete Mathematics 19 (2005), pp. 33–39.

[174] Y. J. Tien, Y. S. Lee, H. M. Wu, and C. H. Chen. “Methods for simultaneously
identifying coherent local clusters with smooth global patterns in gene expression
profiles”. In: BMC bioinformatics 9.1 (2008), p. 155.

[175] C. Tomasi and T. Kanade. “Shape and motion from image streams under orthography:
a factorization method”. In: International journal of computer vision 9.2 (1992),
pp. 137–154.

http://bugs.unica.it/~gppe/did/tesi/15stocchino.pdf
http://bugs.unica.it/~gppe/did/tesi/15stocchino.pdf

BIBLIOGRAPHY 121

[176] L. N. Trefethen and D. Bau III. Numerical linear algebra. Vol. 50. Siam, 1997.

[177] F. Ulupinar and R. Nevatia. “Inferring shape from contour for curved surfaces”. In:
[1990] Proceedings. 10th International Conference on Pattern Recognition. Vol. 1.
IEEE. 1990, pp. 147–154.

[178] J. Van Leeuwen. Handbook of theoretical computer science. Vol. 1. Elsevier, 1990.

[179] P. Van Mieghem. Graph spectra for complex networks. Cambridge University Press,
2010.

[180] M. Vanzi, C. Mannu, R. Dessì, G. Rodriguez, and G. Tanda. “Photometric stereo for
3D mapping of carvings and relieves: case studies on prehistorical art in Sardinia”.
In: XVII Seminário Internacional de Arte Rupestre de Mação. Vol. Visual Projections
N. 3. Mação, Portugal: Ângulo Repositório Didáctico (ISSN 1645-8214), 2014.

[181] G. Vogiatzis and C. Hernández. “Practical 3d reconstruction based on photometric
stereo”. In: Computer vision. Springer, 2010, pp. 313–345.

[182] H. Weyl. “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraum-
strahlung)”. In: Mathematische Annalen 71.4 (1912), pp. 441–479.

[183] J. Wilcock, J. E. Doran, and F. R. Hodson. “Mathematics and computers in archae-
ology. Edinburgh: University Press, 1975. 392 pp., 99 figs.£ 8.00.” In: Antiquity
51.202 (1977), pp. 158–159.

[184] E. M. Wilkinson. “Archaeological seriation and the travelling salesman problem”.
In: Mathematics in the archaeological and historical sciences (1971), pp. 276–283.

[185] R. J. Woodham. “Photometric method for determining surface orientation from
multiple images”. In: Opt. Eng. 19.1 (1980), pp. 191139–191139.

[186] F. Xu and K. Mueller. “Real-time 3D computed tomographic reconstruction using
commodity graphics hardware”. In: Physics in Medicine & Biology 52.12 (2007),
p. 3405.

[187] B. Yang, W. Cheung, and J. Liu. “Community mining from signed social networks”.
In: IEEE transactions on knowledge and data engineering 19.10 (2007), pp. 1333–
1348.

[188] M. Yannakakis. “Edge-deletion problems”. In: SIAM Journal on Computing 10.2
(1981), pp. 297–309.

[189] A. Yuille and D. Snow. “Shape and albedo from multiple images using integrability”.
In: cvpr. Vol. 97. Citeseer. 1997, p. 158.

[190] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. “Shape-from-shading: a survey”.
In: IEEE transactions on pattern analysis and machine intelligence 21.8 (1999),
pp. 690–706.

	Dedica
	Ringraziamenti
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Mathematical Preliminaries
	1.1 Some factorizations
	1.1.1 Null space, range and rank
	1.1.2 Eigenvalues and eigenvectors
	1.1.3 Singular value decomposition
	1.1.4 Polar decomposition

	1.2 Some classes of matrices
	1.2.1 Reducible and nonnegative matrices
	1.2.2 Housholder transformations and QR factorization
	1.2.3 Toeplitz and circulant matrices

	1.3 Graphs and complex networks
	1.4 A brief overview on permutations
	1.5 Computational complexity
	1.5.1 Complexity classes

	2 The seriation problem
	2.1 Overview on the context and applications of seriation
	2.1.1 The data matrix

	2.2 The seriation problem in terms of graph theory
	2.2.1 The similarity matrix
	2.2.2 Connections between the seriation problem and other combinatorial problems

	2.3 PQ-trees
	2.3.1 Matlab implementation of PQ-trees

	2.4 A spectral algorithm for the seriation problem
	2.4.1 Implementation of spectral seriation
	2.4.2 Numerical experiments

	2.5 Seriation in the presence of imperfect data
	2.5.1 The case of a multiple Fiedler value

	2.6 Conclusions and future work

	3 A spectral method for ``bipartizing'' a network
	3.1 Bipartite graphs and bipartivity measures
	3.2 Spectral approximation of bipartite graphs
	3.2.1 Approximating the spectral structure of a bipartite graph

	3.3 A spectral bipartization method
	3.4 Anti-communities
	3.5 Computed examples
	3.5.1 The NDyeast network
	3.5.2 The geom network

	3.6 Conclusions and future work

	4 Photometric stereo under unknown lighting
	4.1 Photometric Stereo and application to archaeology
	4.2 Notation and classical assumptions
	4.3 Photometric stereo with known lights position
	4.3.1 Hamilton–Jacobi formulation
	4.3.2 Poisson formulation

	4.4 Photometric stereo under unknown lighting
	4.5 Determining the right orientation of the surface
	4.6 Numerical experiments
	4.6.1 Synthetic data set
	4.6.2 Experimental data sets

	4.7 Conclusions and future work

	Conclusions and future work
	Conclusion
	Bibliography

