
Università degli Studi di Cagliari
Dipartimento di Matematica e Informatica
Corso di Laurea Magistrale in Matematica

Fast convolution algorithms for
image deblurring

Candidate:

Marco Ratto

Supervisors:

Prof. Per Christian Hansen

Prof. Giuseppe Rodriguez

A.A. 2022/2023

1

Contents

1 Introduction 6
1.1 Inverse problems . 6
1.2 Tikhonov Regularization . 8

1.2.1 Parameter choice . 10
1.3 Bayesian inverse problems . 11
1.4 Uncertainty Quantification . 12
1.5 Hyperparameters . 13
1.6 Sampling methods . 14

1.6.1 Markov chain Monte Carlo (MCMC) algorithms 14
1.7 Regularization in the Bayesian framework 16

2 Image deblurring 18
2.1 How images become arrays of numbers 18
2.2 Blurred images . 21

2.2.1 The Point Spread Function (PSF) 21
2.3 Noise . 24
2.4 Convolution . 25
2.5 Boundary conditions . 26

2.5.1 Zero boundary conditions 26
2.5.2 Periodic boundary conditions 27
2.5.3 Reflexive boundary conditions 28
2.5.4 Two-dimensional problems 28

3 CUQI project 29
3.1 Examples of research in CUQI 29

3.1.1 Defect Detection in X-Ray CT of Subsea Pipes 30
3.2 CUQIpy . 32

3.2.1 Specifying and solving Bayesian Inverse Problems . . . 33
3.2.2 Basic Example . 33

4 Fast Convolution Algorithms
for Image Deblurring 36
4.1 Test problems . 36
4.2 New Implementation . 40

4.2.1 Zero Boundary Conditions 40
4.2.2 Periodic Boundary Conditions 41

4.3 Numerical experiments . 42
4.3.1 Zero boundary conditions 44
4.3.2 Periodic boundary conditions 44

2

5 Conclusions 48

3

4

Acknowledgements

This thesis represents the culmination of the work that I have carried on
during a summer internship at the Technical University of Denmark (DTU),
in the department of Scientific Computing. I had the privilege of being
part of the CUQI (Computational Uncertainty Quantification for Inverse
problems) project, an experience that really enriched me both personally
and professionally. For this opportunity I have to say thank you to Professor
Per Christian Hansen, who made me feel really welcome from the very first
day and whose advice was always of incredible use, to Dr Nicolai Riis, for
being always ready to help me with every problem that I had, and to Professor
Giuseppe Rodriguez who introduced me to the fascinating world of numerical
analysis and was essential in enabling me to write this thesis.

5

1 Introduction

Before getting into the details of the theoretical and numerical work that
has been developed in the thesis, we explain, in general terms, some of the
ideas that stand behind this entire work and that will be fundamental to
understand what comes next.
We start with an introduction of concepts such as Inverse Problems, Bayesian
inverse problems and Uncertainty Quantification, focusing on what will be
useful in the following chapters.
This chapter is based on the following references: [2], [13], [3], [16] and [6].

1.1 Inverse problems

In science and engineering, we often apply physical principles to develop a
mathematical model of a physical system in order to capture some phenom-
ena of interest.
Physics-based models are useful for acquiring insight and understanding
about a system, explaining observations, guiding future experiments, dis-
covering new scientific questions, and making predictions.
In an abstract way, models are built such that we have

F (x) = y, (1)

where x ∈ Rn is the input of the problem, F is a linear or non linear operator,
and y ∈ Rm is the output. When we solve the direct problem, we know the
value of x, for example, through a physical measurement, and we want to
compute y.
Usually this kind of problem is well-posed, which means that satisfies the
following definition.

Definition 1 A problem is well-posed if the following properties hold:

• the problem has a solution,

• the solution is unique,

• the solution’s behavior depends continuously on input data.

In real life problems, it may happen that we don’t have access to the meas-
ures that we are interested in, in order to define a direct problem as described
earlier, so we are forced to solve what is called the inverse problem, which
means: in the model (1), we know the value of y and we want to reconstruct
x.
An example of this can be found in X-ray computed tomography (CT), where

6

we want to find an image of the cross-section of a part of the body, but clearly
we don’t have direct access to it, so we measure the attenuation of X-rays
sent through the body. With the notation introduced before, x would be the
image of the cross-section of the body, y would be our measurements, and F
is the mathematical model that we have to “invert”.
Inverse problems are often ill-posed, so at least one of the conditions presen-
ted above for being well-posed is violated. Also, it happens frequently that
inverse problems are ill-conditioned, meaning that small errors in the inputs
can result in much larger errors in the answers.
In linear problems (4), we define the condition of the problem as the condition
number of the matrix A.

Definition 2 Let A ∈ Rm×n be a matrix. Let A† be its Moore-Penrose
inverse. Then the condition number of A is:

k(A) = ∥A∥∥A†∥. (2)

This definition stands for every matrix norm, but if we use the 2-norm, it
can be proven the following

Theorem 1 Let A ∈ Rm×n be a matrix with rank(A) = r and singular values
σ1, . . . , σr. Then

k2(A) = ∥A∥2∥A†∥2 =
σ1

σr

. (3)

As the singular values are in descending order, this theorem shows that a
matrix tends to be very ill-conditioned when it has non-zero singular values
that are very small with respect to the largest one.
When we have to deal with a ill-posed and/or ill-conditioned inverse problem
we may adopt different techniques depending on the properties that are not
satisfied.
For example, in a linear inverse problem of the type

Ax = y, (4)

where A is a m× n matrix, x ∈ Rn and y ∈ Rm, it may occur that:

• y is not in the range of A, so the solution does not exists.
In this case we can reformulate the problem in order to find a solution.
Often we solve the alternative problem:

min
x

∥Ax− y∥22 . (5)

7

• The solution is not unique, so we want to change our problem to make
it stricter. A popular choice is to pick, among all the solutions of the
original problem, the one with minimum norm.

• The matrix A is ill-conditioned, so when our data y is perturbed by
a (small) noise, the solution may not be close the one that we would
have if we could have access to the real data, without noise. In this
situation we use a regularization method, which penalizes some spe-
cific feature that we want to avoid. For example, we often want the
solution to be smooth, so our regularization method will penalize high
frequency oscillation, in order to have a balance between data fitting
and smoothness.

To better explain the meaning of the condition number, we now see how the
solution can change when we have to deal with perturbed data.
Think that we are studying two related problems:

Ax = y and Ax̃ = ỹ, (6)

where ỹ is a perturbed version of y, so ∆y = ỹ−y is the perturbation of y.
We are interested in bounding the difference between the two solutions x̃
and x. More precisely, we can set an upper bound for the relative normwise
difference, so our relation is independent on the scaling of A, x and y.
If we compute the least squares solutions xLS = argmin ∥Ax − y∥22 and
x̃LS = argmin ∥Ax− ỹ∥22, we have that:

∥x̃LS − xLS∥2
∥xLS∥2

≤ k2(A)
∥∆y∥2
∥AxLS∥2

, (7)

which means that the perturbation is governed by A’s condition number.

1.2 Tikhonov Regularization

The most important and used regularization method is Tikhonov regulariza-
tion.
In real problems, as we said before, we don’t access to exact data, but the
latter is generally corrupted by some noise, so a linear problem like (4),
becomes:

Ax = yδ, with yδ = y + e, (8)

where y is the unknown error-free vector and e is the unknown error, which
we assume to be bounded by δ, ∥e∥ ≤ δ. We may solve this problem by
computing the least-squares solution

xLS = argmin ∥Ax− y∥22 , (9)

8

but, when the matrix A is ill-conditioned, this is not a meaningful approx-
imation of the exact solution, because by the definition of ill-conditioned
problem, a small error in the data produces a much bigger error in the solu-
tion.
To avoid this, in (9), we introduce a regularization term and the new problem
becomes:

xα = argmin ∥Ax− y∥22 + α∥x∥22 , α > 0. (10)

We have that:

• the first term is the standard least squares term, which measures how
well the solution fits the data;

• the second term is the regularization term, which penalizes the mag-
nitude of x;

• α is the regularization parameter, which controls the trade-off between
fitting the data and keeping the solution vector x small.

The minimization problem (10) is commonly referred to as Tikhonov regu-
larization in standard form.
To quantify the improvement given by introducing a regularization term, we
can measure the condition number of the regularized problem.
It is true that if we want to solve the two related problems (6), and we do it
by Tikhonov regularization, we have that:

∥x̃α − xα∥2
∥xα∥2

≤ kα
∥∆y∥2
∥Axα∥2

, (11)

with
kα =

σ1

α
. (12)

So, comparing (11) with (7), it is clear that the condition number of the
problem has changed from k2(A) = σ1/σr to kα = σ1/α, and this can be a big
improvement when σr is very small, that is what happens in ill-conditioned
matrices.
When we know exactly which is the feature that we want to penalize in the
solution, it is well known that it is often possible to improve the quality of
the approximation determined by Tikhonov regularization by replacing the
problem (10) by:

xα = argmin ∥Ax− y∥22 + α∥Lx∥22 , α > 0, (13)

where L is a suitable regularization operator. For example, when we want a
smooth solution, we have to penalize high-frequency oscillation, so L can be

9

the Total Variation operator, which works as a discretization of a derivative
operator. This means that if x is smooth, ∥Lx∥2 is going to be small, and if
x is rapidly oscillating, ∥Lx∥2 is going to be large, so this kind of solution is
unlikely to be the optimal one. This minimization problem is referred to as
Tikhonov regularization in general form.

1.2.1 Parameter choice

The greatest problem the we face when using Tikhonov regularization (both
in standard and general form) is the choice of the regularization parameter
α.
The intuition is that if we set α too small, the regularization term can grow
without affecting too much the minimization problem, so the solution xα (13)
is going to be very close to xLS (9), which means that we are not applying a
strong regularization; on the other hand, if α is too big we are going to find
a solution that is very smooth, but may not fit the data at all.
There are many criterions to help us finding the best compromise, we describe
briefly some of them.

1. Generalized Cross Validation (GCV).
Using the cross-validation principle we take as validation set the ith

row of the system and as training set all the remaining rows. Then
we compute the regularized solution of the problem on the training set
and we take the α value that reconstruct better the ith row, aT

i x̃ = bi.
After doing this for each row we can take αGCV as the average of the
previous α values.

2. L-curve criterion.
The L-curve is a plot of the norm of the data fitting term versus the
regularization term for various values of α, usually made on logarithmic
scale. When we observe the shape of the curve, the L-curve often exhib-
its an elbow or corner. If this happens, we choose α at this point, where
we can say, heuristically, that there is a good compromise between the
two terms.

3. Discrepancy Principle (DP).
We choose α such that:

∥Axα − yδ∥22 = τ 2δ2 , (14)

for a chosen τ > 1. This value of α can be proven to exist and to be
unique. The idea behind this method is to find α such that the residual
∥Axα−yδ∥22 as the magnitude of the noise, in order to avoid overfitting.

10

The parameter τ > 1 is necessary in order to prove the existence and
the uniqueness of the solution.

1.3 Bayesian inverse problems

A different approach for solving the problem (1), in which F is an operator
that represent the forward model, y is the vector of the noisy data and x is
the solution that we want to find, is to consider both x and y as random
variables. This is what we call Bayesian setting.
In this scenario the statistical model for our problem is then characterized
by the joint probability distribution p(x,y).
A useful representation of the joint distribution p(x,y) is to list what is
known or assumed about the parameters and data defining what in statistics
is usually called Bayesian generative model. Said so, our problem is defined
in terms of two distribution:

x ∼ p(x),

y ∼ p(y|x).
(15)

We use the terms prior and data distribution for the distributions associated
with the solution parameters and the data, respectively, in (15).
In Bayesian inverse problems, the goal is not to compute a fixed value for
the solution, but to infer the solution given a particular realization of the
data. The posterior distribution p(x|y) characterizes the distribution of the
solution x to the inverse problem, given the data y. One of the keys of this
approach to inverse problems is Bayes’ Theorem for continuous probability
densities.

Theorem 2 (Bayes’ Theorem) Given a probability distribution P , two
events A and B, with P (B) ̸= 0, we have that

P (A|B) =
P (B|A) · P (A)

P (B)
. (16)

In our case, it allows us to express the posterior as

p(x|y) = p(y|x) · p(x)
p(y)

. (17)

Given fixed observed data yobs, p(y|x) considered as a function of x is known
as the likelihood function or just likelihood and it is denoted by L(x|y = yobs),
which is not a probability density but a function. Furthermore, we can notice
that p(y) is a normalization constant that is usually omitted, so we write the
posterior as proportional to the product of the likelihood and prior:

p(x|y = yobs) ∝ L(x|y = yobs)p(x). (18)

11

1.4 Uncertainty Quantification

This Bayesian setting has been introduced because when we compute the
solution of an inverse problem, that usually is ill-posed and/or ill-conditioned,
we don’t know how much we can rely on our solution. Of course the solution
can not be an exact value that we just consider to be right, because we don’t
have access to the exact data, but our solution is computed starting from
data that are corrupted by some noise. As it is impossible not to have any
uncertainty, we develop tools and techniques to measure it. We need to char-
acterize and evaluate this uncertainty, such that we can make informed and
safe decisions based on the computed results. This is the basic idea behind
the field of uncertainty quantification (UQ).
This approach builds upon theory and methods from Bayesian inference that
provide a powerful and flexible framework for measuring and quantifying un-
certainty.
The Bayesian formulation gives two key advantages. First, it allows us to
incorporate prior (i.e., before data is collected) information and/or beliefs
about the x in our solution to the inverse problem. Second, it yields a prob-
abilistic solution to inverse problems that quantifies uncertainty about the
input/parameter, as the solution is not represented by a fixed value, but by
a random variable.
In this Bayesian view, the probability assigned to each region of the input/-
parameter space reflects our degree of belief that the it falls in that region.
This belief is based on some combination of subjective belief and objective
information. For general understanding, the spread of the probability dens-
ity over the input/parameter space reflects our uncertainty about its value,
while the more concentrated they are, the more certainty we have.
Our uncertainty about the solution is, clearly, different before and after we
conduct an experiment, meaning the moment when we collect data, and com-
pare this data with our model. Consequently, the solution has a prior density
before the data are considered, as said before, based on our general know-
ledge of the problem that we are solving, then an updated, posterior density
after we are enlightened by the data.

In the end, to tackle an inverse problem using uncertainty quantification,
we need two main ingredients.

• The prior distribution of the solution, expressing our beliefs about it
before the data are collected/observed. Constructing a prior is context-
dependent and involves a degree of subjectivity, so it stands to us de-
ciding what prior distribution fits well for each specific problem. Many
things may be taken into account as we have that, for example, prior

12

may be roughly categorized as diffuse, weakly informative, or inform-
ative, based on the amount of uncertainty it admits about the possible
values where the solution is going to fit. An informative prior, e.g. a
Gaussian distribution with a small variance, expresses a high degree of
certainty about the solution. On the other hand, a diffuse prior, e.g. a
uniform distribution, spreads its density widely over input/parameter
space to express a very high degree of uncertainty. An informative prior
influences the posterior more than a diffuse prior, which lets more free-
dom to the solution to follow what the data indicates. Generally, as
we gather more data, the influence of the prior on the posterior tends
to weaken as the data overrides the prior.

• The likelihood function of the solution, giving the probability dens-
ity of the data y conditioned on each value of the x. The likelihood
function is constructed from the data and from our model of the data-
generating process. The likelihood quantifies the support that the data
lend to each value of the unknown solution.

1.5 Hyperparameters

It is often the case that the distributions depend on one or more unknown
parameters.
In the Bayesian paradigm, we can assign probability densities to them and
include them in the Bayesian Problem.
To give an example, in the linear inverse problem

Ax = y, (19)

the prior and the data distribution can both depend on different parameters,
let’s call them d and s. In this case, the general Bayesian problem for the
joint probability distribution p(x,y, s, d) would be

d ∼ p(d), (20)

s ∼ p(s), (21)

x ∼ p(x|d), (22)

y ∼ p(y|x, s). (23)

The posterior associated with this Bayesian Problem becomes

p(x, d, s|y = yobs) ∝ L(x, s|y = yobs)p(x|d)p(d)p(s), (24)

meaning that the task is now to infer about x as well as d and s. This is
usually referred to as hierarchical modeling and we refer to such additional
model parameters as hyperparameters.

13

1.6 Sampling methods

In this Bayesian framework, the solution to the inverse problem, which is the
posterior distribution of the unknown input of the forward model, follows
from the prior density and likelihood function of the input via Bayes’ The-
orem. The posterior density of the unknown solution gives the probability
that the input falls in any given region of input space, conditioned on the
data. The posterior updates the prior in light of the data, offers a comprom-
ise between the prior and the likelihood, and constitutes the raw solution to
the inverse problem that quantifies uncertainty through its spread. In prac-
tice, except for a few cases where closed-form expressions are available, the
complicated form of the posterior distribution makes it impossible to com-
pute samples analytically from the distribution, so we have to make use of
some sort of approximation to get samples that are independent and behave
like they were actually taken from our posterior distribution. To do so, some
sampling method has to be employed.

1.6.1 Markov chain Monte Carlo (MCMC) algorithms

The computation of samples is often based on Markov chain Monte Carlo
(MCMC) algorithms. These methods have revolutionized the field of stat-
istics and data analysis by providing powerful tools to sample from com-
plicated probability distributions. Originally developed in the mid-20th cen-
tury, MCMC techniques have found applications in various domains, from
Bayesian statistics to machine learning and computational biology. At the
heart of MCMC methods lies the concept of Markov chains.

Definition 3 A Markov chain is a mathematical model that describes a se-
quence of events where the probability of each event depends only on the state
attained in the previous event.

The basic idea of MCMC algorithms is to build such Markov chains, which
are easy to sample from, and whose stationary distribution is our target
distribution, such that when following them, in the limit, we obtain samples
from the target distribution.
There many MCMC algorithms that perform very well in different situations,
we will now show briefly some of the most popular.

1. Metropolis–Hastings (MH) sampling.
This classical method uses a two-stage procedure with proposal step
and acceptance/rejection steps. The first step computes a proposal x′

with the density q(x|x′) which is the conditional probability of x given

14

the proposed state x′. The second step computes the acceptance ratio

α(x,x′) = min

(
1,

p(x′)q(x′|x)
p(x)q(x|x′)

)
(25)

which expresses the conditional probability of accepting x′.
At state k of the MH algorithm, we want to determine the next state
x(k+1), and this is chosen by first sampling a candidate point x′ from
the proposal density q(· |x(k)). Then x′ is accepted with probability
(25) and x(k+1) = x′, otherwise it is rejected and x(k+1) = x(k).

2. Preconditioned Crank–Nicolson (pCN) sampling.
This method assumes that the prior has a Gaussian distribution. It
uses the Crank–Nicolson finite-difference scheme to solve an underlying
stochastic differential equation (SDE) that is invariant with respect
to the posterior. When we choose the prior covariance matrix S as
preconditioner, we obtain the following mechanism for producing the
proposed state x′ in the MH method:

x′ =
√
1− s2 x+ sC, where C ∼ N (0,S), s ∈ (0, 1]. (26)

Given a current state x(k), it follows from (26) that the associated
proposal distribution is Gaussian with mean vector

√
1− s2 x(k) and

covariance matrix s2S. We remark that while pCN is designed for a
Gaussian prior, it can be extended to more general priors by applying
a transformation to a standard Gaussian distribution.

3. Gibbs sampling.
This method is useful when the posterior is expressed as a joint dis-
tribution via conditional densities, and in connection with hierarchical
models. Specifically, Gibbs sampling is useful when computing samples
from the joint distribution is impractical, but drawing samples from
the conditional distributions of given parameter components is feas-
ible. To illustrate Gibbs sampling, consider a generic joint distribution
p(x,y, z). The next state in the chain for x,y, z is generated from the
previous state as follows:

x(k+1) ∼ p(x|y(k), z(k))

y(k+1) ∼ p(y|x(k+1), z(k))

z(k+1) ∼ p(z|x(k+1),y(k+1))

(27)

The special case where a single random vector is sampled involves treat-
ment of the elements component-by-component, and this scheme is
known as the component-wise Metropolis–Hastings (CWMH) algorithm.

15

1.7 Regularization in the Bayesian framework

When we solve an inverse problem using the Bayesian framework it looks
like we are just tackling the problem without any regularization. This could
appear as a bad way of working, after all the things we have said about ill-
posed and ill-conditioned problem, but we will show in this section that this
is not the case.
Using Bayes’ law (17), we have seen that we can compute the maximum a
posteriori (MAP) estimator by maximizing the posterior density function,
which is proportional to the product of the likelihood and the prior (18).
Focusing on the specific problem:

y = Ax+ e , e ∼ N (0, λ−1Im), (28)

with A ∈ Rm×n, we model the unknown random vector x with a prior density
function p(x|δ), where δ is a positive scaling parameter.
For simplicity, we will show an example assuming normality, so we consider
the prior and the data distribution to be normal:

x ∼ N (0, δ−1In), y ∼ N (Ax, λ−1Im). (29)

This means that the prior distribution of x is

p(x|δ) =
(

δ

2π

)n/2

exp

(
−δ

2
∥x∥22

)
, (30)

and the data distribution is

p(y|x, λ) =
(

λ

2π

)m/2

exp

(
−λ

2
∥Ax− y∥22

)
. (31)

As we said, with Bayes’ law we compute the posterior:

p(x|y, λ, δ) ∝ p(y|x, λ)p(x|δ), (32)

which becomes

p(x|y, λ, δ) ∝ exp

(
−
(
λ

2
∥Ax− y∥22 +

δ

2
∥x∥22

))
. (33)

Now that we have the posterior, that defines a probability density for x,
conditioned of y and on the parameters λ and δ we can compute different
estimators for the unknown vector x, such as the mean and the standard
deviation, in order to determine, for example, confidence intervals.

16

To find the maximum a posteriori estimator we have to maximize p(x|y, λ, δ),
which is equivalent to minimize − ln(p(x|y, λ, δ)), i.e.,

xMAP = argmin

{
λ

2
∥Ax− b∥22 +

δ

2
∥x∥22

}
, (34)

that is exactly the Tykhonov regularized solution, defined in (10), with the
regularization parameter α = δ/λ.
This shows how the regularization in Bayesian inverse problems is included
in the choice of the prior distribution. It is still true also for other situ-
ation, where we do not assume normality, so we do not find the Tykhonov
regularization, but we find some other forms, specific for each assumption.

17

2 Image deblurring

The problem of image deblurring is the process of removing or reducing
blurriness from an image to make it clearer and sharper. It is clear that
whenever we take a picture, or we have to deal with any image, we want it
to be as close to reality as possible, but every picture is more or less blurry
so image deblurring is fundamental in making pictures nice and useful.
A digital image is composed of picture elements, called pixels. Each pixel is
assigned an intensity, meant to characterize the color of a small rectangular
portion of the scene that we want to capture. The number of pixels can be
very different from one image to another, typically small images have around
2562 = 65536 pixels and high resolution images can have over 10 million
pixels.
Some blurring always arise in the recording of a digital image and it is the
consequence of the scene information ”spilling over” to neighboring pixels.
The causes for this to happen can be many, and often more than one at the
same time. For example the optical system in a camera lens may be out
of focus, so that the incoming light is smeared out, or the camera may be
moved when we take the shot, so the light intensity of a portion is spread
toward the opposite direction of the movement of the camera.
In image deblurring, we seek to recover an image that is as close as possible
to the original one by using a mathematical model of the blurring process.
The key issue is that some of the information that we lose with the blurred
image is indeed still present, but it can only be recovered if we know the
details of the blurring process. So, in the end, there is no hope that we can
recover the exact original image, because there are some errors in the recorded
image that are unavoidable, such as fluctuations in the recording process and
approximation errors when representing the image with a limited number of
digits, and that cause some error in the restored image. The main challenge
in image deblurring is to devise efficient and reliable algorithms for recovering
as much information as possible from the given data. In this chapter we will
see an introduction to how this is done, following as a reference the book [7].

2.1 How images become arrays of numbers

In order to process images using mathematical techniques is crucial to have
a way of representing images as arrays of numbers.
The easiest case is represented by grayscale images, where the image can be
easily represented by a matrix, where each entry represent the “amount of
light” present in the corresponding pixel. For example, in Figure 1 we can see
a simple image with 5×6 pixels, where, for each pixel, the value 0 represents

18

Figure 1: 5× 6 grayscale image (stack overflow)

white, the value 7 represents black and all the numbers in between represent
the shades of gray. It is clear that having only 8 possibilities for the shades of
gray does not allow to be very precise in representing more complex images,
in fact, a more common choice is that pixels have value between 0 and 255,
where 0 represents black and 255 represents white.
Color images can be represented using various formats, the most popular
one is the RGB (Red, Green and Blue). The RGB color model is an additive
color model in which the red, green and blue primary colors of light are
added together in various ways to reproduce a broad array of colors. In
the RGB format images are stored as three components, which represents
their intensity on the red, green and blue scales, so an image is stored as a 3-
dimensional array, where the 3 dimensions represents, in order, the number of
rows of pixels, the number of columns of pixel and the number of components
of colors (3, Red, Green and Blue). In practice, for each image we have to
store 3 matrices. For example, in a scale where the three components are, as
before, in [0, 255], we have that (255, 0, 0) represents red, (0, 255, 0) represents
green and (0, 0, 255) represents blue. In order to have all the other colors we
have to mix the three ”ingredients” and the sum of the colors intensities will
give the wanted color.
We see a simple example in Figure 2, which is the stored in the RGB color

19

https://stackoverflow.com/questions/16354864/how-are-non-integer-images-represented

Figure 2: 6× 6 RGB image

model as three matrices:

R =

177 195 181 30 192 140
81 203 193 127 65 35
243 47 70 245 129 38
8 125 174 87 178 65
112 114 167 149 228 215
97 165 41 57 245 65

 , (35)

G =

176 39 27 21 46 140
191 211 246 102 67 37
115 137 1 66 37 218
21 255 198 204 34 159
58 20 209 110 222 89
233 113 222 233 148 131

 , (36)

B =

140 94 124 209 89 53
75 160 111 203 240 77
190 199 114 164 224 120
48 20 78 96 140 59
175 237 130 207 159 216
46 198 130 136 150 49

 . (37)

20

2.2 Blurred images

In this section we will focus on how we can build a mathematical model that
explains the blurring in an image. In particular, we will see that most of
the blurring caused by some mechanical or physical process can be described
by a linear model. This will allow us to set up a system of linear equations
whose solution, at least in principle, is the unblurred image.
For simplicity, we will focus on grayscale images, which we recall to be stored
in computers as arrays, whose dimensions, m × n are the number of pixels,
and each entry of the array represents the light intensity of the latter.
An image of size m× n can be rearranged into a column vector by stacking
its columns one after the other, to form a vector of shape N = mn. This will
be very useful, as we want to build a linear model and we need the x and
the y to be vectors in order to apply what we have seen so far. Our notation
will be the matrix one (i.e., X) for images in their original shape, and the
vector one (i.e., x) for the rearranged vector form.
In our model we can assume the existence of an exact image, which is the
image we would record if the blurring and noise were not present. We also
assume that this ideal image, the one the would like to reconstruct, has the
same size of the recorded one, that will be m× n. We will refer to the exact
image either with X, for its original form, or x for its vector form, while the
blurred image that we have recorded will be referred to with Y or y.
In the linear model there exists a large matrix A of dimensions N ×N (with
N = mn), such that x and y are related by the equation

Ax = y. (38)

The matrix A represents the blurring.
Our next goal is to understand, in practice, how to construct this matrix.

2.2.1 The Point Spread Function (PSF)

Imagine the simple case where the exact image is all black, except for a single
bright pixel. If we take a picture of this image, the blurring operation will
cause the single bright pixel to spread over its neighboring pixels, as we can
see in Figures 3 and 4. The single bright pixel is called point source and the
function that produces this blurring is called point spread function.

Mathematically, the point source is the vector ei, which means all zeros
except the ith pixel which is 1. From this we can reconstruct the matrix A
by computing

Aei = ith column of A, (39)

21

Figure 3: Point source

Figure 4: Blurred point source

22

and repeating the process for each i = 1, . . . , N. In the following sections we
will show how this process is affected by the fact that we can only see a finite
region of a scene that extends forever in all directions, so in order to fully
determine A, we will need to set what are called boundary conditions.
One important aspect of blurring is that it is usually a local phenomenon,
which means that the influence of the PSF is confined to a small area around
the center of the PSF (the pixel location of the point source). Also, often
we can assume that the PSF is the same regardless of the location of the
point source. This happens, for example when the blurring is caused by the
motion of the camera, or by the lens out of focus. In this case we say that
the blurring is spatially invariant.
As a consequence of the local nature of the blurring and its linearity, to
save storage we can often represent the PSF as an array P of much smaller
dimension than the blurred image.
In some cases, knowledge of the physical process that causes the blur provides
an explicit formulation of the PSF. When this happens we can give an exact
expression of the element of the PSF array P .
For example, when the blur is caused by an out-of-focus lens, it generates a
circle of confusion, an optical spot caused by a cone of light rays from a
lens not coming to a perfect focus when imaging a point source (Figure 5).
This happens because a lens can precisely focus objects at only one distance;

Figure 5: Diagram showing circles of confusion for point source too close, in
focus, and too far (Wikipedia).

objects at other distances are defocused. Defocused object points are imaged
as blur spots rather than points; the greater the distance an object is from the

23

https://en.wikipedia.org/wiki/Circle_of_confusion

plane of focus, the greater the size of the blur spot. The PSF that describes
a circle of confusion has elements pij given by:

pij =

{
1/(πr2) if (i− k)2 + (j − l)2 ≤ r2 ,
0 elsewhere.

(40)

where (k, l) is the center of P , and r is the radius of the blur.

2.3 Noise

In addition to blurring, observed images are usually contaminated with noise.
Noise can arise from different sources, but, in this section, we will focus on the
ones the appear when recording grayscale images by means of a charge-couple
device (CCD), which is an array of tiny detectors, arranged in a rectangular
grid, able to record the amount of light that hits each detector.
In this case, noise comes essentially from three sources, and it can take the
following three forms:

1. Poisson noise.
When the noise comes from background photons, from both natural
and artificial sources, it corrupts each pixel that we measure. This
kind of noise is typically modeled by a Poisson distribution with a
fixed parameter.

2. Gaussian white noise.
The CCD electronics and the analog-to-digital conversion of measured
voltage result in readout noise. This is usually assumed to consist of
independent and identically distributed random values. A noise with
this properties is called white noise. Often a good model for this kind
of noise is the normal distribution with mean 0 and fixed standard
deviation. Such random error are called Gaussian white noise.

3. Quantization error.
The analog-to-digital conversion also results in quantization error, due
to the fact that we have to represent signals by a finite (usually small)
number of bits. Quantization error can be approximated by uniformly
distributed white noise, whose standard deviation is inversely propor-
tional to the number of bits used.

These different noises are additive, so, in our notation, we can write:

Y = Yexact + E, (41)

where Yexact is the blurred image without noise and E contains one or more
of the described noises.

24

2.4 Convolution

The matrix-vector product Ax, where A contains the PSF and x is the vector
form of the image X, can be seen and computed as a convolution between
2-dimensional signals. To understand this, we give an introduction to what
convolution is.

Definition 4 Given f, g : R2 → R2, the convolution between f and g is

(f ∗ g)(s, t) =
∫
R2

f(u, v)g(s− u, t− v)du dv . (42)

In our applications we have to deal with arrays instead of continuous func-
tions, so we discretize the concept of convolution.

Definition 5 Given two 2-dimensional arrays F and G (potentially of in-
finite length), their discrete convolution is

Hm,n =
∞∑

i=−∞

∞∑
j=−∞

Fi,jGm−i,n−j, m, n ∈ Z. (43)

To better understand how we can apply convolution to images, let’s start
with the 1-dimensional case.
Imagine that we have an exact signal x ∈ R5, and a PSF p ∈ R5 that blurs
it in a way such that each element of the blurred signal depends on the
corresponding element in the exact one, but also on the previous and on the
following ones. So we have:

x =

x1

x2

x3

x4

x5

 , p =

0
p−1

p0
p1
0

 . (44)

The blurred signal b is defined by their convolution:

bj =
∑
u

pj−uxu . (45)

This is straightforward for the entries b2, b3 and b4:

b2 = p2−1x1 + p2−2x2 + p2−3x3 = p1x1 + p0x2 + p−1x3, (46)

b3 = p3−2x2 + p3−3x3 + p3−4x4 = p1x2 + p0x3 + p−1x4, (47)

b4 = p4−3x3 + p4−4x4 + p4−5x5 = p1x3 + p0x4 + p−1x5. (48)

25

For b1 and b5 we have to add two terms, x0 and x6. Their expression is

b1 = p1−0x0 + p1−1x1 + p1−2x2 = p1x0 + p0x1 + p−1x2, (49)

b5 = p5−4x4 + p5−5x5 + p5−6x6 = p1x4 + p0x5 + p−1x6. (50)

If we write this again in the classic linear algebra notation, the problem is
represented by the system of linear equations:

p1 p0 p−1 0 0 0 0
0 p1 p0 p−1 0 0 0
0 0 p1 p0 p−1 0 0
0 0 0 p1 p0 p−1 0
0 0 0 0 p1 p0 p−1

x0

x1

x2

x3

x4

x5

x6

=

b1
b2
b3
b4
b5

 . (51)

This is an undetermined system, because it has 7 unknowns with only 5
equations.
In the next section we will see how to deal with this kind of problem.

2.5 Boundary conditions

We have seen that when computing convolution the indices can go outside
of the length of the arrays, generating more unknowns.
This problem can be avoided making assumptions on those values. These
assumptions are called boundary conditions (BC) and can be made in
different ways. We will see that different boundary conditions can have com-
putational advantages or disadvantages, but also that depending on the prob-
lem that we are facing can produce more or less accurate results. We discuss
the most popular boundary conditions choices.

2.5.1 Zero boundary conditions

The first boundary condition that we describe is probably the easiest and
the most intuitive one. It consist in considering as zeros all the entries of the
signals or the images that are unknowns as zeros.
In the example (51), we have x0 = x6 = 0. In this case the system becomes

p0 p−1 0 0 0
p1 p0 p−1 0 0
0 p1 p0 p−1 0
0 0 p1 p0 p−1

0 0 0 p1 p0

x1

x2

x3

x4

x5

 =

b1
b2
b3
b4
b5

 . (52)

26

Now the linear system has 5 unknowns and 5 equations, and the coefficients
matrix has the structure of a Toeplitz matrix, which means that its entries
are constant on each diagonal. For this structure there exist very specialized
algorithms [4].
Generally speaking, for image deblurring, this choice means assuming that
everything that stands outside of the scene that we caught with the camera
is black. This can be quite a good approximation in some cases, for example
for astronomic pictures, that we usually have a black background, but can
be very far from reality in lots of situations, where the edges of the picture
are far from being black, and so it is true for what is just outside of the shot.

2.5.2 Periodic boundary conditions

We can also assume that the signal is periodic, which means that it repeats
its behaviour multiple times.
In our example it would mean that x0 = x5 and x6 = x1, with the linear
system becoming

p0 p−1 0 0 p1
p1 p0 p−1 0 0
0 p1 p0 p−1 0
0 0 p1 p0 p−1

p−1 0 0 p1 p0

x1

x2

x3

x4

x5

 =

b1
b2
b3
b4
b5

 . (53)

In this case the coefficients matrix is a circulant matrix, which means that
all the rows are composed by the same elements of the previous one, shifted
to the right by one position (wrapping around “cyclically” at the edges).
This kind of matrices have very interesting properties, such as the fact that
their eigenvectors are Fourier base vectors:

v(s) =
[
e−2πis/n e−2πi2s/n . . . e−2πi(n−1)s/n

]
, (54)

and their eigenvalues are the Fourier coefficients of the first column of the cir-
culant matrix. This means that, given a circulant matrix C, we can compute
its spectral factorization

C = F ∗ΛF, (55)

where Λ is a diagonal matrix, containing the eigenvalues of C, and F is the
eigenvectors matrix, using the Discrete Fourier Transform (DFT).
This can be used to reduce the computational cost of the matrix-vector
product Cw.
Computing

Cw = F ∗ΛFw, (56)

we have that

27

• Fw is computed using the fast Fourier trasform (FFT) algorithm, and
it costs O(n log(n)) flops.

• Λ(Fw) costs O(n) flops, because Λ is diagonal.

• F ∗(Λ(Fw)) is computed using the inverse fast Fourier trasform (IFFT)
algorithm, and it costs O(n log(n)) flops.

So we can perform the matrix-vector product with just O(n log(n)) flops,
instead of the O(n2) required for a generic matrix.

2.5.3 Reflexive boundary conditions

Another option is to assume that what is outside of the signal the we want
to reconstruct is a mirrored version of the signal itself. In our example, this
means that x0 = x1 and x6 = x5. So the linear system is now:

p0 + p1 p−1 0 0 0
p1 p0 p−1 0 0
0 p1 p0 p−1 0
0 0 p1 p0 p−1

0 0 0 p1 p0 + p−1

x1

x2

x3

x4

x5

 =

b1
b2
b3
b4
b5

 . (57)

With periodic boundary conditions the coefficients matrix has the structure
of a Toeplitz (constant on the diagonals) plus a Hankel matrix (constant
on the anti-diagonals). There exists fast algorithms for solving such linear
systems.

2.5.4 Two-dimensional problems

What we said before for 1-D signal can be extended to image deblurring,
which means that we have to deal with 2-dimensional arrays.
While computing convolution we still have to face the problem of choosing
what to assume for the behaviour of the image outside of the edges. Fol-
lowing the same ideas the we described in the previous section, we have to
set boundary conditions. Now, if we set zero boundary conditions, we
will find a coefficients matrix that is Block Toeplitz with Toeplitz Blocks
(BTTB), which means that the blocks forms a Toeplitz structure, and each
block is a Toeplitz matrix itself. With periodic boundary conditions we
have a Block Circulant with Circulant Blocks (BCCB) matrix and with re-
flexive boundary conditions the coefficients matrix is the sum of BTTB,
BTHB (Block Toeplitz with Hankel Blocks), BHTB (Block Hankel with
Toeplitz Blocks), and BHHB (Block Hankel with Hankel Blocks) matrices.

28

3 CUQI project

CUQI is a research project (6) dedicated to creating a mathematical, stat-
istical, and computational framework for the implementation of uncertainty
quantification (UQ) in solving inverse problems.

Figure 6: CUQI project logo

As we said previously, inverse problems determine hidden information from
measurements in, e.g., deconvolution, image deblurring, computed tomo-
graphy, source reconstruction, and fault inspection, so the variety of fields
that can make use of inverse problems is very broad.
The whole project has been carried on with the idea of creating a strong
theoretical and computational base to quantify how the imprecision in the
measurements, in the model, and any other possible error influence the solu-
tions to inverse problems. To do this it is necessary to work on the math-
ematical and statistical foundation of uncertainty quantification, but also to
create a user-friendly software package, designed to enable both experts and
non-experts to apply UQ to their inverse problems. In fact, it has been de-
veloped CUQIpy, a software package for UQ modeling and computations in
order to allow end-users of inverse problems, in science and engineering, to
quantify the accuracy in their solutions, and in this way lower the risks and
take more correct decisions.
Based on the work of all the people involved in the project, the aim is that
UQ will become an integral component of solving inverse problems, both in
science and engineering.

3.1 Examples of research in CUQI

Uncertainty quantification (UQ) serves as a valuable tool for evaluating the
reliability of a reconstruction, which is the solution to an inverse problem. It
provides insights into the degree of confidence we can place in the reconstruc-
tion and its finer details. UQ finds practical utility across a wide spectrum

29

of disciplines, including science, engineering, medical imaging, and various
other domains where the goal is to reveal hidden information through solving
inverse problems. For instance, UQ can be applied in industrial inspection to
detect anomalies or defects in objects, in medical imaging to identify malig-
nant tissue, and in acoustics to locate the origins of unwanted sound sources.
In the following section we will give a practical example of the use of the
tools that we have been describing.

3.1.1 Defect Detection in X-Ray CT of Subsea Pipes

X-ray computed tomography (CT) is used to monitor the condition of subsea
oil or gas pipes in operation, aiming to identify potential flaws that could lead
to leaks. This example [5] is based on data obtained in the test facilities at
FORCE Technology. The computational aspects of this process are executed
using the CUQIpy software.
It is clear that we are facing an inverse problem, as the measurements that
we would like to have is the condition of the subsea pipes, but, for obvious
reasons, we cannot have it directly without breaking them. To still get
information about the composition of the pipes, we use the fact that different
materials cause different attenuation in the X-ray the we send through them.
For this reason, we formulate a Bayesian inverse problem with built-in defect
detection. The goal is not only to detect defects, but also to quantify their
uncertainties.
We model this problem as

y = A(x+ d) + e, (58)

where y is the measured X-ray absorption, e is data noise, and A denotes
the linear forward model representing the physics and geometry of the meas-
urements.
We use a representation x + d of the unknown image to be reconstructed,
where:

• x contains the pipe structure,

• d contains potential defects.

In the Bayesian framework, we have to compute the joint posterior distri-
bution representing the solution to the CT problem, that is given by the
expression

p(x,d|y) ∝ p(y|x,d)p(x)p(d), (59)

where p(y|x,d) is the likelihood that represents the data misfit, while p(x)
and p(d) are the prior distributions representing the prior information that

30

we have about the unknown images.
We assume priors that encourage the structures we are looking for. For the
pipe structure x, we use a Gaussian prior. For the defects, we expect them
to be small and not so many, and therefore we set a prior that promotes both
correlation and sparsity in the defect image d, a gamma Markov random field
(as described in the paper [5] by Christensen, Riis, Pereyra and Jørgensen).
Figure 7 reports the means of the x-samples (left), the d-samples (middle),
and their sum with annotation on the detected defects(right). These out-
comes affirm the effectiveness of our approach in effectively distinguishing
defects from the broader pipe structure.
In Figure 8, we narrow our focus to the reconstruction of defects labeled in

Figure 7: left: x samples mean, middle: d samples mean, right: their sum

the figure above, allowing for a more in-depth examination of these anom-
alies. The figure shows the mean of the posterior samples, accompanied by
related UQ represented by the standard deviation of the samples.
Engineers can use these results to identify critical defects in the subsea pipes

Figure 8: Mean and standard deviation of the samples in the defects

and eventually plan any maintenance intervention, knowing precisely where
the damage are and how sure we are about the presence of them.

31

3.2 CUQIpy

The field of computational UQ for inverse problems is experiencing a rapid
expansion, driven by the evolution of both new theories and methodologies.
This growth is primarily focused on providing for efficient computational ap-
proaches for conducting UQ on large-scale inverse problems. While several
software packages have emerged to address forward and inverse UQ, examples
being UQLab [10], SIPPI [8] and MUQ [11], these packages frequently target
specific applications, limiting their universality. Notably, there seems to be
a shortage of UQ software packages capable of handling large-scale imaging
problems, such as X-ray computed tomography (CT) and image deblurring..
Hence, CUQIpy (9) has been developed to address this gap. CUQIpy is
an open-source Python [14] package designed for computational uncertainty
quantification (UQ), with a specific focus on a variety of inverse problems
related to imaging tasks. CUQIpy incorporates a range of efficient compu-
tational techniques. Users can define a Bayesian inverse problem (or choose
from the built-in options) and subsequently conduct UQ calculations using
the available methods. CUQIpy serves a dual purpose: it aims to assist indi-

Figure 9: CUQIpy logo

viduals who may not be well-versed in Bayesian inference while also offering
advanced users the freedom and comprehensive control over computational
methodologies. Central to CUQIpy is a high-level modeling framework made
for handling inverse problems within the Bayesian context. This framework
incorporates a syntax that closely aligns with the underlying mathematical
and statistical principles, enabling users to succinctly and intuitively define
their inverse problem, provide prior information, and specify other essential
statistical details.
Additionally, CUQIpy includes an array-agnostic modeling framework, al-
lowing users to replace conventional array libraries like NumPy [9] with
alternative libraries like PyTorch [12]. This is done to benefit from GPU

32

acceleration, which is fundamental to make CUQIpy able to support large-
scale imaging-type inverse problems, such as computed tomography or image
deblurring.

3.2.1 Specifying and solving Bayesian Inverse Problems

In the following sections we describe the most important software compon-
ents of CUQIpy. Initially, we offer an outline of the package, followed by a
systematic exploration of essential tools. This step-by-step approach aims to
clarify the standard procedure for defining and resolving a Bayesian inverse
problem.
The CUQIpy package is available from https://cuqi-dtu.github.io/CUQIpy/,
along with information on how to get started, full documentation, and nu-
merous demos and tutorials ([13], [1]).
Installation is straightforward using the Python package installer:

pip install cuqi

Once CUQIpy is installed, the user can import the complete package by

1 import cuqi

or individual components directly. For example, these are components that
we will use later:

1 from cuqi.testproblem import Deconvolution1D ,

Deconvolution2D

2 from cuqi.distribution import Gaussian , Gamma ,

GMRF , JointDistribution

3 from cuqi.problem import BayesianProblem

4 from cuqi.sampler import UGLA

5 import numpy as np

CUQIpy provides a large variety of test problems, which contain pre-defined,
configurable test problems. This test problems are linear deconvolution prob-
lems like 1D signal deblurring, 2D image deblurring, but there are also ex-
amples of PDEs problems, like Discrete Heat problem and Discrete 1D Pois-
son problem.

3.2.2 Basic Example

To illustrate the basic usage of CUQIpy, let’s examine a 2D deconvolution
problem, which can be formulated as the linear inverse problem Ax = y. In
this context, matrix A (assumed to be known) serves as the forward model,

33

https://cuqi-dtu.github.io/CUQIpy/

where, in the case of 2D deconvolution, A represents the blurring caused by
a point spread function. The vector y is a random variable, representing the
blurred and noisy image, and we have a specific observed instance denoted
as yobs.
Given this forward model and observed data, our objective is to infer the
sharp image represented by the random variable x.
We load a specific example of a forward model and observed data from the
collection of test problems available in CUQIpy:

1 A, y_obs , info = Deconvolution2D.get_components(

dim=256, phantom="cookie")

In CUQIpy, a modeling language is at the user disposal to articulate the
knowledge or assumptions regarding parameters in the context of a Bayesian
Problem. In our current scenario, we presume that the data y is subject to
additive Gaussian white noise with a mean of zero and an unknown precision
represented by s, which follows a Gamma distribution. As for the image
x, we adopt a prior based on an edge-preserving Laplace Markov Random
Field (LMRF), characterized by an unknown scale parameter d−1, where d
is also assumed to follow a Gamma distribution. Consequently, the Bayesian
Problem is configured as follows:

d ∼ Gamma(1, 10−4), (60)

s ∼ Gamma(1, 10−4), (61)

x ∼ LMRF(d−1), (62)

y ∼ Gaussian(Ax, s−1I). (63)

The parameters d and s are called hyperparameters. In CUQIpy the syntax
closely matches the mathematical specification of the Bayesian Problem:

1 d = Gamma(1, 1e-4)

2 s = Gamma(1, 1e-4)

3 x = LMRF (1/d, geometry=A.domain_geometry)

4 y = Gaussian(A @ x, 1/s)

Here the geometry keyword is used to specify that the LMRF prior should
be defined on the domain of A, which is represented by a so-called Image2D
geometry. After specifying the Bayesian Problem, we can ask CUQIpy to
perform a UQ analysis of the problem:

1 BP = BayesianProblem(d, s, x, y) # Combine to

Bayesian Problem

2 BP.set_data(y=y_obs) # Specify observed data

3 BP.UQ() # Run UQ analysis

34

The UQ() method analyzes the problem, selects a suitable sampler, samples
the posterior distribution, and returns a summary and selected visualizations
of the results, as shown in Figure 10. The posterior width, which serves as

Figure 10: Far left: True sharp image. Middle left: Observed blurred and
noisy image. Middle right: Deblurred image (posterior mean). Far right:
Quantification of uncertainty (posterior width).

an indicator of the uncertainty in the deblurring process, highlights that
the regions containing edges have the greatest degree of uncertainty. Fur-
thermore, in addition to estimating the image x, CUQIpy also enables the
estimation of the hyperparameters d and s, along with quantifying their re-
spective uncertainties. The true value of s is defined to be 7.716 · 104 in the
Deconvolution2D test problem, and the posterior mean and 99% credibility
interval are found to be 7.639 · 104 and [7.535 · 104, 7.744 · 104]. A true value
for d is not known but its posterior mean and credibility interval are found
to be 3.871 · 101 and [3.824 · 101, 3.918 · 101].

We have shown an example of the high-level usage of CUQIpy, where the user
do not need to select a specific sampler or tune any parameters since CUQIpy
handles these tasks automatically, based on the problem structure. CUQIpy
allows users to fully select and configure problem specification, samplers,
visualization, etc., in order to improve the performance for expert users.

35

4 Fast Convolution Algorithms

for Image Deblurring

We have described so far the idea behind Bayesian Inverse Problems, the
basics of the problem of Image Deblurring and what the CUQI project, with
its Python package CUQIpy are. Said that, we have to face with problems
and difficulties that shows up in this kind of environment.
The work done for this thesis was directed to reducing computational time
for image deblurring, this was achieved under some circumstances, that will
be shown later in this section.

The computational time is a big issue in Bayesian inverse problems, espe-
cially, but not only, for large-scale problems. This happens because the
solution that we compute is not a deterministic value, but it is a random
variable. So after computing its posterior distribution we have to generate
samples in order to determine useful estimator such as its mean and standard
deviation. When computing these values, if we want them to be reliable and
with the least error possible, we have to generate a lot of samples, a common
choice is 1000, so the processes have to be repeated many times. This explain
why even a small gain in a quite fast process like convolution can lead to a
large save of time in the whole computation.

4.1 Test problems

As we said, the CUQIpy package had already the tools to solve image deblur-
ring problems. Our goal was to make some little changes in the implement-
ation in order to make the computation faster. Now we see precisely how to
solve this kind of problem in CUQIpy and where the improvement was made.
First of all, we import the necessary functions and packages, both from
CUQIpy and from external libraries ([15], [9]):

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.fft import fft2 , ifft2 , fftshift ,

ifftshift

4 from scipy.signal import fftconvolve , convolve

5

6 import cuqi

7 from cuqi.model import LinearModel

8 from cuqi.geometry import Image2D

9 from cuqi.array import CUQIarray

36

10 from cuqi.distribution import Gaussian , LMRF ,

Gamma

11 from cuqi.problem import BayesianProblem

Then we set up the basic parameters for the problem. We also set up the
“geometry” in which the problem is handled. The Image 2D geometry rep-
resents a pixeled image and describe the kind of object that will be passed
to the forward model.

1 # Parameters

2 dim = 256 # Image dimension

3 BC = "constant" # Boundary condition

4 P = cuqi.testproblem.Deconvolution2D(PSF_size =

41).Miscellaneous["PSF"] # Extract PSF from

testproblem. Can use other PSF types

5 noise_std =0.0036 # Noise standard deviation

6

7 # Set -up for 2D image

8 img_geo = Image2D ((dim , dim))

We need an image to run our example on. We will start with an image taken
from cuqi.data (Figure 11), but any custom image can be used. The image
is wrapped into a CUQIarray for easy plotting.

1 test_image = CUQIarray(cuqi.data.satellite(dim),

is_par=False , geometry=img_geo)

2 test_image.plot();

We then define the convolution forward model the way that it was done in
the old CUQIpy code.

1 # Old convolution wrapped into CUQIpy model "A"

2 def _proj_forward_2D(X, P, BC):

3 PSF_size = max(P.shape)

4 X_padded = np.pad(X, PSF_size //2, mode=BC)

5 Ax = convolve(X_padded , P, mode=’valid ’)

6 if not PSF_size & 0x1: # If PSF_size is even

7 Ax = Ax[1:, 1:] # Remove first row and

column to fit convolve math

8 return Ax

9

10 def _proj_backward_2D(B, P, BC):

11 P = np.flipud(np.fliplr(P)) # Flip PSF

12 return _proj_forward_2D(B, P, BC)

37

Figure 11: Sharp image of a satellite, 256x256 pixels.

13

14 A = cuqi.model.LinearModel(

15 forward=lambda x: _proj_forward_2D(x, P, BC)

,

16 adjoint=lambda y: _proj_backward_2D(y, P, BC

),

17 domain_geometry=img_geo ,

18 range_geometry=img_geo ,

19)

This implementation, in the proj forward 2D function, computes con-
volution using the Scipy “convolve” function. The good thing about this
function is that allows us to perform convolution for every boundary condi-
tion, padding the image with the values that we need for each case.
After defining the forward model, we run the UQmethod which does Bayesian
sampling using CUQIpy’s convolution.

1 # Parameter assumptions

38

2 x = LMRF(0, 0.1, geometry=img_geo)

3 y = Gaussian(A@x , noise_std **2, geometry=img_geo

) # old forward model

4

5 # Generate synthetic blurred image with noise by

6 # conditioning y on x=test_image and sampling

7 y_data = y(x=test_image).sample ()

8 y_data.plot()

9 plt.title("Blurred␣image␣with␣noise")

10 plt.show()

11

12 # Now set up Bayesian Problem and run UQ

13 BP = BayesianProblem(x, y)

14 BP.set_data(y=y_data)

15 BP.UQ(1000, exact=test_image)

So, the first thing that we plot is the blurred satellite, with Gaussian noise
(Figure 12). This is our observed data that we have denoted by yobs.
Then, with some assumption on the prior distribution, we are able to

Figure 12: Blurred image of a satellite.

39

compute the posterior distribution of the reconstructed image x. From this
distribution we take 1000 sample and we compute their mean (Figure 13)
and width of credibility interval (Figure 14). In the image representing the
credibility interval, white stands for high uncertainty and black for low un-
certainty. This shows that on the edges is where we are less confident about
our reconstruction.

Figure 13: Left, sample mean of the reconstructed image. Right, blurred
image.

4.2 New Implementation

As we can see in the function proj forward 2D, in the old implement-
ation, we padded the image with half of the PSF size in each direction, to
incorporate the boundary conditions into our problem.
This means that we have to compute convolution on a matrix that is larger
than the starting image, and then we reduce get the dimension back to the
original size by setting the parameter mode = ‘valid’. The difference can be
very large when the PSF is big.
What we can do to make the computation faster is to try to use the proper-
ties of the structured matrices that we have, along with the Scipy functions,
to avoid padding the image, at least for some boundary condition.

4.2.1 Zero Boundary Conditions

For zero BC, we just used the fact that the Scipy function convolve is
already implemented to assume zero boundary condition. So in the new

40

Figure 14: Credibility interval.

implementation we just use the Scipy function convolve, but this time
with no padding for the image, and with the parameter mode = ‘same’ that
maintains the dimension of the convolved image equals to the input one.

1 Ax = convolve(X,P,’same’)

4.2.2 Periodic Boundary Conditions

For periodic BC the changes are more significant. We use a very important
property of convolution, that stands with periodic boundary condition.
We have that, given

B = X ∗P, (64)

where ∗ represents 2-dimensional convolution. Denoting B̂ the Discrete Four-
ier Transform (DFT) of B, we have:

B̂ = X̂⊙ P̂, (65)

41

where ⊙ represents the element-wise product.
So from the relation (65) we can compute the convolution between X and
P just by computing the Discrete Fourier Transform of the two arrays with
the fast fourier transform algorithm (fft), then we perform the element-wise
product, and finally we compute the inverse DFT, again with the fft al-
gorithm. This relation is very important because it allows to perform con-
volution in a much faster way. For example, for squared image with N = n2

pixels, as it is defined, the convolution has a computational cost of O(N2)
flops, while with the alternative method that we have just described we can
compute it with O(N log(N)) floating point operations.
One important aspect is that to perform the element-wise product as de-
scribed before the two matrices need to have the same shape. In practice
the PSF is always smaller than the image, so we have to pad it with zeros
in order to perform convolution this way. So the new implementation for
periodic boundary conditions is

1 if (X.shape [0]%2) == 0 and (P.shape [0]%2) == 0 :

Both even

2 P = np.pad(P,(X.shape[0]-P.shape [0])//2,mode

=’constant ’)

3 elif (X.shape [0]%2) == 1 and (P.shape [0]%2) == 1

: # Both odd

4 P = np.pad(P,((X.shape[0]-P.shape [0]) //2 +

1, (X.shape [0]-P.shape [0]) //2 - 1),mode=’

constant ’)

5 else: # One even and one odd

6 P = np.pad(P,((X.shape[0]-P.shape [0]) //2 +

1, (X.shape [0]-P.shape [0]) //2),mode=’

constant ’)

7 Ax = np.real(ifft2(fft2(X)*fft2(fftshift(P))))

As we said, after padding the PSF, we compute convolution (line 7) with the
method described before. The np.real function is necessary because when
computing the DFT we convert the real matrices to complex ones. The
complex part should be canceled with the Inverse DFT, but due to rounding
errors, it doesn’t completely go away, so we use this technique to have a
purely real result.

4.3 Numerical experiments

Now we can compare the old and the new implementation, for both zero
and periodic boundary conditions, testing them with different images and

42

different PSFs.
As we did for the old code, now we have to define the new forward model.

1 # New convolution wrapped into CUQIpy model "

A_new"

2 def _new_proj_forward_2D(X, P, BC):

3 if BC == ’wrap’: # Periodic BC

4 if (X.shape [0]%2) == 0 and (P.shape

[0]%2) == 0 : # Both even

5 P = np.pad(P,(X.shape[0]-P.shape [0])

//2,mode=’constant ’)

6 elif (X.shape [0]%2) == 1 and (P.shape

[0]%2) == 1 : # Both odd

7 P = np.pad(P,((X.shape[0]-P.shape

[0]) //2 + 1, (X.shape[0]-P.shape

[0]) //2 - 1),mode=’constant ’)

8 else: # One even and one odd

9 P = np.pad(P,((X.shape[0]-P.shape

[0]) //2 + 1, (X.shape[0]-P.shape

[0]) //2),mode=’constant ’)

10 Ax = np.real(ifft2(fft2(X)*fft2(fftshift

(P))))

11

12 elif BC == ’constant ’: # Zero BC

13 Ax = convolve(X,P,’same’)

14

15 else: Ax = _proj_forward_2D(X, P, BC) #

Other BC

16 return Ax

17

18 def _new_proj_backward_2D(B, P, BC):

19 P = np.flipud(np.fliplr(P)) # Flip PSF

20 return _new_proj_forward_2D(B, P, BC)

21

22 A_new = cuqi.model.LinearModel(

23 forward=lambda x: _new_proj_forward_2D(x, P,

BC),

24 adjoint=lambda y: _new_proj_backward_2D(y, P

, BC),

25 domain_geometry=img_geo ,

26 range_geometry=img_geo)

43

The new forward model uses the techniques described in the previous sections
for zero and periodic boundary conditions, and calls the old function to
perform convolution for the other possibilities. In the NumPy sintax, periodic
BC are called “wrap” and zero BC are called “constant”.
In all the following experiments we will compute 1200 samples, and the first
200 are discarded due to numerical reasons related to the sampling methods.
This choice is a compromise between having reliable results for the mean and
standard deviation and having reasonable computational time.

4.3.1 Zero boundary conditions

As we said before, zero boundary conditions work well with astronomic im-
ages, where the assumptions of having a black background is not so far from
reality. For this, we have tested the code for the satellite image in Figure
11. We tested it reshaping the image to be 128 × 128 and 256 × 256. We
considered a Gaussian blurring (Figure 12), using different sizes of the PSF.
We compared the old CUQIpy implementation and the new one. For the
smaller image, 128× 128 the computational times (in seconds) are shown in
Table 1. We see that we had a good improvement in computational times,

Size of PSF CUQIpy New impl. % gain
20 188 148 21.2 %
30 198 157 20.7 %
40 262 178 32.1 %
50 288 192 33.3 %

Table 1: Computational times for the 128× 128 satellite image

especially when the PSF was larger. This is what we expected to happen,
because the old implementation pads the image with half of the size of the
PSF rows and columns in both directions and compute the convolution on
the padded image, while in the new implementation we compute convolution
directly on the original image. So As the PSF gets larger, we gain more
advantage.
The same things happens for the 256 × 256 image. We see the results in
Table 2.

4.3.2 Periodic boundary conditions

For periodic boundary conditions we changed the test image (Figure 15).
Also this image was taken from cuqi.data. Periodic BC gave good results
in the reconstruction. We ran the same experiments as for zero boundary

44

Size of PSF CUQIpy New impl. % gain
20 746 654 12.3 %
30 801 714 10.9 %
40 880 779 11.4 %
50 973 794 18.3 %

Table 2: Computational times for the 256× 256 satellite image

Figure 15: Test image for periodic BC.

condition, so we started with a 128 × 128 of this image. In Figure 16 we
can see how well we were able to reconstruct the image. In Table 3 we can
see how we reduced the computational time for the 128 × 128 image. for
periodic BC the new implementation does not depend on the of the PSF,
so again the larger the PSF gets, the more advantage we gain. Moving to a
256 × 256 version of the same image the computation becomes slower, but
the difference between the two methods does not change very much, as we
can in Table 4.

45

Figure 16: Top left: exact image. Bottom left: sample mean of the solution.
Top right: blurred image. Bottom right: width of the credibility interval.

Size of PSF CUQIpy New impl. % gain
20 187 146 21.9 %
30 209 149 28.7 %
40 353 146 58.6 %
50 379 147 61.2 %

Table 3: Computational times for the 128× 128 image

46

Size of PSF CUQIpy New impl. % gain
20 771 756 1.9 %
30 836 750 10.2 %
40 951 737 22.5 %
50 1012 767 24.2 %

Table 4: Computational times for the 256× 256 image

47

5 Conclusions

In this work we gave a general explanation of the goals of the CUQI project,
along with theoretical insights of inverse problems and the Bayesian approach
that is used in the project. In particular we focused on the problem of image
deblurring.
In the CUQIpy software there already existed tools to tackle this kind of
problem, but due to the high number of sample required to solve effectively
a Bayesian inverse problem, the computational time can be very high. For
this reason we wanted to write a new implementation that allowed us to
reduce the computational time maintaining the good performance that the
old one already had.
We were able to do it for some specific cases, which are image deblurring
problems with zero and periodic boundary conditions. A possible extension
of this work could be to try to reduce the computational times for other
boundary conditions, but the two types of boundary conditions the we have
succeed on are among the most used ones, so even if we did not manage to
improve the performances for all the possibilities, we can still be happy with
the result.

48

49

References

[1] A. M. A. Alghamdi, N. A. B. Riis, B. M. Afkham, F. Uribe, S. L.
Christensen, P. C. Hansen, and J. S. Jørgensen. CUQIpy – Part II: com-
putational uncertainty quantification for PDE-based inverse problems in
Python. 2023.

[2] J. M. Bardsley. Computational Uncertainty Quantification for Inverse
Problems. SIAM, 2018.

[3] D. Calvetti and E. Somersalo. Bayesian Scientific Computing. Springer,
2023.

[4] R. H. Chan, M. Donatelli, S. Serra-Capizzano, and C. Tablino-Possio.
Application of multigrid techniques to image restoration problems. Ad-
vanced Signal Processing: Algorithms, Architectures, and Implementa-
tions XII, Proceeding of SPIE 4791 (2002) pp. 210–221, 2021.

[5] S. L. Christensen, N. A. B. Riis, F. Uribe, and J. S. Jørgensen. Structural
Gaussian priors for Bayesian CT reconstruction of subsea pipes. Applied
mathematics in science and engineering, Vol. 31, 2023.

[6] P. C. Hansen. Discrete Inverse Problems, Insight and Algorithms. SIAM,
2010.

[7] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images,
Matrices, Spectra, and Filtering. SIAM, 2006.

[8] T. M. Hansen, K. S. Cordua, M. C. Looms, and K. Mosegaard.
SIPPI: A Matlab toolbox for sampling the solution to inverse problems
with complex prior information: Part 1–Methodology. Computers and
Geosciences, 2013.

[9] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-
tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[10] S. Marelli and B. Sudret. UQLab: a framework for uncertainty quanti-
fication in MATLAB. Second International Conference on Vulnerability
and Risk Analysis and Management (ICVRAM 2014), 2014.

50

[11] M. Parno, A. Davis, and L. Seelinger. MUQ: the MIT uncertainty quan-
tification library. The Journal of Open Source Software, 2021.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[13] N. A. B. Riis, A. M. A. Alghamdi, F. Uribe, S. L. Christensen, B. M.
Afkham, P. C. Hansen, and J. S. Jørgensen. CUQIpy – Part I: computa-
tional uncertainty quantification for inverse problems in Python. 2023.

[14] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[15] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

[16] F. G. Waqar, S. Patel, and C. M. Simon. A tutorial on the Bayesian
statistical approach to inverse problems. 2023.

51

	Introduction
	Inverse problems
	Tikhonov Regularization
	Parameter choice

	Bayesian inverse problems
	Uncertainty Quantification
	Hyperparameters
	Sampling methods
	Markov chain Monte Carlo (MCMC) algorithms

	Regularization in the Bayesian framework

	Image deblurring
	How images become arrays of numbers
	Blurred images
	The Point Spread Function (PSF)

	Noise
	Convolution
	Boundary conditions
	Zero boundary conditions
	Periodic boundary conditions
	Reflexive boundary conditions
	Two-dimensional problems

	CUQI project
	Examples of research in CUQI
	Defect Detection in X-Ray CT of Subsea Pipes

	CUQIpy
	Specifying and solving Bayesian Inverse Problems
	Basic Example

	Fast Convolution Algorithms for Image Deblurring
	Test problems
	New Implementation
	Zero Boundary Conditions
	Periodic Boundary Conditions

	Numerical experiments
	Zero boundary conditions
	Periodic boundary conditions

	Conclusions

