Nome e matricola:

Corso di studi:

Prova scritta di Matematica Applicata 24 luglio 2017

1. Determinare la fattorizzazione PA = LU della matrice

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

ed utilizzarla per calcolare il determinante di A e la sua inversa. Soluzione.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1/2 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

det(A) = -1,

$$A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -2 & 2 \\ -1 & 1 & 0 \end{bmatrix}.$$

2. Assegnati

$$A = \begin{bmatrix} \gamma & 1 & 0 \\ 1 & 4\gamma & -1 \\ 0 & -1 & \gamma \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

dire per quali valori del parametro reale γ A è invertibile e per quali valori il metodo di Jacobi risulta convergente se applicato al sistema A**x** = **b**. Assegnato γ = 1, calcolare le prime due iterate del metodo di Gauss Seidel, a partire dal vettore iniziale $\mathbf{x}^{(0)} = (1, 1, 0)^T$.

Soluzione. Invertibile $\forall \gamma \neq 0, \pm \sqrt{2}/2$. Jacobi converge per $\gamma > \sqrt{2}/2$ oppure $\gamma < -\sqrt{2}/2$. Iterazioni di Gausse-Seidel: $\mathbf{x}^{(1)} = (0, 1/4, 5/4)^T$, $\mathbf{x}^{(2)} = (3/4, 3/8, 11/8)^T$.

3. Dire se il seguente metodo alle differenze finite, dipendente da un parametro $\beta \in \mathbb{R}$, è convergente

$$\begin{cases} \eta_{i+1} = \eta_i + \frac{h}{5} \left[2f(x_i, \eta_i) + 3f(x_i + \frac{h}{\beta}, \eta_i + \frac{h}{\beta}f(x_i, \eta_i)) \right] \\ \eta_0 = y_0 \end{cases}$$

e per quale valore del parametro risulta del second'ordine. Sostituito il valore di β che rende il metodo del second'ordine, e posto $h=\frac{1}{2}$, calcolare i valori di η_1 e η_2 per il problema di Cauchy

$$\begin{cases} y' = y - x, \\ y(0) = 1. \end{cases}$$

Soluzione. Convergente per ogni $\beta,$ del second'ordine per $\beta=6/5,\,\eta_1=3/2,\,\eta_2=2.$

4. Risolvere, facendo ricorso alle serie di Fourier, la seguente equazione differenziale

$$4y'' + y = f(x), f(x) = \begin{cases} 1, & -2 \le x < -1, \\ -x, & -1 \le x < 1, \\ -1, & 1 \le x < 2. \end{cases}$$

Soluzione.

$$S_f(x) = \sum_{k=1}^{\infty} \frac{2}{k\pi (1 - k^2 \pi^2)} \left[(-1)^k - \frac{2}{k\pi} \sin k \frac{\pi}{2} \right] \sin \left(\frac{k\pi}{2} x \right).$$

5. Risolvere, ricorrendo alla trasformata di Fourier, la seguente equazione differenziale

$$y'' - 2y = \frac{1}{2} [H(x+5) - H(x-1)].$$

Soluzione.

$$y(x) = \begin{cases} \frac{1}{8} e^{\sqrt{2}x} \left(e^{-\sqrt{2}} - e^{5\sqrt{2}} \right), & x < -5, \\ \frac{1}{8} \left(e^{-\sqrt{2}(x+5)} + e^{\sqrt{2}(x-1)} - 2 \right), & -5 \le x < 1, \\ \frac{1}{8} e^{-\sqrt{2}x} \left(e^{-5\sqrt{2}} - e^{\sqrt{2}} \right), & x \ge 1, \end{cases}$$