Tutorato di Matematica Applicata

Corso di Laurea Triennale in Ingegneria Biomedica e Ingegneria Chimica

Esercitazione 7 (29/11/2021)

1. Assegnata la matrice

$$A = \begin{bmatrix} -1 & 0 & \beta \\ 0 & 1 & 2 \end{bmatrix}$$

dipendente dal parametro reale β , calcolarne le norme con indice 1, 2 e ∞ .

SOLUZIONE.

$$||A||_1 = |\beta| + 2, \quad ||A||_2 = \sqrt{5 + \beta^2}$$

$$||A||_{\infty} = \begin{cases} 1 + |\beta| & \text{se } \beta < -2 \lor \beta > 2\\ 3 & \text{se } -2 \le \beta \le 2 \end{cases}$$

2. Si considerino le matrici

$$U = \begin{bmatrix} 2 & 0 & 2 \\ 0 & \gamma & -\gamma \\ 0 & 0 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 3 & -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 4\delta & 0 & 2\delta \\ \delta & 1/2 & -2\delta \\ -1/2 & 1/2 & 0 \end{bmatrix}$$

dove γ e δ sono parametri reali. Si dica, senza fare calcoli e motivando opportunamente la risposta, per quali valori di γ la matrice U è invertibile e per quali i suoi autovalori sono tutti positivi. Si determini il valore di δ che rende B la matrice inversa di A, si calcoli l'indice di condizionamento in norma 1 e ∞ di A e il raggio spettrale della matrice A (si tenga conto che uno degli autovalori di A è 2). Infine, nel caso $\gamma = \frac{1}{3}$ si risolva nel modo più conveniente il sistema lineare $U^2\mathbf{x} = \mathbf{b}$ con $\mathbf{b} = (1, 1, 1)^T$.

SOLUZIONE.

U è invertibile per ogni $\gamma \neq 0$ e i suoi autovalori sono tutti positivi per $\gamma > 0$. B è l'inversa di A per $\delta = \frac{1}{10}$.

$$k_1(A) = 5$$
, $k_{\infty}(A) = 7$, $\rho(A) = 5$, $\mathbf{x} = [-5/4, 13, 1]^T$

3. Assegnate le matrici

$$A = \begin{bmatrix} 2 & 0 & \alpha \\ 0 & -2 & 0 \\ -\alpha & 0 & 2 \end{bmatrix}, \quad B = \frac{1}{5} \begin{bmatrix} 2 & 0 & -1 \\ 0 & \beta & 0 \\ 1 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} -\gamma & 0 & \gamma \\ 0 & 1 & 0 \\ \gamma & 0 & \gamma \end{bmatrix}$$

si determinino i valori dei parametri α e β che rendono le matrici A e B una l'inversa dell'altra e i valori di γ che rendono C una matrice ortogonale. Assegnato a ciascun parametro uno dei valori trovati, si calcoli l'indice di condizionamento delle tre matrici in norma 1, 2 e ∞ e si precisi il raggio spettrale di A. Infine, si risolva nel modo più conveniente il sistema lineare $M\mathbf{x} = \mathbf{b}$, con M = BC e $\mathbf{b} = (1, 1, 1)^T$.

SOLUZIONE.

Ae Bsono una inversa dell'altra per $\alpha=1$ e $\beta=-\frac{5}{2};$ Cè ortogonale per $\gamma=\pm\frac{\sqrt{2}}{2}.$

$$k_1(A) = k_{\infty}(A) = k_1(B) = k_{\infty}(B) = \frac{9}{5}, \quad k_2(A) = \frac{\sqrt{5}}{2} = k_2(B)$$

 $k_1(C) = k_{\infty}(C) = 2, \quad k_2(C) = 1, \quad \rho(A) = \sqrt{5}, \quad \mathbf{x} = (-\sqrt{2}, -2, 2\sqrt{2})^T$

4. Si considerino le matrici

$$A = \begin{bmatrix} 2\alpha & -1 & 0 \\ -1 & 2\alpha & -1 \\ 0 & -1 & 2\alpha \end{bmatrix}, \quad B = \begin{bmatrix} 3/4 & \beta & 1/4 \\ \beta & 1 & \beta \\ 1/4 & \beta & 3/4 \end{bmatrix}, \quad Q = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}.$$

Determinare i valori di α per cui la matrice A è non singolare e per quali è definita positiva. Fissato $\alpha=1$, si determinino i valori di β che rendono B inversa di A, e si calcoli il numero di condizionamento di A in norma 1, 2 e ∞ . Infine, dopo avere verificato che Q è ortogonale, si risolva nel modo più conveniente il sistema $Q\mathbf{x} = \mathbf{b}$ dove \mathbf{b} è il vettore unitario.

SOLUZIONE.

A è non singolare per $\alpha \in \mathbb{R} \setminus \{0, \pm \frac{\sqrt{2}}{2}\}$, è definita positiva per $\alpha > \frac{\sqrt{2}}{2}$. B è l'inversa di A per $\beta = \frac{1}{2}$.

$$k_1(A) = k_{\infty}(A) = 8, \quad k_2(A) = \frac{2 + \sqrt{2}}{2 - \sqrt{2}}$$

$$\mathbf{x} = Q^T \mathbf{b} = [1/3, 5/3, -1/3]^T$$