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Suppose you want to integrate one function f with respect to r > 1 measures µ1, . . . , µr
(or weights w1, . . . , wr). The goal is to use N function evaluations and to maximize the degree
of exactness. This notion of simultaneous quadrature was introduced by Carlos Borges [1] in
1994. It turns out that the optimal choice is to use the zeros of (type II) multiple orthogonal
polynomials as quadrature nodes. These quadrature nodes can be computed as the eigen-
values of a banded Hessenberg matrix and the quadrature weights can be obtained using
the left and right eigenvectors of this Hessenberg matrix [2] [3]. The Hessenberg matrix is
not symmetric and this causes numerical problems. We show how these can be reduced by
transforming the matrix [4]. We will illustrate this by giving some examples.
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