Gauss-Kronrod quadrature formulae based on the Zeros of Chebyshev orthogonal rational functions

K. Deckers
Laboratoire de Mathématiques Paul Painlevé, Université de Lille Lille, France
karl.deckers@math.univ-lille1.fr

Consider the nested sequences of arbitrary complex or infinite poles $\mathcal{A}_{k}:=\left\{\alpha_{j}\right\}_{j=1}^{k}, k=$ $1,2, \ldots$, outside the interval $I=[-1,1]$. Let $\varphi_{n}, n>1$ denote the rational function with poles among \mathcal{A}_{n}, and orthogonal to the space of rational functions with poles among \mathcal{A}_{n-1} with respect to the Chebyshev weight function $w(x)=(1-x)^{a}(1+x)^{b}$, where $a, b \in\{ \pm 1 / 2\}$. Whenever α_{n} is real or infinite, the zeros $\left\{x_{n, k}\right\}_{k=1}^{n}$ of φ_{n} are all real, distinct, and inside the interval I; hence, they are the nodes in an n-point rational Gauss-Chebyshev quadrature formula that is exact in the space of rational functions $\tilde{\mathcal{L}}_{2 n-1}$ with poles among $\tilde{\mathcal{A}}_{2 n-1}:=$ $\left\{\alpha_{k}, \bar{\alpha}_{k}\right\}_{k=1}^{n-1} \cup\left\{\alpha_{n}\right\}$.

In this talk we present $(2 n+1)$-point rational Gauss-Kronrod quadrature formulae of the form

$$
\int_{-1}^{1} f(x) w(x) d x=\sum_{k=1}^{n} \lambda_{2 n+1, k} f\left(x_{n, k}\right)+\sum_{j=1}^{n+1} \lambda_{2 n+1, n+j} f\left(y_{n+1, j}\right)+R_{2 n+1}(f)
$$

with positive weights $\left\{\lambda_{2 n+1, k}\right\}_{k=1}^{2 n+1}$ and distinct nodes $\left\{y_{n+1, j}\right\}_{j=1}^{n+1} \subset I$, interlacing with the nodes $\left\{x_{n, k}\right\}_{k=1}^{n}$, that are exact (i.e., $R_{2 n+1}(f)=0$) in a space of rational functions $\hat{\mathcal{L}}_{m} \supset \tilde{\mathcal{L}}_{2 n-1}$ with m as large as possible.

