GAUSS-KRONROD QUADRATURE FORMULAE BASED ON THE ZEROS OF CHEBYSHEV ORTHOGONAL RATIONAL FUNCTIONS

K. Deckers

Laboratoire de Mathématiques Paul Painlevé, Université de Lille Lille, France karl.deckers@math.univ-lille1.fr

Consider the nested sequences of arbitrary complex or infinite poles $\mathcal{A}_k := \{\alpha_j\}_{j=1}^k, k = 1, 2, \ldots$, outside the interval I = [-1, 1]. Let $\varphi_n, n > 1$ denote the rational function with poles among \mathcal{A}_n , and orthogonal to the space of rational functions with poles among \mathcal{A}_{n-1} with respect to the Chebyshev weight function $w(x) = (1 - x)^a (1 + x)^b$, where $a, b \in \{\pm 1/2\}$. Whenever α_n is real or infinite, the zeros $\{x_{n,k}\}_{k=1}^n$ of φ_n are all real, distinct, and inside the interval I; hence, they are the nodes in an n-point rational Gauss-Chebyshev quadrature formula that is exact in the space of rational functions $\tilde{\mathcal{L}}_{2n-1}$ with poles among $\tilde{\mathcal{A}}_{2n-1} := \{\alpha_k, \overline{\alpha}_k\}_{k=1}^{n-1} \cup \{\alpha_n\}$.

In this talk we present (2n+1)-point rational Gauss-Kronrod quadrature formulae of the form

$$\int_{-1}^{1} f(x)w(x)dx = \sum_{k=1}^{n} \lambda_{2n+1,k}f(x_{n,k}) + \sum_{j=1}^{n+1} \lambda_{2n+1,n+j}f(y_{n+1,j}) + R_{2n+1}(f)$$

with positive weights $\{\lambda_{2n+1,k}\}_{k=1}^{2n+1}$ and distinct nodes $\{y_{n+1,j}\}_{j=1}^{n+1} \subset I$, interlacing with the nodes $\{x_{n,k}\}_{k=1}^{n}$, that are exact (i.e., $R_{2n+1}(f) = 0$) in a space of rational functions $\hat{\mathcal{L}}_m \supset \tilde{\mathcal{L}}_{2n-1}$ with *m* as large as possible.