The computation of the Jordan structure of totally nonnegative MATRICES TO HIGH RELATIVE ACCURACY

T. Laudadio, N. Mastronardi, and P. Van Dooren Istituto per le Applicazioni del Calcolo "M.Picone"
Consiglio Nazionale delle Ricerche
via G. Amendola 122/D, 70126 Bari, Italy
n.mastronardi@ba.iac.cnr.it

Given the the factorization of a singular totally nonnegative matrix $[2,3,1] A$ of order n into the product

$$
A=B_{1} B_{2} \cdots B_{n-2} B_{n-1} D C_{n-1} C_{n-2} \cdots C_{2} C_{1},
$$

with B_{i}, C_{i}^{T} lower bidiagonal totally nonnegative matrices and D diagonal one, an algorithm for computing the size of the Jordan block associated to the zero eigenvalue was proposed in [3] with high relative accuracy in floating point arithmetic and $O\left(n^{4}\right)$ computational complexity.

In this talk we propose a modification of the latter algorithm that computes the Jordan structure [4] of A with high relative accuracy in $O\left(n^{3}\right)$ computational complexity.

References

[1] S. M. Fallat and C. R. Johnson, Totally nonnegative matrices,Princeton University Press, Princeton, NJ, (2011).
[2] P. Koev, Accurate computations with totally nonnegative matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 731-751.
[3] P. Koev, Accurate Eigenvalues and Exact Zero Jordan Blocks of Totally Nonnegative Matrices, submitted for publication, (2018).
[4] N. Mastronardi, P. Van Dooren, Computing the Jordan Structure of an Eigenvalue, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 949-966.

