Simultaneous Gauss quadrature

W. Van Assche
Department of Mathematics, KU Leuven, Celestijnenlaan 200 B box 2400, BE-3001 Leuven, Belgium
walter.vanassche@kuleuven.be

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given function and μ_{1}, \ldots, μ_{r} are positive measure on the real line. The goal is to approximate the r integrals $\int f(x) d \mu_{j}(x), 1 \leq j \leq r$, by sums of the form $\sum_{k=1}^{N} f\left(x_{k}\right) \lambda_{k}^{(j)}, 1 \leq j \leq r$, using the same quadrature nodes $\left\{x_{j}, 1 \leq j \leq N\right\}$ but with quadrature weights $\left\{\lambda_{k}^{(j)}, 1 \leq k \leq N\right\}$ depending on the measure μ_{j}. Similar to Gaussian quadrature, there is an optimal choice for the quadrature nodes that maximizes the degree of accuracy: one needs to take the zeros of a multiple orthogonal polynomial for the measures $\left(\mu_{1}, \ldots, \mu_{r}\right)$. I will give properties of the quadrature nodes and the quadrature weights for two cases. First I will deal with $r=2$ and μ_{1} and μ_{2} positive measures with support on two disjoint intervals [1]; the second case is $r=3$ and the measures are normal weights with means $-c, 0, c$ with c sufficiently large [2]. In these cases the quadrature nodes belong to r disjoint intervals $\Delta_{1}, \ldots, \Delta_{r}$ and the quadrature weights $\lambda_{k}^{(j)}$ are positive for the nodes on Δ_{j}, but alternate in sign for the other nodes. These nodes with alternating sign, however, are exponentially small and hence can be ignored in practice.

References

[1] D.S. Lubinsky, W. Van Assche, Simultaneous Gaussian quadrature for Angelesco systems, Jaén J. Approx. 8 (2016), 113-149.
[2] W. Van Assche, A. Vuerinckx, Multiple Hermite polynomials and simultaneous Gaussian quadrature, ETNA 50 (2018), 182-198.

