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Scientific Program
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Université des Sciences et Technologies de Lille, France.

31. Paola Brianzi (brianzi@dima.unige.it)
Dipartimento di Matematica, Università di Genova, Italy.
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107. Nataša Krejić (natasak@uns.ac.rs)
Department of Mathematics and Informatics, University of Novi Sad, Serbia.

108. Maria V. Kulikova (Kulikova.Maria@yahoo.com)
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Poland.

197. Woula Themistoclakis (wt@na.iac.cnr.it)
IAC Institute for Computational Applications, CNR National Research Council, Napoli,
Italy.

198. Dominique Tournès (dominique.tournes@univ-reunion.fr)
Mathematics and Computer Science Laboratory, University of La Reunion, Sainte-Clotilde,
France.

199. Lloyd Nicholas Trefethen (trefethen@maths.ox.ac.uk)
Mathematical Institute, Oxford University, United Kingdom.

200. Juan Carlos Trillo (jc.trillo@upct.es)
Department of Applied Mathematics and Statistics, Universidad Politécnica de Carta-
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NONLINEAR WAVES: FROM OCEANS TO “OPTICAL GRAPHENE”

M. J. Ablowitz
Department of Applied Mathematics

University of Colorado
Boulder, CO 80309, USA

mark.ablowitz@colorado.edu

The study of localized waves has a long history dating back to the discoveries in the 1800s
describing water waves in shallow water. In both fluid dynamics and nonlinear optics there
has been considerable interest in various aspects of localized waves. This lecture will discuss
a novel formulation of water and interfacial waves and some of their properties and nonlin-
ear waves in photonic lattices including honeycomb lattices where novel discrete nonlinear
systems can be derived. Honeycomb lattices appear widely in physics, a notable case being
graphene.
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APPROXIMATION OF MATRIX FUNCTIONS ARISING IN THE ANALYSIS OF

COMPLEX NETWORKS

M. Benzi
Department of Mathematics and Computer Science

Emory University
Atlanta, Georgia, USA

benzi@mathcs.emory.edu

Following recent work of Estrada, Hatano, Higham and coworkers I will describe some new
techniques for the analysis of complex networks using matrix functions. Examples include no-
tions like subgraph centrality, communicability, Estrada index, and other measures that can be
expressed in terms of the exponential of the adjacency matrix of the underlying graph, as well
as other matrix functions. Computational techniques for bounding and estimating quantities of
interest for large networks will be discussed and illustrated by numerical examples.
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UNIVERSAL ANALYTIC PROPERTIES OF NOISE

L. Perotti, D. Bessis
Department of Physics

Texas Southern University
Houston, TX 77004, USA
dbessis@comcast.net

We propose a new method in the spectral analysis of noisy time-series data for damped
oscillators. From the Jacobi three terms recursive relation for the denominators of the Padé
approximations built on the well-known Z-transform of an infinite time series, we build a Hilbert
space operator, a J-operator, where each bound state (inside the unit circle in the complex
plane) is simply associated with one damped oscillator while the essential spectrum of the
J-operator, which lies on the unit circle itself, is shown to represent the noise.

Signal and noise are thus clearly separated in the complex plane. For a finite time series
of length 2N, the J-operator is replaced by a finite order J-matrix JN, having N eigenvalues
which are time reversal covariant. Different classes of input noise, such as blank (white and
uniform), gaussian and pink, are discussed in detail, the J-matrix formalism allowing us to
efficiently calculate hundreds of poles of the Z-transform. Evidence of a universal behavior in
the final statistical distribution of the associated poles and zeros of the Z-transform is shown.
In particular, the poles and zeros tend, when the length of the time series goes to infinity, to a
uniform angular distribution on the unit circle.

Therefore at finite order, the roots of unity in the complex plane appear to be noise at-
tractors. We show that the Z-transform presents the exceptional feature of allowing lossless
undersampling and how to make use of this property. A few basic examples are given to
suggest the power of the proposed method.
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SHELL MODELS: OLD AND NEW

P. G. Ciarlet
City University of Hong Kong
MAPGC@cityu.edu.hk

Intrinsic methods in elasticity have been introduced in a landmark series of papers by Wei-
Zhang Chien in 1944. During the last two decades, Professor Wojciech Pietraszkiewicz and
his group have achieved major advances in their analysis from the mechanical and engineering
viewpoints, as well as in their actual numerical implementation. However, it was only in 2005
that their mathematical analysis began to be carried out in earnest, first for three-dimensional
elasticity and more recently for elastic shells, by the author and his group. This presentation,
which is intended for a general audience, will briefly review and discuss various problems as
yet unresolved when this approach is applied to shell structures. In the classical approach,
the main mathematical challenge is to establish that the associated energy has a minimizer.
In the linear case, this is achieved through a “Korn inequality on a surface”, which guarantees
the positive-definiteness of the associated energy. In the nonlinear case, the problem remains
basically open for Koiter’s model, which is one of the most commonly used nonlinear models
in numerical simulations. In the intrinsic approach, the main challenges lie not only in the
mathematical analysis, but in effect in the modeling itself. Since the new unknowns are the
change of metric and change of curvature tensor fields (instead of the displacement field in
the classical approach), the Gauss and Codazzi-Mainardi compatibility equations conditions
(or other equivalent equations) must be satisfied by these new unknowns, in order that they
indeed correspond to a displacement of the middle surface of the shell. Another challenge is
to adequately express boundary conditions in terms of these new unknowns. We will briefly
review the existence theorems that has been recently obtained in the linear case. Besides,
we will give in particular an explicit form of the compatibility conditions, as well as an explicit
“Cesaro-Volterra integral formula on a surface” for reconstructing a displacement field from the
knowledge of these new unknowns.
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RATIONAL LANCZOS METHODS FOR THE APPROXIMATION OF MATRIX

FUNCTIONS

L. Reichel
Department of Mathematical Sciences

Kent State University
Kent, OH 44242, USA

reichel@math.kent.edu

The need to evaluate expressions of the form f (A)v and vT f (A)v, where A is a large,
sparse or structured, invertible symmetric matrix, v is a vector, and f is a nonlinear func-
tion, arises in many applications. The extended Krylov subspace method can be an attractive
scheme for computing approximations of such expressions. This method projects the approxi-
mation problem onto an extended Krylov subspace

K`,m(A, v) = span{A−`+1v, . . . , A−1v, v, Av, . . . , Am−1v}

of fairly small dimension, and then solves the small projected approximation problems so ob-
tained. Orthonormal bases for extended Krylov subspaces can be generated with short recur-
sion formulas, which can be derived using properties of Laurent polynomials. We will discuss
the structure of the projections of the matrices A and A−1 onto K`,m(A, v). This structure
helps us derive efficient algorithms and relate projections of vT f (A)v to rational Gauss-type
quadrature rules. The talk presents joint work with C. Jagels.
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APPLICATIONS OF LINEAR BARYCENTRIC RATIONAL INTERPOLATION AT

EQUISPACED NODES

J.-P. Berrut
Département de Mathématiques

Université de Fribourg
Pérolles, 1700 Fribourg, Suisse

jean-paul.berrut@unifr.ch

Efficient linear and infinitely smooth approximation of functions from equidistant samples
is a fascinating problem, at least since Runge showed in 1901 that it is not delivered by the
interpolating polynomial.

In 1988, I suggested to substitute linear rational for polynomial interpolation by replacing
the denominator 1 with a polynomial depending on the nodes, though not on the interpolated
function. Unfortunately the so-obtained interpolant converges merely as the square of the
mesh size. In 2007, Floater and Hormann have given for every integer a denominator that
yields convergence of that prescribed order.

In the present talk I shall present the corresponding interpolant to those not familiar with it,
before describing some of its applications, e.g., to differentiation, integration or the solution of
boundary value problems. This is joint work with Georges Klein and Michael Floater.
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GROWTH AND VALUE DISTRIBUTION OF RATIONAL APPROXIMANTS

H.-P. Blatt
Mathematisch-Geographische Fakultaet

Katholische Universitaet Eichstaett-Ingolstadt
85071 Eichstaett, Germany

hans.blatt@ku-eichstaett.de

We investigate the growth and the distribution of a-values, a ∈ C, of rational approximants
rn to a function f on a compact set E in C, where rn = rn,mn is a rational function with
numerator degree ≤ n and denominator degree ≤ mn, as n → ∞. Three different situations
are considered:

(1) f is meromorphic on E and {rn}n∈N is a sequence of maximally convergent rational
functions to f on E. Examples are best approximants and Padé approximants.

(2) E is a continuum, f continuous on E and {rn}n∈N converges geometrically to f on E.

(3) f ∈ C[−1, 1], but f is not holomorphic on [−1, 1] and {rn,mn}n∈N is a sequence of
rational best approximants in the upper half of the Walsh table, i.e.,

mn ≤ cn and 0 ≤ c < 1.
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WEIGHTED POLYNOMIAL APPROXIMATION

G. Mastroianni,
Department of Mathematics and Computer Science

University of Basilicata
V.le dell’Ateneo Lucano 10, Potenza, Italy
giuseppe.mastroianni@unibas.it

The approximation of functions having singularities at the endpoints of the definition domain
(one-dimensional, bounded and/or unbounded) naturally leads to the weighted polynomial ap-
proximation.

In this talk I want to discuss about some recent results concerning the exponential weights:
polynomial inequalities, best approximation estimates, Fourier sums and Lagrange interpola-
tion.
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INTERLACING PROPERTIES OF GENERALIZED LAGUERRE ZEROS AND SOME

APPLICATIONS

D. Occorsio
Department of Mathematics and Computer Science

University of Basilicata
V.le dell’Ateneo Lucano 10, Potenza, Italy
donatella.occorsio@unibas.it

Let w(x) = e−xβ
xα, α > −1, β > 1

2 be a Generalized Laguerre weight, and denote by
{pm(w)} the corresponding sequence of orthonormal polynomials. Setting w̄(x) = xw(x),
let {pm(w̄)} the sequence of orthonormal polynomials corresponding to w̄. We prove that the
polynomial Q2m+1 = pm+1(w)pm(w̄) has simple zeros and that they are also well distributed
in some sense.

In view of this property we propose two different applications: the extended interpolation
polynomial L2m+2(w, w̄, f ), defined as the Lagrange polynomial interpolating a given function
f at the zeros of Q2m+1 and on additional knots, estimating the Lebesgue constants in some
weighted spaces. Moreover, we propose a method to approximate the Hilbert transform on the
real positive semiaxis by a suitable Lagrange interpolating polynomial.
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POLYNOMIAL INEQUALITIES ON SUBANALYTIC SETS

W. Pleśniak
Institute of Mathematics
Jagiellonian University

Łojasiewicza 6, 30-348 Kraków, Poland
Wieslaw.Plesniak@im.uj.edu.pl

The classical inequalities like those of Bernstein, Markov or Jackson are crucial in the
approximation of functions. They are well understood in the one-dimensional setting. Their
multivariate versions require, however, application of essentially stronger methods. A satisfac-
tory theory of such inequalities has been developed due to applications of both pluripotential
methods based on the Bedford-Taylor theory of the complex Monge-Ampère operator and
the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry. The application of the latter the-
ory to approximation problems has unexpectedly yielded very effective tools that permit one
to overcome difficulties related to the geometry of multidimensional sets (e.g. cuspidal sets
problems). The goal of my talk is to present some of the most spectacular results obtained by
such an approach.
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MEAN CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION ON

UNBOUNDED INTERVALS

D. Occorsio and M. G. Russo,
Department of Mathematics and Computer Science

University of Basilicata
V.le dell’Ateneo Lucano 10, Potenza, Italy
mariagrazia.russo@unibas.it

In [1] it was proved that if w(x) = e−xβ
xγ, γ ≥ −1, β > 1

2 , is a generalized Laguerre
weight and w̄(x) = xw(x), then the zeros of the orthonormal polynomial pm+1(w) interlace
with those of pm(w̄). Hence it is possible to consider an extended Lagrange interpolation pro-
cess based on the zeros of pm+1(w)pm(w̄). In this talk the named interpolation is considered
in Lp weighted norm. Necessary and sufficient conditions on the involved weights functions
are stated in order to obtain the convergence of the process and the boundedness of the La-
grange operator in subspaces of Sobolev type. Analogous results are discussed concerning
the real line and the weights of Markov-Sonin type wβ(x) = e−x2 |x|β, β > −1.

References

[1] D. Occorsio, Extended Lagrange interpolation in weighted uniform norm Appl. Math. Com-
put. 211 (2009), no. 1, 10-22.
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POLYNOMIAL APPROXIMATION ON SPHERES – GENERALISING DE LA VALLÉE

POUSSIN

I. H. Sloan
School of Mathematics and Statistics

University of New South Wales
Sydney, Australia

i.sloan@unsw.edu.au

For trigonometric polynomial approximation on a circle, the de la Vallée Poussin construc-
tion has two notable properties as the polynomial degree goes to infinity: it yields uniform
convergence for all continuous functions; yet it also exhibits arbitrarily fast convergence for
smooth functions. It is allowed to have both properties because it is a uniformly bounded but
not positive projection onto the trigonometric polynomial space. In this talk I present a gener-
alisation of the de la Vallée construction to higher dimensional spheres. Such a generalisation
seems to be not presently known.
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COMPUTING FEKETE AND LEBESGUE POINTS: SIMPLEX, SQUARE, DISK

M. Briani, A. Sommariva, and M. Vianello
Department of Pure and Applied Mathematics

University of Padova
Via Trieste 63, Padova, Italy
alvise@math.unipd.it

The main purpose of our work is to provide Fekete and Lebesgue points on three basic
bidimensional compact sets, the simplex, the square, and the disk, by solving numerically the
corresponding large-scale nonlinear optimization problems up to degree n = 18. Our results
reach and often improve those previously known [1], [3]. In the case of the simplex, due to their
relevance in developing spectral and high-order methods for PDEs [2] we have also computed
interpolation sets that have an assigned distribution on the sides (Legendre-Gauss-Lobatto
side nodes), which appear to be better than those previously known. Concerning the square,
besides Fekete and Lebesgue points, we have computed some new sets that generalize the
Padua points and improve their already good quality. Very little seems to be known about
Fekete and Lebesgue points for the disk, and we hope that our computational results could put
some insight into this topic.

References

[1] W. Heinrichs, Improved Lebesgue constants on the triangle, J. Comput. Phys., 207
(2005), pp 625–638.

[2] R. Pasquetti and F. Rapetti, Spectral element methods on unstructured meshes: which
interpolation points?, Numer. Algorithms, 55 (2010), pp. 349–366.

[3] M. A. Taylor, B. A. Wingate and R. E. Vincent, An algorithm for computing Fekete points
in the triangle, SIAM J. Numer. Anal., 38 (2000), pp. 1707–1720.
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ROBUST RATIONAL INTERPOLATION AND LEAST-SQUARES

L. N. Trefethen, P. Gonnet, and R. Pachón
Mathematical Institute
University of Oxford

24-29 St. Giles, Oxford OX1 3LB, UK
trefethen@maths.ox.ac.uk

Approximating functions or data by polynomials is an everyday tool, starting with Taylor
series. Approximating by rational functions can be much more powerful, but also much more
troublesome. In different contexts rational approximations may fail to exist, fail to be unique, or
depend discontinuously on the data. Some approximations show forests of seemingly mean-
ingless pole-zero pairs or “Froissart doublets”, and when these artifacts should not be there
in theory, they often appear in practice because of rounding errors on the computer. Yet for
some applications, like extrapolation of sequences and series, rational approximations are
indispensable.

In joint work with Pedro Gonnet and Ricardo Pachon we have developed a method to
get around most of these problems in rational interpolation and least-squares fitting, based
on the singular value decomposition. The talk will show many examples of the performance
of our ”ratdisk” code, as well as generalizations for Pade approximation and extrapolation of
sequences and series.
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ANALYSIS OF THE CONVERGENCE FEATURES OF THE δ TRANSFORMATION

FOR A CLASS OF FACTORIALLY DIVERGING ASYMPTOTIC SERIES

R. Borghi and E. J. Weniger
Dipartimento di Elettronica Applicata

Università degli Studi “Roma Tre”
Roma, Italy

borghi@uniroma3.it

An analysis of the convergence features of the sequence obtained by applying the δ trans-
formation [1, Eq. (8.4-4)] on the partial sums of the following class of asymptotic series:

∞

∑
k=0

(−1)k zk Γ(k + q + 1),

is presented. In particular, on using the inverse factorial representation of the converging
factor of the series found in Ref. [2, Eq. (52)], together with the recently reviewed treatment of
factorial series [3], an asymptotic analysis of the convergence speed of the transformation, in
the limit of large values of the transformation order, is provided for z > 0 and q ∈ (−1, 1).

References

[1] E. J. Weniger, Nonlinear sequence transformations for the acceleration of convergence
and the summation of divergent series, Comp. Phys. Rep., 10 (1989), pp. 189 – 371.

[2] R. Borghi, Asymptotic and factorial expansions of Euler series truncation errors via expo-
nential polynomials, Appl. Num. Math., 60 (2010), pp. 1242 – 1250.

[3] E. J. Weniger, Summation of divergent power series by means of factorial series, Appl.
Num. Math., 60 (2010), pp. 1429 – 1441.
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PFAFFIAN AND ITS APPLICATION TO SEQUENCE TRANSFORMATIONS AND

CORRESPONDING CONVERGENCE ACCELERATION ALGORITHMS

X. B. Hu
LSEC, Institute of Computational Math.

AMSS, CAS, China
hxb@lsec.cc.ac.cn

Pfaffians are closely related to determinants. They are usually defined by the property
that the square of a pfaffian is the determinant of an antisymmetric matrix. It is known that
determinants have played an important role in the construction of sequence transformations
and their corresponding convergence acceleration algorithms. In this talk, I will give some
examples to show that pfaffians may be applied to construction of sequence transformations
and their corresponding convergence acceleration algorithms.
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SOME ASPECTS OF THE INTEGRABLE DISCRETE LOTKA-VOLTERRA SYSTEM

M. Iwasaki and Y. Nakamura
Department of Informatics and Environmental Science

Kyoto Prefectural University
Kyoto 606-8522, Japan
imasa@kpu.ac.jp

The integrable Lotka-Volterra (LV) system [2] is known as a dynamical systems which gives
a mathematical description of food chain structure. The discrete LV system (dLV) system [1] is
derived from a skillful time-discretization of the LV system.

In this talk, we mainly discuss an application of the dLV system to computing matrix sin-
gular values. We also review the positivity of dLV variables through considering orthogonal
polynomials, and deeply investigate the asymptotic behavior with the help of center manifold
theory. In order to accelerate the convergence rate, we explain how to introduce the shift of
origin from the viewpoint of matrix theory. Some examples are given for numerically confirm-
ing that the computed singular values are high relative accurate. Additionally, we describe an
interesting relationship between the dLV system and the well-known Fibonacci sequence.

References

[1] S. Tsujimoto, R. Hirota and S. Oishi, An extension and discretization of Volterra equation
I, Tech. Report IEICE NLP 92–90, 1993.

[2] S. Yamazaki, On the system of non-linear differential equations ẏk = yk(yk+1 − yk−1),
J. Phys. A: Math. Gen., 20 (1987) pp. 6237–6241.
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FOURIER SERIES AND ACCELERATION METHODS

C. N. Moore
Department of Mathematics

Kansas State University
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cnmoore@math.ksu.edu

For a function f which is integrable on [−π, π], we consider the partial sums of its Fourier
series

Sn f (x) :=
n

∑
k=−n

f̂ (k)eikx.

We transform the sequence of partial sums using the δ2 and the Lubkin transforms to obtain
respectively the sequences of functions

Tn f (x) :=
Sn+1 f (x)Sn−1 f (x)− (Sn f (x))2

Sn+1 f (x) + Sn−1 f (x)− 2Sn f (x)

(where we set Tn f (x) = Sn f (x) if the denominator of the fraction is zero) and

S∗n f (x) := Sn f (x) +
(Sn+1 f (x)− Sn f (x))(1− ρn+1 f (x))

1− 2ρn+1 f (x) + ρn f (x)ρn+1 f (x)
.

where ρn f (x) = (Sn+1 f (x)− Sn f (x))/(Sn f (x)− Sn−1 f (x)).
Both of these transforms fail to accelerate convergence in general: For functions which are

smooth, except for a single jump discontinuity, both transforms diverge on a dense set. We
also construct Hölder continuous functions, analytic on the interior of the unit disk, for which
the transformed sequences fail to converge at every point. We discuss iterations of these
transforms and the epsilon algorithm.
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MULTISTEP ε–ALGORITHM AND SHANKS’ TRANSFORMATION BY HIROTA’S
METHOD

C. Brezinski, Y. He, X.-B. Hu,
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Michela.RedivoZaglia@unipd.it

In this paper, we propose a multistep extension of the Shanks’ sequence transformation
[2, 3]. It is defined as a ratio of determinants. Then, we show that this transformation can be
recursively implemented by a multistep extension of the ε–algorithm of Wynn [4]. Some of their
properties are specified. These results are obtained by using the Hirota’s bilinear method [1], a
procedure quite useful in the solution of nonlinear partial differential and difference equations.
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A COMPARATIVE NUMERICAL STUDY OF EXTRAPOLATION METHODS,
SEQUENCE TRANSFORMATIONS AND STEEPEST DESCENT METHODS IN

NUMERICAL INTEGRATION
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With the advent of computers and scientific computing, there has been a push to develop
more accurate and efficient techniques in computing challenging problems in applied math-
ematics. In the numerical evaluation of infinite-range integrals, three general methods have
come to the forefront. These methods are known as extrapolation methods, sequence trans-
formations and steepest descent methods.

In extrapolation methods, through numerical quadrature or otherwise, one computes a
sequence of approximations to the infinite-range integral and uses analytical properties of the
integrand to then extrapolate on this sequence to obtain an approximation for the integral. In
sequence transformations, one derives the asymptotic series expansion of the integral and,
whether convergent or divergent, one applies transformations to the asymptotic series hoping
to approximate the limit or antilimit of the series with a relatively small number of terms. In
the steepest descent methods, a deformation of the path of integration is used to transform
oscillations or irregular exponential behaviour into linear exponential decay. On the deformed
contour, a Gauss-Laguerre-type quadrature is used to approximate the integral.

In this work, we put these three general methods to the test on five prototypical infinite-
range integrals exhibiting oscillatory, logarithmic and exponential properties or combinations
thereof. On the bases of accuracy, efficiency, simplicity, and reliability, we compare and con-
trast the three general methods for the evaluation of infinite-range integrals.
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THE REMARKABLE EFFECTIVENESS OF A NEW CLASS OF EXTRAPOLATION

TECHNIQUES FOR ACCELERATING MONOTONE ALGORITHMS IN STATISTICAL

MODELING
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Maximum likelihood estimation (MLE) plays a central role in statistical inference. Expecta-
tion maximization (EM) algorithm is a very popular computational approach for MLE. A more
general approach to MLE is the minorize-maximize (MM) algorithm. The EM algorithm may
be viewed as a special case of the MM algorithm. A major reason for the popularity of MM
algorithms is that they are monotone, i.e. they always head uphill in terms of the likleihood func-
tion. MM algorithm is locally linearly convergent. MM algorithms are globally convergent under
rather weak regularity conditions. However, in many applications the linear rate of convergence
is painfully slow. We recently developed a new classes of iterative scheme called the squared
iterative methods (SQUAREM), to accelerate the convergence of MM (Varadhan and Roland
2008). By viewing SQUAREM as continuations of MM, we showed that fast and globally-
convergent schemes can be obtained. SQUAREM is especially attractive in high-dimensional
problems, when compared to numerical accelerators such as quasi-Newton and conjugate
gradient methods, due to its simplicity and minimal storage requirements. We present several
examples of the remarkable effectiveness of SQUAREM for accelerating the MM algorithm in
high-dimensional problems(multi-dimensional scaling, genetic admixture, PET imaging, and
movie ratings). We also discuss some approaches for handling parameter constraints includ-
ing projection onto feasible region and backtracking of steplength.
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EXTENSIONS OF PADÉ-TYPE APPROXIMANTS
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A Padé approximant [l/m] f (z) to a function f (z) is the ratio of two polynomials P[l/m](z) =
p0 + p1z + · · ·+ plzl and Q[l/m](z) = 1 + q1z + · · ·+ qmzm. The polynomial coefficients
can be determined via the accuracy-through-order relationship Q[l/m](z) f (z)− P[l/m](z) =
O(zl+m+1) as z→ 0.

It is normally highly advantageous that for the computation of [l/m] f (z) only the numeri-
cal values of the partial sums fn(z) = ∑n

ν=0 γνzν with 0 ≤ n ≤ l + m of the (formal) power
series for f (z) have to be known. No additional information is necessary. But this also means
that there is no obvious way of incorporating additional information about f or the index depen-
dence of the partial sums fn(z) into the transformation process, although such an information
may be available.

As a remedy, Brezinski [J. Approx. Theory, 25 (1979), pp. 295 – 317] proposed so-called
Padé-type approximants (l/m) f (z) = U (l/m)(z)/V (l/m)(z), which are also ratios of two
polynomials. But now, it is assumed that the coefficients of the the denominator polynomial
are known. Thus, only the coefficients of the numerator polynomial have to be determined via
the modified accuracy-through-order relationship V (l/m)(z) f (z)− U (l/m)(z) = O(zl+1) as
z→ ∞.

The zero’s of the denominator polynomial correspond to the poles of a Padé-type approx-
imant. Unfortunately, there are not too many non-trivial functions whose pole structure is fully
understood. Accordingly, indirect approaches for the choice of the denominator polynomials of
Padé-type approximant have to be pursued.

This talk first discusses certain Levin-type transformations, which are known to be very
powerful convergence acceleration and summation techniques and which are actually special
Padé-type approximants [E. J. Weniger, J. Math. Phys., 45 (2004), pp. 1209 – 1246, Section
VI]. Then, some examples from special function theory are discussed which show how denom-
inator polynomials can be chosen by utilizing knowledge about the location of the cuts of the
function.
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A VARIATIONAL APPROACH FOR EXACT HISTOGRAM SPECIFICATION
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We focus on exact histogram specification when the input image is quantified. The goal
is to transform this input image into an output image whose histogram is exactly the same as
a prescribed one. In order to match the prescribed histogram, pixels with the same intensity
level in the input image will have to be assigned to different intensity levels in the output image.
An approach to classify pixels with the same intensity value is to construct a strict ordering on
all pixel values by using auxiliary attributes. Local average intensities and wavelet coefficients
have been used by the past as the second attribute. However, these methods cannot enable
strict-ordering without degrading the image. In this paper, we propose a variational approach to
establish an image preserving strict-ordering of the pixel values. We show that strict-ordering
is achieved with probability one. Our method is image preserving in the sense that it reduces
the quantization noise in the input quantified image. Numerical results show that our method
gives better quality images than the preexisting methods.
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Iterative regularization multigrid methods have been successful applied to signal/image
deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring has
a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve
the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations.
The smoother has to be an iterative regularization method. The grid transfer operator should
preserve the regularization property of the smoother.

In this talk we improve the iterative multigrid method proposed in [1] introducing a wavelet
soft-thresholding denoising post-smoother. Such post-smoother preserves the edges and
avoids the noise amplification that is the cause of the semi-convergence of iterative regu-
larization methods. The resulting iterative multigrid method stabilizes the iteration so that and
imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the
computed solution.
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ITERATIVE REGULARIZATION FOR NONLINEAR IMAGING IN BANACH SPACES
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Several regularization methods for inverse problems have been firstly and deeply analyzed
in the context of the Hilbert space L2. Unfortunately, regularization methods in Hilbert spaces
usually show over-smoothness, which is a drawback in all the practical imaging applications,
where the true solutions have natural discontinuities.

More recently, some regularization methods have been introduced and investigated in
the context of more general Banach spaces. Due to the geometrical properties of Banach
spaces, these new regularization methods allow us to obtain solutions endowed with lower
over-smoothness, which results, as instance, in a better localization and restoration of the
edges in image deblurring.

In this talk, we consider the nonlinear operator equation F(x) = y , where F : X −→ Y
is a nonlinear and ill-posed operator between the two Banach spaces X, Y, and x ∈ X is
the “cause” to be found of some known “effects” y ∈ Y. In particular, we analyze an iterative
method for the minimization of the functional Φ(x) = 1

p ||F(x)− y||pY, where Y = Lp is the
Banach space of p-th power Lebesgue integrable functions, with 1 < p < +∞.

The proposed iterative algorithm in the framework of Lp is a nonlinear generalization of
the simple Landweber method for nonlinear equations in L2. The algorithm is applied to a
nonlinear inverse scattering problem where the dielectric distributions x (i.e., the image to
restore) of a 2D domain have to be recovered by means of its scattered microwave field y
(i.e., the known data) outside the domain. We will show how the new computational results in
Banach spaces well outperform classical “Hilbertian regularization”.
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A FAMILY OF RULES FOR PARAMETER CHOICE IN TIKHONOV REGULARIZATION
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We consider the equation Au = f , f ∈ R(A), where A ∈ L(H, F) and H, F are
real Hilbert spaces. We suppose that instead of f we have an approximation f̃ ∈ F and
inexact noise level δ. We consider the case where δ may be a serious overestimation with
‖ f̃ − f ‖ ≤ δ, but also the case of possible underestimation of the noise level: for example, it
may be known only that with high probability δ/‖y− y∗‖ ∈ [1/10, 10] . We consider choice
of the regularization parameter α in the Tikhonov method uα = (αI + A∗A)−1A∗ f̃ .

To guarantee convergence of uα, the choice of α must use the noise level. Classical rules
for parameter choice as the discrepancy principle, monotone error rule and the balancing
principle are unstable with respect to the inaccuracies of the noise level: they fail in case of
underestimated noise level and give large error of uα already at very moderate overestimation
of the noise level. We propose for choice of α = α(δ) the following family of rules.

Define Bα =
√

α(αI + AA∗)−1/2, Dα = α−1AA∗B2
α. Fix the parameters q, k, l such that

3/2 ≤ q < ∞, l ≥ 0, k ≥ l/q. Choose α = α(δ) as the largest solution of the equation

(1 + α‖A‖−2)((k+s0)q−l)/(2q−2)‖Dk
αBα(Auα − f̃ )‖q/(q−1)

‖Dl
αB2q−2

α (Auα − f̃ )‖1/(q−1)
= bδ,

where b is constant large enough and s0 = 0 if k = l/q, s0 = 1/2 if k > l/q.
We will analyze the quasi-optimality and the stability of these rules. The advantages of

some rules of this family over classical rules in case of the over- or underestimated noise level
with δ/‖ f̃ − f ‖ ∈ [1/64, 64] are demonstrated on extensive numerical experiments in test
problems of P.C. Hansen and from paper C. Brezinski, G. Rodriguez and S. Seatzu.
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Conjugate gradient iteration for ill-posed problems in Hilbert space, say given by an oper-
ator equation

yδ = Ax + δξ,

where A : X → Y acts between Hilbert spaces, is well known to yield regularization if it
is stopped according to the discrepancy principle. The seminal work in this direction is [2].
This presumes that the data yδ are noisy, but the noise is bounded in the original norm of
Y. If, instead, we assume that the noise ξ is white noise, i.e., it is centered and has identity
covariance operator, then the data yδ will not belong to Y (a.s.), and hence the discrepancy is
not well defined.

Based on previous work [1] we propose a modified discrepancy principle and we show that
order optimal regularization can be achieved. These modifications concern both, the norm in
which the discrepancy is evaluated and an emergency stop, which guarantees that the iteration
stops even if the data at hand behave badly.

This modified discrepancy principle also works for linear regularization of statistical ill-
posed problems.

This is joint work with G. Blanchard, Potsdam University.
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Tomosynthesis imaging is a limited angle tomography approach that uses conventional x-
ray systems to obtain 3-dimensional image reconstructions. Most breast tomosynthesis image
reconstruction algorithms use a simplified, but incorrect assumption that the source x-ray beam
is comprised of photons with a constant energy; that is, the x-ray beam is assumed to be
monoenergetic. We consider mathematical models that use the physically correct, and hence
more accurate, assumption that the x-ray beam is polyenergetic. The image reconstruction
problem requires solving the nonlinear inverse problem

b = exp(RM)ρ+ η ,

where b is known measured projection data, R is a known ray trace matrix, ρ is a known
vector that contains information about the source x-ray energy, η is a vector that represents
unknown additive noise, and M is an unknown matrix, where each entry µi,j is the attenuation
coefficient for voxel i and x-ray energy level j. The exponentiation is done element wise on the
entries of the matrix RM.

The image reconstruction problem requires computing an approximation of M. In this talk
we describe how this model arises from the physics of the x-ray tomosynthesis system, discuss
computational approaches to compute approximations of M, and consider applications for
breast imaging.

This is joint work with Veronica Bustamante, Steve Feng and Ioannis Sechopoulos, Emory
University, and Julianne Chung, University of Texas at Arlington.
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Alternating methods for image deblurring and denoising have recently received consider-
able attention. The simplest of these methods are two-way methods that restore contaminated
images by alternating between deblurring and denoising. This talk discusses Krylov subspace-
based two-way alternating iterative methods that allow the application of regularization oper-
ators different from the identity in both the deblurring and the denoising steps. Numerical
examples show that this can improve the quality of the computed restorations. The methods
are particularly attractive when matrix-vector products with a discrete blurring operator and
its transpose can be evaluated rapidly, but the structure of these operators does not allow
inexpensive diagonalization.
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The aim of electrical impedance tomography (EIT) is to reconstruct the inner structure of an
unknown body from voltage-to-current measurements performed at the boundary of the body.
EIT has applications in medical imaging, nondestructive testing, underground prospecting and
process monitoring. The imaging task of EIT is nonlinear and an ill-posed inverse problem.
A non-iterative EIT imaging algorithm is presented, based on the use of a nonlinear Fourier
transform. Regularization of the method is provided by nonlinear low-pass filtering, where
the cutoff frequency is explicitly determined from the noise amplitude in the measured data.
Numerical examples are presented, suggesting that the method can be used for imaging the
heart and lungs of a living patient.
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The stippling technique places black dots such that their density gives the impression of
tone. This is the first paper that relates the distribution of stippling dots to the classical math-
ematical question of finding ’optimal’ nodes for quadrature rules. More precisely, we consider
quadrature error functionals on reproducing kernel Hilbert spaces (RKHSs) with respect to
the quadrature nodes and suggest to use optimal distributions of these nodes as stippling dot
positions. Interestingly, in special cases, our quadrature errors coincide with discrepancy func-
tionals and with recently proposed attraction-repulsion functionals. Our framework enables us
to consider point distributions not only in R2 but also on the torus T2 and the sphere S2. For a
large number of dots the computation of their distribution is a serious challenge and requires
fast algorithms. To this end, we work in RKHSs of bandlimited functions, where the quadrature
error can be replaced by a least squares functional. We apply a nonlinear conjugate gradient
(CG) method on manifolds to compute a minimizer of this functional and show that each step
can be efficiently realized by nonequispaced fast Fourier transforms. We present numerical
stippling results on S2.

This is joint work with M. Gräf and D. Potts, University of Chemnitz, Germany.
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Consider the equation Vϕu = f , where (Vϕu)(t) =
∫ t

0 t−1ϕ(t−1s)u(s)ds, 0 < t ≤ T,
ϕ ∈ L1(0, 1). The spectrum of Vϕ as an operator in the space Cm = Cm[0, T] is described
in [1]. This enables to establish criteria for the existence and boundedness of the inverse V−1

ϕ

as an operator from Cm+k to Cm, m ≥ 0, k ≥ 1. In some cases, ‖V−1
ϕ ‖ can be effectively

estimated, e.g.:
Theorem 1. Let ϕ ∈ L1(0, 1), ϕ̂(0) :=

∫ 1
0 ϕ(x)dx > 0, xϕ′ ∈ L1(0, 1), and let xϕ′(x) +

αϕ(x) ≥ 0 (0 < x < 1) for an α < 1. Then V−1
ϕ ∈ L(Cm+1, Cm) exists, and

‖V−1
ϕ f ‖Cm ≤ 1

(1− α)ϕ̂(0)
‖t f ′ + (1− α) f ‖Cm for f ∈ Cm+1, m ≥ 0.

The claim remains to be true if condition xϕ′ ∈ L1(0, 1) is relaxed to the form xϕ′ ∈ L1(0, 1−
ε) for any ε > 0, and lim

x→1
ϕ(x) = ∞, lim

x→1
(1− x)ϕ(x) = 0.

More complete results are obtained using the weighted spaces

Cm,r
? =

{
u ∈ Cm(0, T] : lim

t→0
tk−ru(k)(t) exists for k = 0, 1, ..., m

}
,

‖u‖Cm,r
?

= max
0≤k≤m

sup
0<t≤T

tk−r|u(k)(t)|, m ≥ 0, r ∈ R.

The power functions tp, p ≥ r, are eigenfunctions of Vϕ in Cm,r
? , m ≥ 0. This enables to

design approximate and exact solvers of equation Vϕu = f .
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For a class of complex symmetric systems of linear equations, by modifying the Hermitian
and skew-Hermitian splitting (HSS) iteration method and making use of the special structure
of the coefficient matrix, we have designed a class of matrix splitting iteration schemes, which
is unconditional convergent for any initial guess. We have then discussed real equivalent re-
formulations of these matrix splitting iteration schemes applied them to solve and precondition
the saddle-point linear systems arising from the Galerkin finite-element discretizations of the
distributed control problems.

This talk is based on joint works with Michele Benzi and Fang Chen [1, 2].
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M. H. Gutknecht
Seminar for Applied Mathematics, ETH Zurich

CH-8092 Zurich, Switzerland
mhg@math.ethz.ch

For most real-world problems Krylov space solvers only converge in a reasonable number
of iterations if a suitable preconditioning technique is applied. This is particularly true for prob-
lems where the linear operator has eigenvalues of small absolute value — a situation that is
very common in practice. One suitable technique for dealing with such problems is to identify
an approximately invariant subspace Z that belongs to the set of these small eigenvalues. By
using an orthogonal projection along Z the Krylov solver can then be applied only to the or-
thogonal complement by restricting the operator accordingly. The basis constructed implicitly
or explicitly by this restricted operator should then be augmented by a set of basis vectors for
Z . There are various ways to handle and implement this approach. They differ not only algo-
rithmically and numerically, but sometimes also mathematically. Some keywords associated
with such methods are ‘(spectral) deflation’, ‘augmented basis’, ‘recycling Krylov subspaces’,
and ‘singular preconditioning’.

While we quickly also review the ‘symmetric case’, where the linear system is Hermitian
(or real and symmetric), we are mostly interested in the ‘non-symmetric case’, where our main
message is that the orthogonal projection should be replaced by a suitable oblique projection,
so that when its nullspace is invariant, so is its range. For details, see [1].
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Consider the underdetermined least squares problem

min
x∈Rn

‖b− Ax‖2, (1)

where A ∈ Rm×n, b ∈ Rm, and m < n.
We can precondition (1) from the right as

min
u∈Rn

‖ABu− b‖2, x = Bu (2)

or from the left as
min
x∈Rn

‖Bb− BAx‖2 (3)

by using a preconditioner B ∈ Rn×m [2].
However, when solving inconsistent systems (b ∈/ R(A)), the effective condition num-

ber becomes dangerously large[1], and GMRES for (2) will breakdown numerically before it
determines a least squares solution.

On the other hand, (3) is consistent when R(BT) = R(A). Thus, GMRES can numer-
ically determine a least squares solution for (1) even when m < n and b ∈/ R(A). To form
such a preconditioner B, we propose using inner-iteration preconditioners, which do not re-
quire a preconditioning matrix and can save memory. Numerical experiments illustrate that the
methods are efficient and robust for large ill-conditioned and rank-deficient problems.
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Algebraic Riccati equations (discrete-time or continuous-time) play a fundamental role in
many problems in control theory. They arise in linear-quadratic regulator problems, H∞ or
H2-control, model reduction problems and many others. In this talk we propose numerical
methods for large discrete-time algebraic Riccati equations (DARE).

We present block projection methods that allow us to compute low rank approximations to
the d-stabilizing solution. We project the initial problem onto a block or onto an extended block
Krylov subspace, generated by the pair (A, C) and we obtain a low dimensional DARE that
is solved by a standard algorithm such as the Schur method. We present the two methods
and give new theoretical results such as upper bounds for the norm of the error. We will also
present the Newton method associated with the block Arnoldi algorithm used for solving, at
each Newton’s iteration, the obtained Stein matrix equation.
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We show how to compute isotropic vectors for matrices with real or complex entries. These
are unit vectors b satisfying b∗Ab = 0 where the ∗ denotes the conjugate transpose. For real
matrices, the algorithm uses only the eigenvectors of the symmetric part of A corresponding to
the extreme eigenvalues. For complex matrices, we first use the eigenvalues and eigenvectors
of the Hermitian matrix K = (A− A∗)/2i. This works in many cases. In case of failure, we
use the eigenvectors of the Hermitian part H or a combination of eigenvectors of H and K.
We give some numerical experiments comparing our algorithm with those proposed in [2] and
[1]. In many cases our algorithm use only one computation of eigenvectors whence the other
algorithms use at least two computations of eigenvectors.
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A NEW APPROACH TO CONJUGATE GRADIENT AND GMRES CONVERGENCE

H. Sadok
L.M.P.A
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Known as one of the best iterative methods for solving symmetric positive definite linear
systems, CG generates as FOM an Hessenberg matrix which is symmetric then triangular.
This specific structure may be really helpful to understand how does behave the convergence
of the conjugate gradient method and its study gives an interesting alternative to Chebyshev
polynomials. The talk deals about some new bounds on residual norms and error A-norms
using essentially the condition number.

GMRES is one of the most widely used iterative methods for the solution of linear system of
equations, with a large real or complex nonsingular matrix. Convergence properties of GMRES
are discussed by many authors. But most convergence results are obtained as a polynomial
approximation problem.

We will show that bounding the norm of the residual vectors determined by GMRES in
terms of the eigenvalues of the matrix, is a difficult constrained optimization problem. We
therefore focus on diagonalizable matrices and in the particular case where the matrix is we will
show how to derive a bound of the norm of the residual by solving a constrained optimization
problem using Lagrange multipliers.
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MATCHING MOMENTS AND KRYLOV SUBSPACE METHODS

J. Liesen and Z. Strakoš
Department of Mathematics
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Matching moments is inherently linked with numerical quadrature, continued fractions and
orthogonal polynomials. The concept of moments arose with the work of Chebyshev, Markov
and Stieltjes in the second half of the 19th century; the related numerical quadrature with
Gauss in 1814, with further founding contributions due to Jacobi, Christoffel, Markov, Stieltjes
and many others. The related fundamental concept of continued fractions can essentially be
rooted back to Euclid and other ancient mathematicians; see the thorough descriptions given
by Brezinski in several books, papers and essays. Stieltjes published in 1894 his analytic
theory of continued fractions with an impact in forming foundations of functional analysis by
Hilbert in 1906 - 1912, as well as in forming mathematical foundations of quantum mechanics
by von Neumann in 1927 - 1932.

The original work of Krylov from 1931 refers to the work of Jacobi from 1846. Its alge-
braic formulation, with using what we now call the Krylov sequence, was given by Gantmacher
in 1934. In modern computational mathematics, sciences and engineering, many ideas be-
hind Krylov subspace methods and matching moments model reduction (in approximation of
large scale dynamical systems and elsewhere) resemble the classical concepts mentioned
above. Surprisingly, several important works which made these links transparent remained
almost unknown; see, in particular, the work of Vorobyev from 1958 which would be without its
popularization by Brezinski essentially forgotten.

In agreement with the views presented by Brezinski, Golub and Meurant, we consider
viewing relevant matrix computations as matching moments inspirational and useful. We will
demonstrate this on several examples. In particular, we will address the question of cost
evaluation and numerical stability in Krylov subspace iterations.
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PRECONDITIONED MULTIPARAMETER AND NEWTON-MULTIPARAMETER

ITERATIVE METHODS FOR SYSTEMS OF EQUATIONS

Y.-J. Wu and Y. Wang
School of Mathematics and Statistics

Lanzhou University
Lanzhou 730000, China
myjaw@lzu.edu.cn

We propose, in this article, three types of modified multiparameter iterative schemes which
lay the foundation for us to successively establish preconditioned multiparameter iterative
methods for the solution of systems of linear equations and preconditioned Newton-multiparameter
iterative methods for the solution of systems of nonlinear equations. Based on the matrix
version of Kantorovich inequality, we obtain successfully the proof of convergence of the pre-
conditioned multiparameter and the preconditioned Newton-multiparameter iterative methods.
Incremental unknowns preconditioners are used. Inexact Newton techniques are also applied
while computing. Numerical results from examples confirm the efficiency of our new methods.
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DISTINCT PRECONDITIONED HSS ITERATION METHOD FOR NON-HERMITIAN

POSITIVE DEFINITE LINEAR SYSTEMS

B. Zheng and S.-X. Miao
School of Mathematics and Statistics

Lanzhou University
Lanzhou, 730000, People’s Republic of China

bzheng@lzu.edu.cn

We introduce and analyze a distinct PHSS (DPHSS) method for solving the large sparse
non-Hermitian positive definite system of linear equations, in which two linear subsystems
with different preconditioners are solved at each iteration. The convergence properties of
the DPHSS method are studied and the optimal parameter for an upper bound of the the
contraction factor of the DPHSS method is derived. Numerical experiments are performed
with different examples.
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EXACT SOLUTIONS TO INTEGRABLE NONLINEAR EVOLUTION EQUATIONS

T. Aktosun, F. Demontis, and C. van der Mee
Department of Mathematics
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aktosun@uta.edu

A review is presented for the method of constructing explicit solutions to integrable evolu-
tion equations in terms of a matrix triplet. The construction is based on solving the associated
Marchenko integral equations explicitly by representing their kernels in terms of a matrix triplet,
using matrix exponentials, and exploiting the separability of those kernels. Once an explicit
formula is obtained for the relevant integrable evolution equation, it is usually possible to in-
dependently verify that the formula does indeed satisfy the corresponding nonlinear evolution
equation. Such exact solutions can alternatively be written explicitly as algebraic combinations
of exponential, trigonometric, and polynomial functions of the spatial and temporal coordinates.
The method is illustrated with some explicit examples.
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INTEGRABILITY AND SOLVABILITY OF NONLOCAL WAVE INTERACTION MODELS

A. Degasperis, and J.P. Borgna, M.F. De Leo, D. Rial
Department of Physics

Sapienza University of Rome
Piazzale Aldo Moro 2, 00185 Roma, Italy

antonio.degasperis@roma1.infn.it

A general class of integrable nonlinear multi-component wave interaction equations is dis-
cussed to the purpose of showing that Lax integrability does not imply solvability of the initial
value problem by means of the direct and inverse spectral methods. A simple system in this
class, with applicative relevance to nonlinear optics, is discussed as a prototype model. Con-
servation laws and special solutions are displayed as an expansion of the content of the paper
[1].
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EXACT SOLUTIONS TO THE FOCUSING DISCRETE NONLINEAR SCHRÖDINGER

EQUATION

F. Demontis and C. van der Mee
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In this talk, by using the Inverse Scattering Transform (IST), we derive explicit solutions of
the discrete nonlinear Schrödinger equation (IDNLS):

i
d

dτ
un = un+1 − 2un + un−1 + un+1u†

nun + unu†
nun−1 , (4)

where n is an integer and un is an N×M matrix function depending on time τ. More precisely,
the IST associates (1) to the following discrete Zakharov-Shabat system,

vn+1 =

(
zIN un
u†

n z−1 IM

)
vn (5)

where z is the (complex) spectral parameter.
We get the explicit solutions for (1) announced above by applying the Marchenko method to

solve the inverse problem associated with (2). In fact, representing the kernel of the Marchenko
equation as

CA−(n+j+1)eiτ(A−A−1)2
B,

where (A, B, C) is a matrix triplet such that the p× p matrix A has only eigenvalues of modu-
lus larger than one, while B and C have sizes, respectively, p× N and M× p, the Marchenko
equation can be solved explicitly by separation of variables. The class of solutions obtained
contains the N-soliton and the breather solutions as special cases, as well as the so-called
multipole soliton solutions.
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SPECTRAL PROPERTIES OF THE LAX OPERATOR FOR THE MATRIX NONLINEAR

SCHRÖDINGER SYSTEM

M. Klaus
Department of Mathematics
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klaus@math.vt.edu

We discuss spectral properties of the AKNS system associated with the matrix nonlinear
Schrödinger system. In particular we consider systems whose coefficients have nontrivial
asymptotics. We discuss the location and existence of eigenvalues and we obtain some new
results that generalize earlier ones for systems whose coefficients decay at infinity.
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QUASICLASSICAL DA RIOS SYSTEM AND GRADIENT CATASTROPHE FOR

VORTEX FILAMENT MOTION

B. Konopelchenko
Department of Physics
University of Salento
73100 Lecce, Italy

konopel@le.infn.it

Quasiclassical Da Rios (or dispersionless focusing NLS system) describe motion of vor-
tex filament with slow varying curvature and torsion. It is shown that the points of gradient
catastrophe for this system correspond to the fluttering points of filament at which the local be-
haviour of the corresponding curve is drastically different from that of normal points. Concrete
examples of such behaviour are discussed.
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COUPLED MAXWELL-BLOCH EQUATIONS WITH INHOMOGENEOUS

BROADENING FOR A 3-LEVEL SYSTEM

S. Chakravarty, B. Prinari and M. J. Ablowitz
Department of Physics and Sezione INFN

University of Salento
bprinari@uccs.edu

The phenomenon that describes the effect of a coherent medium response to an incident
electric field, to which the medium is totally transparent and which undergoes lossless prop-
agation, is known as self-induced transparency (SIT). SIT was first discovered by McCall and
Hahn (1969) in the case of non-degenerate two-level atoms. Special solutions for the two-level
system were found by Lamb (1971), while the initial value problem for the propagation of a
pulse through a resonant two-level optical medium was solved by Inverse Scattering Trans-
form (IST) in [1, 2].

It is possible to formulate the SIT equations in the framework of the IST also in the case of
a three-level system, as in [3]. While the associated scattering problem is the same as for the
coupled nonlinear Schrödinger equation, the time evolution depends on asymptotic values of
the material polarizability envelopes and is highly non-trivial.

This talk will address the solution of the initial value problem for the SIT equations for three
level systems, for generic preparation of the medium, and describe its soliton interactions.
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NUMERICAL SOLUTION OF INVERSE SCATTERING PROBLEMS AND

APPLICATION TO NONLINEAR EVOLUTION EQUATIONS

P. Sacks
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Some particular numerical methods for solution of inverse scattering problems on the line,
such as ones connected to the Zakharov-Shabat system, will be discussed. Corresponding
examples of solving evolution equations by the inverse scattering transform will be given.
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COMMUTING VECTOR FIELDS AND INTEGRABLE PDES OF HYDRODYNAMIC

TYPE

S. V. Manakov and P. M. Santini
Department of Physics
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Piazz.le A. Moro 2, 00185 Roma, Italy
paolo.santini@roma1.infn.it

Using a recently developed Inverse Spectral Transform for commuting multidimensional
vector fields [1], we have been able to solve the Cauchy problem for physically relevant PDEs,
like the heavenly equation of Plebansky [1], relevant in General Relativity, the dispersionless
Kadomtsev - Petviashvili (dKP) equation [2], describing the propagation of weakly nonlinear
and quasi one dimensional waves in the absence of dispersion and dissipation, and the 2D dis-
persionless Toda (2DDT) equation [3], describing integrable Einstein - Weyl metrics and ideal
Hele - Shaw flows. In addition, the associated nonlinear Riemann - Hilbert inverse problem
has turned out to be a powerful tool to study the longtime behavior of solutions, to construct
classes of exact implicit solutions and to study in great detail the gradient catastrophe of mul-
tidimensional waves, like in the case of the dKP and 2DDT equations.
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RECURSION OPERATORS AND HIERARCHIES OF NONCOMMUTATIVE KDV-TYPE

EQUATIONS

C. Schiebold
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Mid Sweden University
S-85170 Sundsvall, Sweden

cornelia.schiebold@miun.se

We explain an operator theoretic approach to construct simultaneous solutions to all equa-
tions of the noncommutative counterparts to the potential KdV, KdV and mKdV hierarchies.
One of the main technical issues will be to take advantage of the recursive construction of
these hierarchies. In an excursion, we will address general structural properties of the under-
lying recursion operator of the noncommutative KdV equation. In the applications part, we will
discuss both the classical scalar hierarchies (countable nonlinear superposition) and matrix
hierarchies (generalized multisoliton solutions).

Large parts of the talk are based on recent joint work in [1], [2] with Sandra Carillo, Roma
1.
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EQUATIONS

C. van der Mee
Dipartimento di Matematica e Informatica
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Discretizations of matrix nonlinear Schrödinger equations have the problem that the natural
finite difference discretization of the matrix NLS equation leads to a nonlinear equation whose
integrability is not obvious. This has led to the development of an inverse scattering transform
scheme where the (focusing) discrete NLS solution un(t) is required to let un(t)un(t)† and
un(t)†un(t) be nonzero multiples of the identity matrix, thus preventing a proper discretization
of the Manakov system.

In this talk we explore various remedies. One is to discretize every single step in the
IST, but in this case the nonlinear evolution problem might be difficult to formulate (although
integrability is guaranteed). The other option is to apply central differencing (and not one-sided
differencing as Ablowitz-Ladik did) in the matrix Zakharov-Shabat system, develop the direct
and inverse scattering theory of the resulting system

i J
un+1 − un−1

2h
= [λIN+M + Un]un,

stick in time factors, and apply the usual matrix triplet method to develop explicit discrete NLS
solutions. Again we have to hope knowing the nonlinear evolution system. Here we attempt
finding suitable Lax pairs.
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CONSTANT POSITIVE GENERATORS: A NEW CONSTRAINT QUALIFICATION

R. Andreani, G. Haeser, P. J. S. Silva, M. L. Schuverdt
University of State of Campinas

Rua Sérgio Buarque de Holanda, 651, Brazil
andreani@ime.unicamp.br

We present a new constraint qualification that extends the relaxed constant rank constraint
qualification. We relax the assumption that the rank of all subsets of gradients of active in-
equality constraints and equalities constraints must remain constant, to a single subset of such
gradients which is easily computed. Our new constraint qualification also extends the relaxed
constant positive linear dependence condition recently proposed and ensures the convergence
of penalty based methods, like the augmented Lagrangian, and of a sequential quadratic pro-
gramming algorithm.
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PRECONDITIONER UPDATES FOR SEQUENCES OF SYMMETRIC POSITIVE

DEFINITE LINEAR SYSTEMS ARISING IN OPTIMIZATION

S. Bellavia, V. De Simone, D. di Serafino and B. Morini
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We consider sequences of large and sparse linear systems of the form

(A + Dj)xj = bj, j = 1, . . . , m,

where A is a symmetric positive definite matrix and Dj are positive definite diagonal matrices.
The solution of such sequences often arises in optimization, e.g. in trust-region and regulariza-
tion subproblems, in Levenberg-Marquadt approaches, in affine scaling methods for quadratic
programming, and in nonlinear least-squares. Our interest is in the case where the systems
are solved by using Krylov methods with preconditioning techniques.

The spectral properties of the matrices of the sequence may considerably differ. Therefore,
it may be inappropriate to use a frozen preconditioner for all the systems. We are interested in
forming an efficient preconditioner for each system of the sequence without recomputing the
preconditioner from scratch, in order to reduce the overall computational cost.

In this talk, we discuss techniques to update an incomplete LDLT factorization of the
matrix A. The proposed procedures, extending previous work on shifted systems [1], are
cheap and easy to implement. A theoretical justification of our approach is presented along
with numerical experiments illustrating its performance.

References

[1] S. Bellavia, V. De Simone, D. di Serafino, B. Morini, Efficient Preconditioner Updates for
Shifted Linear Systems, submitted.

95



DIRECT MULTISEARCH: A NEW DFO APPROACH FOR MULTIPLE OBJECTIVE

FUNCTIONS
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Direct MultiSearch (DMS) is a novel derivative-free algorithm for multiobjective optimiza-
tion, which does not aggregate any of the objective functions. Inspired by the search/poll
paradigm of direct-search, DMS uses the concept of Pareto dominance to maintain a list of
nondominated points, from which the new poll centers are chosen. The aim is to generate
as many points in the Pareto frontier as possible from the polling procedure itself, while keep-
ing the whole framework general to accommodate other disseminating strategies, in particular
when using the (here also) optional search step.

We provide a convergence analysis for the algorithm and report computational results,
which show that our methodology has an impressive capability of generating the whole Pareto
frontier even without using a search step.
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BILEVEL OPTIMIZATION PROBLEMS VIA INEXACT RESTORATION
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We discuss different approaches for solving bilevel optimization problems. There are many
theoretical issues such as specifical optimality conditions and constraint qualifications and we
analize their relationship with practical algorithms. Inexact Restoration methods are one of
the techniques proposed for bilevel problems. We present some theoretical results concerning
these methods and some practical algorithms developed based in these technique.
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NUMERICAL TESTS ON A NEW STRATEGY FOR PARALLEL DERIVATIVE FREE

OPTIMIZATION

Ub. M. Garcı́a-Palomares, I. Garcı́a, and P. Rodrı́guez
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We present numerical tests on a new paradigm for solving derivative free optimization
problems in a multiprocessor environment. The exchange of information among processors is
realized whenever a point that belong to a sequence of quasi-minimal points is detected. This
concept was coined by [1] for unconstrained optimization and later adapted to bound constraint
optimization by [2]. The computing time needed for solving benchmarking problems is clearly
superior to those given by state of the art packages for unconstrained and bound constrained
problems.
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This study deals with regulatory instruments, but focuses especially on the Emission Trade
System (ETS) designed by the United Nations Framework Convention on Climate Change and
introduced by the European Union in 2005. It is in our interest to forecast the effects of the
ETS on different indicators with economic importance (e.g. emission abatement, power price,
import dependency, supply security, efficiency increase) and its costs up to the year 2020.
Therefore we use an optimization model, in which we consider the regulation framework, the
market parameters and technical constraints for the German energy market as well as an
endogenous price for emission allowances, running times of plants and capacity enlargements.
After solving the model with linear programming in different scenarios we find, that the ETS has
strong impacts on production decisions, but low interest rates offered by the market inventive
program are more effective in long-term decisions like plant investments.
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A LINE SEARCH METHOD WITH VARIABLE SAMPLE SIZE
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Minimization of uncostrained objective function in the form of mathematical expectation is
considered. Sample Average Approximation - SAA method transforms the expectation objec-
tive function into a real-valued deterministic function using large sample in each iteration and
thus deals with deterministic function minimization. The main drawback of this approach is its
cost. A large sample of the random variable that defines the expectation must be taken in order
to get reasonably good approximation and thus the sample average approximation method as-
sumes very large number of functional evaluations. We will present a line search strategy that
uses variable sample size and thus makes the process significantly cheaper. Two measures
of progress - lack of precision and functional decrease are calculated at each iteration. Based
on this two measures a new sample size is determined. The rule we will present allows us
to increase or decrease the sample size in each iteration until we reach some neighborhood
of the solution. After that the maximal sample size is used so the variable sample size strat-
egy generates the solution of the same quality as SAA method but with significantly smaller
number of functional evaluations.
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REMARKS ON CONSTRAINED OPTIMIZATION
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Optimization is the art of finding the lowest possible value of a given function on some do-
main. Its importance comes from the great variety of direct applications. Solving optimization
problems requires efficient and robust software. Global optimization is very hard, however,
modern efficient software should incorporate global optimization tools. Software performance
depends on stopping criteria. Good theory is necessary to understand the behavior of algo-
rithms when they do not converge to a solution. According to it we decide the application
of global optimization tools. KKT-optimizers should be integrated to Global-optimizers and to
engineers. Modeling is a part of the optimization task.
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STOCHASTIC MODELLING TECHNIQUES MEET PRACTICAL NEEDS

M. Siegle
University of the German Armed Forces Munich
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markus.siegle@unibw.de

Stochastic modelling and analysis is a well-established discipline which focuses on the
evaluation of quantitative measures of systems, such as performance, dependability, or energy
consumption. A wide range of sophisticated modelling methods and analysis algorithms has
been developed in this area, many of which have been implemented in available software tools.
Even though these methods and tools are extremely powerful, they often reach their limits
when facing the needs of real-world systems, due to the following reason: Scalable parallel
or distributed systems with a high degree of concurrency lead to models with extremely large
state spaces, which renders most state-space-based analysis techniques intractable.

Among the techniques addressing this problem, the so-called “symbolic” approach, which
relies on the use of decision diagrams as its basic data structure, has shown to be very ef-
fective. Starting from a formal model specification (expressed, for example, in the language
of queueing networks, stochastic Petri nets or stochastic process algebra), a compact sym-
bolic representation of the underlying labelled Markov chain is generated automatically. All
subsequent steps of analysis can be performed in an efficient manner based on this represen-
tation. This includes preprocessing steps, such as reachability analysis and the elimination
of vanishing states, but also different forms of numerical analysis and the computation of the
measures of interest. Iterative methods for calculating the vector of steady-state or transient
probabilities can be realised efficiently, while being much more space-efficient than solutions
relying, on sparse representations. The key to success with this symbolic approach lies in the
proper exploitation of the system’s compositional structure, which is reflected in the structure
of the decision diagram, leading to its compactness and efficiency of manipulation.
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QUADRATURE ON THE POSITIVE REAL LINE WITH QUASI AND PSEUDO

ORTHOGONAL RATIONAL FUNCTIONS
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We consider a positive measure on [0, ∞) and a sequence of nested spaces L0 ⊂ L1 ⊂
L1 · · · or rational functions with prescribed poles in [−∞, 0]. Let ϕk ∈ Lk be the associated
sequence of orthogonal rational functions. The zeros of ϕn can be used as the nodes of a
rational Gauss quadrature formula that is exact for all functions in Ln · Ln−1, a space of di-
mension 2n. Quasi- and pseudo-orthogonal functions are functions in Ln that are orthogonal
to some subspace of Ln−1. Both of them are generated from ϕn and ϕn−1 and depend on a
real parameter τ. Their zeros can be used as the nodes of a rational Gauss-Radau quadra-
ture formula where one node is fixed in advance and the others are chosen to maximize the
subspace of Ln · Ln−1 where the quadrature is exact. The parameter τ is used to fix a node
at a pre-assigned point. The space where the quadratures are exact have dimension 2n− 1
in both cases but it is in Ln−1 · Ln−1 in the quasi-orthogonal case and it is in Ln · Ln−2 in
the pseudo-orthogonal case. Although the quasi and the pseudo orthogonal rational functions
and their zeros have very similar properties theoretically, the pseudo orthogonal rational func-
tions are computationally much less favorable as compared to the quasi orthogonal rational
functions if we want to compute the nodes and weights via a generalized eigenvalue problem.
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FROM OPTIMAL CUBATURE FORMULAE TO CHEBYSHEV LATTICES: A WAY

TOWARDS GENERALISED CLENSHAW-CURTIS QUADRATURE
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A landmark paper for cubature formulae in two dimensions is [1]. It used the ideal-theoretical
approach to construct cubature formulae of arbitrary degrees attaining Möller’s lower bound
and pointed the direction towards a multivariate extension of Clenshaw-Curtis quadrature. To
develop this idea, we introduced Chebyshev lattices [2]. This is a framework for cubature
with the Chebyshev weight function. In combination with hyperinterpolation theory, this can
be used to construct multivariate Chebyshev approximations and interpolating cubature rules.
These rules extends the idea of Clenshaw-Curtis quadrature, including the efficient implemen-
tations that use the fast Fourier transform (FFT), to higher dimensions. Our framework includes
Morrow-Patterson rules as well as other (near-)optimal point sets in two dimensions (such as
Padua points). Higher dimensional point sets due to Noskov and Godzina also fit into this
framework.
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ASYMPTOTICS FOR CHRISTOFFEL FUNCTIONS BASED ON ORTHOGONAL

RATIONAL FUNCTIONS

K. Deckers
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K.U. Leuven
Heverlee, Belgium

karl.deckers@cs.kuleuven.be

Suppose the rational functions {ϕj}, with poles in {α1, . . . , αj} ⊂ (C ∪ {∞}) \ [−1, 1],
form an orthonormal system with respect to a positive bounded Borel measure µ on I :=
[−1, 1], satisfying the Erdős-Turán condition µ′ > 0 a.e. on I, and let the associated Christof-

fel functions be given by λn(x) = [∑n−1
j=0

∣∣ϕj(x)
∣∣2]−1. Assuming the sequence {nλn(x)}n>0

converges for certain x ∈ I, and the poles are all real and bounded away from I, in [2, Ap-
pendix A.2] the author obtained an expression for the limit function k(x) = limn→∞ nλn(x).
The actual convergence, however, has only been proved for the special case of the Cheby-
shev weight functions dµ(t)

dt = (1 + t)a(1− t)b, where a, b ∈ {±1
2}, and for every x ∈ I

in [2, Chapter 9.7]. In this contribution we will prove convergence for arbitrary complex poles
bounded away from I, and weight functions of the form dµ(t)

dt = g(t)∏k
i=1 |t− ti|νi , where

−1 6 t1 < . . . < ti < . . . < tk 6 1, νi > −1, 0 < C1 6 g(t) 6 C2 < ∞ for every t ∈ I,
and g(t) is continuous in a neighbourhood of x ∈ I.
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N-COHERENT PAIRS OF MEASURES

F. Marcellán
Departamento de Matemáticas

Universidad Carlos III de Madrid
Avenida de la Universidad 30, 28911 Leganés, Spain

pacomarc@ing.uc3m.es

Let us introduce the Sobolev type inner product 〈 f , g〉 = 〈 f , g〉1 + λ〈 f ′, g′〉2 where λ > 0
and

〈 f , g〉1 =
∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx,

〈 f , g〉2 =
∫ 1

−1
f (x)g(x)

(1− x)α+1(1 + x)β+1

∏M
k=1 |x− ξk|Nk+1

dx +
M

∑
k=1

Nk

∑
i=0

Mk,i f (i)(ξk)g(i)(ξk),

with α, β > −1, |ξk| > 1, and Mk,i > 0, for all k, i. A Mehler-Heine type formula, the inner
strong asymptotics on (−1, 1) as well as some estimates for the polynomials orthogonal with
respect to the above Sobolev inner product are obtained. Necessary conditions for the norm
convergence of Fourier expansions in terms of such Sobolev orthogonal polynomials are given
(see [1]).

Some extensions of these results for other classical measures are analyzed.
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MULTIPLE ORTHOGONAL POLYNOMIALS AND GENERALIZED QUADRATURE

FORMULAE

G. V. Milovanović
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There are several applications of multiple orthogonal polynomial, which are also known as
Hermite-Padé polynomials (cf. Aptekarev [1]). Some interesting properties of these polynomi-
als were investigated by Van Assche [2] and Van Assche and Coussement [3].

An application of multiple orthogonal polynomials to Borges quadratures (1994) was given
by Milovanović and Stanić (2003).

In this lecture we consider a class of generalized quadrature formulae of Birkhoff-Young
type for analytic functions in the complex plane and give a direct connection with multiple
orthogonal polynomials. Precisely, we give a characterization of such generalized quadratures
in terms of multiple orthogonal polynomials and prove the existence and uniqueness of these
quadratures. Finally, a method for constructing such kind of quadratures and some numerical
examples are given.
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THE ERROR NORM OF QUADRATURE FORMULAE

S. E. Notaris
Department of Mathematics

University of Athens
Panepistemiopolis, 15784 Athens, Greece

notaris@math.uoa.gr

In certain spaces of analytic functions the error term of a quadrature formula is a continuous
linear functional. We give a survey of the methods used in order to compute or estimate the
norm of the error functional. The results, some of which are fairly recent, cover, among others,
interpolatory, Gaussian and Kronrod formulae.
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CONTINUOUS SOBOLEV ORTHOGONAL POLYNOMIALS ON THE UNIT BALL

T. E. Pérez and M. A. Piñar
Departamento de Matemática Aplicada

Universidad de Granada
18071 Granada, Spain
tperez@ugr.es

Sobolev orthogonal polynomials in several variables are defined via inner products involv-
ing derivation tools such as gradients. Such a kind of polynomials appears for the first time in
[2] in a problem related to dwell time for polishing tools in fabricating optical surfaces.

The Sobolev modification of standard multivariate measures by adding another measure
involving gradients is studied. We emphasize the particular case when both measures are
classical measures on the unit ball.
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ORTHOGONAL POLYNOMIALS ON A BI-LATTICE

W. Van Assche
Katholieke Universiteit Leuven

Walter.VanAssche@wis.kuleuven.be

We investigate generalizations of the Charlier and the Meixner polynomials on the lattice
N and on the shifted lattice N + 1 − β. We combine both lattices to obtain the bi-lattice
N∪ (N+ 1− β) and show that the orthogonal polynomials on this bi-lattice have recurrence
coefficients which satisfy a non-linear system of recurrence relations, which we can identify as
a limiting case of an asymmetric discrete Painlevé equation. The asymptotic behavior of the
recurrence coefficients is very sensitive to the initial conditions, which are in terms of modified
Bessel functions and confluent hypergeometric functions. This is joint work with Christophe
Smet.
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PROPERTIES AND APPLICATIONS OF CONSTRAINED DUAL BERNSTEIN

POLYNOMIALS

S. Lewanowicz, and P. Woźny
Institute of Computer Science

University of Wrocław
ul. Joliot-Curie 15, 50-383 Wrocław, Poland
Pawel.Wozny@ii.uni.wroc.pl

Constrained dual Bernstein polynomials D(n,k,l)
i (x; α, β) ∈ Π(k,l)

n (i = k, k + 1, . . . , n−
l; 0 ≤ k + l ≤ n) are defined so that∫ 1

0
(1− x)αxβD(n,k,l)

i (x; α, β)Bn
j (x)dx = δij (k ≤ i, j ≤ n− l),

where α, β > −1, and

Bn
j (x) :=

(
n
j

)
xj(1− x)n−j (j = 0, 1, . . . , n)

are basis Bernstein polynomials. Here Π(k,l)
n denotes the space of all polynomials of degree

n, whose derivatives of order ≤ k − 1 at t = 0, as well as derivatives of order ≤ l − 1 at
t = 1, vanish.

Polynomials D(n,k,l)
i (x; α, β) are closely related to some families of orthogonal polynomi-

als, namely shifted Jacobi and Hahn polynomials. We show many properties of constrained
dual Bernstein polynomials, as well as quantities related to them. Using these results, we pro-
pose efficient algorithms of solving some approximation problems which appear in computer
aided geometric design.
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STRONG ASYMPTOTICS OF NUTTALL-STAHL POLYNOMIALS

A. I. Aptekarev and M. Yattselev
Keldysh Institute of Applied Mathematics RAS,
Miusskaya Square 4, Moscow 125047, Russia

aptekaa@keldysh.ru

Given a germ of an analytic function

f (z) =
∞

∑
k=0

ck

zk+1

which has the analytic continuation along any path in the complex plane which does not go
through a finite set of points f ∈ A(C \ A), ]A < ∞. Nuttall has put forward the important
relation between the maximal domain of holomorphicity for the analytic function f and the do-
main of convergence of the diagonal Padé approximants. The Padé approximants, which are
single valued rational functions, approximate a holomorphic branch of the analytic function in
the domain of their convergence. At the same time most of the poles of the rational approx-
imants tend to the boundary of the domain of convergence and the support of their limiting
distribution models the cuts which make the function f single valued. Nuttall has conjectured
(and proved for many important special cases) that these cuts have a minimal logarithmic ca-
pacity among all cuts converting the function to a single valued branch. Thus the domain of
convergence corresponds to the maximal (in the sense of minimal boundary) domain of holo-
morphicity for the analytic function f ∈ A(C \ A). The complete proof of Nuttall’s conjecture
(even in a more general setting where the set A has logarithmic capacity 0) was obtained by
Stahl. We obtain strong asymptotics for denominators of the diagonal Pade-Approximants for
this problem in rather general settings. Our restrictions are that A is a finite set of branch
points of f which have the algebro-logarithmic character and which placed at generic posi-
tions. The last restriction means that we exclude from our consideration some degenerated
”constellations” of the branch points.
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SYMBOLIC-NUMERIC INTEGRATION, MULTIVARIATE ORTHOGONALITY AND

PADÉ APPROXIMATION

A. Cuyt
Universiteit Antwerpen,
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annie.cuyt@ua.ac.be

Moving from one to more dimensions with polynomial-based numerical techniques leaves
room for a lot of different approaches and choices. We focus here on rational approximation,
orthogonal polynomials and integration rules, three very related concepts.

In one variable there is a close connection between orthogonal polynomials, Gaussian
quadrature rules and Padé approximation. An m-point Gaussian quadrature formula for the
integral

I(z) =
∫ 1

−1

1
1− tz

dt

can be viewed as the [m− 1/m] Padé approximant for the function

f (z) =
∞

∑
i=0

(∫ 1

−1
ti dt

)
zi

where the nodes and weights of the Gaussian quadrature formula are obtained from the or-
thogonal polynomial Vm(z) satisfying∫ 1

−1
ziVm(z) dz = 0, i = 0, . . . , m− 1.

We show that this close connection can be preserved in several variables when starting from
spherical orthogonal polynomials. We obtain Gaussian cubature rules with symbolic nodes
and numeric weights which can be used to integrate parameterized families of functions. The
spherical orthogonal polynomials are also related to the homogeneous Padé approximants
introduced a few decades ago.
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APPROXIMATION OF SMOOTH FUNCTIONS BY WEIGHTED MEANS OF N-POINT

PADÉ APPROXIMANTS

J. Gilewicz and R. Jedynak
Centre de Physique Theorique, CNRS

Cedex 09 Marseille, France
gjacek@hotmail.com

We suggest to explore the properties of two-sided estimates of Stieltjes functions s by two
neighboroud N-point Padé approximants (NPA) p1 and p2 to obtain a good approximation of
Stieltjes-like functions, in particular: convexes functions. The idea consists in a calculation of a
set of N− 1 rational parameters ai which optimize in each interval [xi, xi+1] the approximation
ai p1 +(1− ai)p2 of knowing Stieltjes function s and then, to use these parameters to compute
the expressions ai f1 + (1− ai) f2, where f1 and f2 are two NPA of a certain smooth function
f . Few numerical examples show the efficiency of this experimental method to approximate
the non-Stieltjes smooth functions.
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ON VECTOR CONTINUED FRACTIONS ASSOCIATED WITH NIKISHIN SYSTEMS

V. A Kalyagin and M. V. Sokolov
Department of Applied Mathematics and Informatics

Higher School of Economics
Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 RUSSIA

vkalyagin@hse.ru

Vector continued fractions are a useful tools in the investigation of simultaneous rational
approximations (Hermite-Padé approximations) and multiple orthogonal polynomials. An algo-
rithm of vector continued fraction representation for a system of holomorphic functions can be
considered as an algorithm of calculation of recurrence coefficients for the associated multiple
orthogonal polynomials. Nikishin systems appear as a wide class of systems of holomorphic
functions with a common support of generating measures. From the recurrence coefficients
point of view any Nikishin system with the same support of generating measures is a compact
perturbation of the system with periodic recurrence coefficients (see [1]). In this paper we
study periodic vector continued fractions associated with Nikishin systems. Our main results
are: transformation of the vector continued fraction to the Stieltjes type fraction, calculation of
the generating measures of Nikishin system on the base of this transformation, investigation
of the Stieltjes type vector continued fractions associated with Nikishin systems. This work is
partly supported by RFFI grant 10-01-00682.
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ORDER BASES: COMPUTATION AND USES IN COMPUTER ALGEBRA

G. Labahn
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada
glabahn@uwaterloo.ca

Let F ∈ K [[x]]m×n be a matrix of power series over a field K. Then a vector p ∈ K [x]n×1

of polynomials gives an order σ approximation of F, if

F · p ≡ 0 mod xσ,

that is, the first σ terms of F · p are zero. Examples of such problems include Padé, Hermite-
Padé, Simultaneous-Padé approximants and their vector and matrix generalizations. The set
of all such order (F, σ) approximations forms a module over K [x]. An order basis - or minimal
approximant basis or σ-basis - is a basis of this module having a type of minimal degree
property.

In this talk we will describe how to efficiently compute order bases in exact arithmetic envi-
ronments. This includes the case where coefficient growth is an issue (and so bit complexity is
needed) along with the case when one uses only the complexity of the arithmetic operations.
Finally, we describe the use of order bases in the area of computer algebra. This includes
normal form computation for matrix polynomials and fast polynomial matrix arithmetic.
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CONVERGENCE OF RANDOM CONTINUED FRACTIONS

L. Lorentzen
Department of Mathematics

Norwegian University of Science and Technology
7491 Trondheim, Norway
lisa@math.ntnu.no

Let µ(z) be a probability measure on the complex plane C minus the origin, where

• the expectation E{ln(1 + |z|)} < ∞, and

• the support supp µ contains more than one point.

Let K(an/1) be a continued fraction whose elements an are picked randomly from C \ {0}
according to this measure.

We address the question: under what conditions on µ will K(an/1) converge with proba-
bility 1?

We shall see that there are some mild sufficient conditions with surprising consequences.
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SMOOTHING THE GIBBS PHENOMENON USING PADÉ-HERMITE

APPROXIMANTS

B. Beckermann, V. Kaliagyn, A. Matos, and F. Wielonsky
UFR de Mathématiques

Université de Lille 1
59655 Villeneuve d’Ascq Cedex, France
Ana.Matos@univ-lille1.fr

The aim of this talk is to propose a method to reduce the Gibbs phenomenon exhibited by
the partial Fourier sums of a periodic function f , defined on [−π, π], discontinuous at 0. Let
g2 denote the series such that f (t) = <(g2(eit)). Then, the goal is to approach g2 on the
unit circle (and more precisely its real part). It is typical that the singularity of the function f ,
located at 0 say, corresponds to a logarithmic singularity for g2, then located at 1, and that
this function g2 is analytic in the complex plane, with a branch cut that can be taken as the
interval [1, ∞). Defining g1(z) = log(1− z), we may consider the problem of determining
polynomials p0, p1, p2 such that

p0(z) + p1(z)g1(z) + p2(z)g2(z) = O(zn0+n1+n2+2) (z→ 0)

where nj denotes the degree of pj, j = 0, 1, 2. We can then propose the Hermite-Padé
approximant

Π~n(z) = −
p0(z) + p1(z)g1(z)

p2(z)
, (6)

to approximate g2.
We obtain rates of convergence of sequences of Hermite–Padé approximants for a class of

functions known as Nikishin systems. Our theoretical findings and numerical experiments con-
firm that particular sequences of Hermite-Padé approximants (diagonal and row sequences,
as well as linear HP approximants) are more efficient than the more elementary Padé approx-
imants, particularly around the discontinuity of the goal function f .
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BERNSTEIN–SZEGŐ POLYNOMIALS ON THE TRIANGLE
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In this work we consider the extension of the one variable Bernstein–Szegő theory for or-
thogonal polynomials on the real line (see [3]) to bivariate measures supported on the triangle.
A similar problem for measures supported in the square was studied in [1].

Following essentially [2] the orthogonal polynomials and the corresponding kernel functions
are constructed. Finally, some asymptotic results concerning the Christoffel functions are
obtained.
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measures Constr. Approx. 30 (2009), 71–91.

[2] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Math-
ematics and its Applications 81. Cambridge University Press, Cambridge, 2001.
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EQUILIBRIUM PROBLEMS FOR VECTOR POTENTIALS
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The study of vector equilibrium problems in logarithmic potential theory is an important tool
in the investigation of many questions in approximation theory, e.g. like those involving multiple
orthogonal polynomials, with numerous applications in numerical or applied mathematics. In
this talk, we consider the problem of minimizing the logarithmic energy of vector potentials
associated to a d-tuple of positive measures supported on closed subsets of the complex
plane. Existence and uniqueness of a solution, and its characterization in terms of variational
equations, are obtained under assumptions on the interaction matrix that are weaker than the
usual ones. Moreover, we assume that the masses of the measures vary in a compact subset
of Rd

+.
We will also review a few examples taken from the recent literature that are related to our

results.
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RADIALLY ORTHOGONAL MULTIVARIATE BASIS FUNCTIONS
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It is well-known that radial basis functions provide a practical way to interpolate large scat-
tered datasets. It is equally well-known that the interpolation matrix may be singular or ill-
conditioned for some of the basis functions. We establish a connection with spherical orthogo-

nal polynomials Vm(z), X = (x1, . . . , xd) = (ξ1z, . . . , ξdz), ||(ξ1, . . . , ξd)||p = 1, defined on
the unit hyperball (in different norms) by

∫
. . .
∫
||X||p≤1

w(|z|)
(

d

∑
k=1

xkξk

)i

Vm

(
d

∑
k=1

xkξk

)
dX = 0, i = 0, . . . , m− 1.

Because of the orthogonality of these multivariate basis functions, the interpolation matrix is
better conditioned. Also small Lebesgue constants are obtained. We show how the multivari-

ate spherical orthogonal polynomials can be used in:

• collocation methods, to compute a multivariate analytic model representing the Euro-
pean call option price (and its Greeks) as obtained from the Black-Scholes differential
equation,

• CAGD, where we show that a fully orthogonal multivariate basis set can be obtained
with orthogonality between different basis functions of the same total degree which, in a
multivariate setting, is termed mutual orthogonality,

• data fitting, illustrating the radial usage of the orthogonal basis functions, where the
variable is the signed distance function, versus the cartesian usage, where the variable
is a linear combination of the cartesian coordinates.
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SOME REMARKS ON EIGENVALUE APPROXIMATION ARISING FROM PARTIAL

DIFFERENTIAL EQUATIONS

D. Boffi
Dipartimento di Matematica “F. Casorati”

Università degli Studi di Pavia
Via Ferrata 1, I-27100 Pavia, Italy
daniele.boffi@unipv.it

The aim of this talk is to review some topics related to the approximation of eigenvalues
and eigenfunctions arising from partial differential equations, which have been the object of
two recent surveys [1, 2].

We will discuss in particular the Hodge–Laplace eigenvalue problem in the framework of
differential forms. After recalling the main issues concerning its analysis, we focus on some
numerical examples with a particular interest in multiple eigensolutions. We will show how a
double eigenvalue can be associated to eigenfunctions with different regularity; in this case,
there are two discrete eigenvalues converging towards the common limit with different orders,
which depend on the smoothness of the corresponding eigenfunctions.
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A POSTERIORI ENERGY NORM ERROR ESTIMATION FOR 2ND-ORDER PARTIAL

DIFFERENTIAL EQUATIONS
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Five classes of up to 13 a posteriori error estimators compete in three second-order model
cases, namely the conforming and non-conforming first-order approximation of the Poisson-
Problem plus some conforming obstacle problem. Since it is the natural first step, the error
is estimated in the energy norm exclusively. The competition allows merely guaranteed error
control and excludes the question of the best error guess. The former a posteriori error es-
timators apply to the obstacle problem as well and lead to surprisingly accurate guaranteed
upper error bounds. This approach allows an extension to more general boundary conditions
and a discussion of efficiency for the affine benchmark examples. The Luce-Wohlmuth and the
least-square error estimators win the competition in several computational benchmark prob-
lems. Novel equilibration of nonconsistency residuals and novel conforming averaging error
estimators win the competition for Crouzeix-Raviart nonconforming finite element methods.
Our numerical results provide sufficient evidence that guaranteed error control in the energy
norm is indeed possible with efficiency indices between one and two.

References

[1] S. Bartels, C. Carstensen, R. Klose, An experimental survey of a posteriori Courant finite
element error control for the Poisson equation, Adv. Comput. Math., 15 (2001), pp. 79-106.

[2] C. Carstensen, C. Merdon, Estimator competition for Poisson problems, J. Comp. Math.,
28 (2010), pp. 309-330.

∗This work was supported by DFG Research Center MATHEON and by the World Class University (WCU)
program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology R31-2008-000-10049-0.

127



NUMERICAL MODELLING FOR GEOSCIENCE APPLICATIONS
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The study of geological evolution and subsurface tranport is a critical issue for several
important applications, from oil recovery to CO2 sequestration, identification of nuclear waste
sites and soil remediation.

It is also a challenge for numerical simulations. The problems involved are of multiphysic
nature and often lead to large scale problems. Another important aspect is the uncertainty of
soil properties and of boundary data.

In this talk we will present some recent results concerning the simulation of geological
evolution and flow in fractured porous media, focusing on the open mathematical issues and
numerical challenges.
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DOMAIN DECOMPOSITION METHODS FOR TOTAL VARIATION MINIMIZATION

M. Fornasier
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Domain decomposition methods are well-known techniques to address a very large scale
problem by splitting it into smaller scale sub-problems. The theory of such methods is fully clar-
ified when the energy minimized by the method is either smooth and strictly convex or splits
additively with respect to the decomposition. Otherwise counterexamples to convergence ex-
ist. In this talk we present a convergent overlapping domain decomposition method for energy
functionals with total variation terms, which are nonsmooth and do not split additively. We
state several open problems, such as the rate of convergence and scalability with respect to
the mesh size. We conclude the talk by showing an extension of the proposed algorithm to
a multiscale (wavelet) subspace correction method. We present a counterexample to conver-
gence in a specific case and preconditioning effects in other cases related to certain image
deblurring problems.
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LOCAL MASS CONSERVATION FOR THE FINITE ELEMENT IMMERSE BOUNDARY

METHOD

L. Gastaldi
Dipartimento di Matematica
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The aim of this talk is to discuss the performances of different finite elements in the space
discretization of the Finite Element Immersed Boundary Method. In this exploration we will
analyze two popular solution spaces: Hood-Taylor and Bercovier-Pironneau (P1-iso-P2). Im-
mersed boundary solution is characterized by pressure discontinuities at fluid structure inter-
face. Due to such a discontinuity a natural enrichment choice is to add piecewise constant
functions to the pressure space. Results show that P1 + P0 pressure spaces are a significant
cure for the well known “boundary leakage” affecting IBM. We refer to[4] for a review on the
original IBM and to [1, 2, 3] for its finite element discretization. Convergence analysis is per-
formed, showing how the discontinuity in the pressure is affecting the convergence rate for our
finite element approximation.
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In financial engineering in banks at least the Black-Scholes equations are solved very
many times each day and so any numerical speed-up is welcome. To compute several financial
options with local volatilities or/and jumps, we introduce a one dimensional Galerkin basis for
solving the parabolic partial integro-differential equations which arise from an Itô calculus when
the random evolution of the underlying asset is driven by a Wiener process, or a Lévy process
or more generally, a time-inhomogeneous jump-diffusion process.

The choice of the basis of functions is driven by the 3 main constraints: the numerical
efficiency in the computation of the basis, the suitable global shape so as to be a complete
basis with correct asymptotic behavior at infinity and the capacity to compute all the correlation
matrices with analytical formulas. Elementary solutions of the Black-Scholes equation with
constant volatilities fit these 3 criteria.

A convergence proof is given and numerical tests are performed on calls with non constant
volatilities such as CEV and Lévy processes with Merton’s kernel because analytical solutions
are known for these. The basis is tried also for calibration of a local volatilities.

The method is a Proper Orthogonalization Decomposition very similar to those used for
the heat equations; however here the basis is known in closed form.

The method is very fast but hampered by the bad condition numbers of the linear sys-
tems and so it is limited to no more than 40 basis beyond which the systems are numerically
unsolvable.

It can be extended to two dimensional problems such as basket option and stochastic
volatility models and we will show good numerical results but again unless a better numerical
solver is found - and perhaps it will have been found by October 2011 - the method is limited
by the size of the matrices that the SVD solvers can handle.
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PARAMETRIZATIONS

A. Quarteroni, T. Lassila, A. Manzoni, G. Rozza
EPFL, MATHICSE CMCS

alfio.quarteroni@epfl.ch

In the last decades optimal control and shape optimization problems have gained an in-
creasing importance in many engineering fields and especially in structural mechanics and in
thermo-fluid dynamics. The problems we consider involve the study of a system modelled by
parametric PDEs and the evaluation of functionals depending on the field variables, such as
velocity, pressure, drag forces, temperature, energy, wall shear stress or vorticity. Especially
in the field of shape optimization and parameter estimation, where the recursive evaluation
of the solution is required for many possible configurations, the computational costs can eas-
ily become unacceptably high. Nevertheless, the evaluation of an input/output relationship
of the system plays a central role: a set of input parameters identifies a particular configu-
ration of the system and they may represent design and/or geometrical variables, while the
outputs may be expressed as functionals of the field variables associated with PDEs. The
rapid and reliable evaluation of many input/output relationships typically would require great
computational expense, and therefore strategies to reduce the computational time and effort
are needed. Among model order reduction strategies, reduced basis method represents a
promising tool for the simulation of flow in parametrized geometries, for shape optimization or
sensitivity analysis. An implementation of the reduced basis method is presented by consid-
ering different shape or domain parametrizations: from simple affine and non-affine maps, to
more flexible techniques, such as free-form deformations or radial basis functions. In order to
develop efficient numerical schemes for inverse problems related with shape variation such as
shape optimization, fluid-structure interaction, shape analysis through parameter identification,
we combine a suitable low-dimensional parametrization of the geometry (yielding a geomet-
rical complexity reduction) with reduced basis methods (yielding a reduction of computational
complexity). The analysis will focus on the general properties and performance of the reduced
basis method: several examples will highlight its special suitability for the analysis of flows in
parametrized geometries with a special interest in cardiovascular problems.
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The need for geometric flexibility is especially important in computational seismology when
dealing with complex wave phenomena, such as the scattering by rough topographies of the
Earth and sea bottom surfaces, or the seismic response of sedimentary basins with complex
structures and fault geometries. Today, such flexibility can be achieved by the recently de-
veloped triangular/tetrahedral spectral element method (TSEM); see [2, 3], and therein refer-
ences. In this paper the stability and grid dispersion of the TSEM for elastic wave propagation
[1], are explored and compared with those of the classical spectral elements on quadrangular
grids (QSEM) [4].
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The presence of obstacles in a boundary value problem entails a nonlinear dependence of
the solution on the problem data. We review the main features of this dependence and discuss
the ensuing difficulties for a posteriori error estimation. We derive a posteriori upper bounds
for the error of the linear finite element solution. They enjoy the following properties:

• They are constant-free, or guaranteed, in that they do not involve any constant which is
not explicitly known or difficult to estimate sharply.

• They are essentially insensitive to perturbations of the problem data that do not affect
the error of the finite element solution.

• They are complemented by lower bounds (which, as without obstacles, involve constants
and oscillations terms).

Consequently, these upper bounds quantify rather precisely the error of a given approxi-
mate solution and may be used to direct and to stop safely and efficiently an adaptive iteration.
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In this talk, we will discuss recent progress on developing domain decomposition algo-
rithms for problems formulated in H(curl) and approximated by low order edge elements. We
are focusing on self-adjoint positive definite model problems and are, in particular, interested in
developing algorithms with a performance which is insensitive to large changes in the material
properties.

All this work is carried out with Dr. Clark Dohrmann of the Sandia National Laboratories,
Albuquerque, New Mexico.

A first technical report has appeared late last year, [1]. In that paper, condition number
bounds of the form C(1+ log(H/h))2 were developed for problems in two dimensions. Here,
C is a constant which is independent of the number of subdomains into which the given domain
has been partitioned. This bound is also independent of arbitrary jumps in the two coefficients
across the interface between the subdomains and it is also valid for quite irregular subdomain
boundaries.

The goal of our work, now in progress, is to extend these results, to the extent possible, to
the three dimensional case.
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In this talk we suggest a new formula for the residual of Galerkin projection onto rational
Krylov spaces applied to a Sylvester equation, and establish a relation to three different under-
lying extremal problems for rational functions. These extremal problems enable us to compare
the size of the residual for the above method with that obtained by ADI. In addition, we may
deduce several new a priori error estimates for Galerkin projection onto rational Krylov spaces,
both for the Sylvester and for the Lyapunov equation.
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A standard way to solve polynomial eigenvalue problems P(λ)x = 0 is to convert the
matrix polynomial P(λ) into a matrix pencil that preserves its elementary divisors and, there-
fore, its eigenvalues. This process is known as linearization and is not unique, since there are
infinitely many linearizations with widely varying properties associated with P(λ). This free-
dom has motivated the recent development and analysis of new classes of linearizations that
generalize the classical first and second Frobenius companion forms, with the goals of find-
ing linearizations that retain whatever structures that P(λ) might possess and/or of improving
numerical properties, as conditioning or backward errors, with respect the companion forms.
In this context, an important new class of linearizations is what we name generalized Fiedler
linearizations, introduced in 2004 by Antoniou and Vologiannidis as an extension of certain
linearizations introduced previously by Fiedler for scalar polynomials. On the other hand, the
mere definition of linearization does not imply the existence of simple relationships between
the eigenvectors, minimal indices, and minimal bases of P(λ) and those of the linearization.
So, given a class of linearizations, to provide easy recovery procedures for eigenvectors, min-
imal indices, and minimal bases of P(λ) from those of the linearizations is essential for the
usefulness of this class. In this paper we develop such recovery procedures for generalized
Fiedler linearizations and pay special attention to structure preserving linearizations inside this
class.
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We say that a matrix has quasiseparable order (n1, n2) if its submatrices from the strictly
lower triangular part are of rank n1 at most and submatrices from the strictly upper triangular
part are of rank n2 at most. The quasiseparable order defines representations of strictly lower
and upper parts of matrices which are called quasiseparable representations. For numerical
reasons one can treat matrices with quasiseparable representations as matrices of the input
output operators of linear discrete time-varying systems with boundary conditions. This re-
duction allows to obtain linear complexity algorithms for multiplication of a matrix by a vector,
product of matrices and matrix inversion.
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First in this talk we review efficient and accurate numerical methods for computing the
polynomial spectral factorization. Then we discuss some extensions and applications of these
methods for dealing with bivariate polynomials.
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Averaging matrices is a problem arising when one has to represent, through a single
matrix, the results of several experiments made up by a set of many matrices. Besides the
straightforward arithmetic mean, there are other types of means which are suitable for different
problems: for positive definite matrices, good averages are obtained by the Karcher mean [1],
which verifies all the properties required from a good definition of geometric mean.

In certain applications there is the need to compute means of positive definite matrices
which have further structures. A noticeable example arises in radar signal processing, where
the matrices to be averaged are correlation matrices, which are Toeplitz and positive definite
[2]. Unfortunately, the Karcher mean of Toeplitz matrices is not Toeplitz.

We introduce the new concept of structured geometric mean and prove that it maintains
the structure of the input matrices. We restate the properties of geometric mean in terms of
the structure and show that most of them are satisfied by our definition. We discuss some
applications in which structured means are required. Finally, we provide an iterative algorithm
for computing the structured geometric mean and analyze its convergence properties.
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Indefinite symmetric matrices occur in many applications, such as optimization, partial
differential equations and variational problems where they are linked to a so-called saddle
point problem. In these applications one is often interested in computing an estimate of the
dominant eigenspace of such matrices, in order to solve regularized least squares problems
or compute preconditioners. In this talk we propose an incremental method to compute the
UTUT factorization of a symmetric indefinite matrix, where U is an orthogonal matrix and T
is a symmetric anti–triangular one, i.e., a matrix having zero entries below the anti–diagonal.

We show that the latter factorization is a symmetric rank–revealing one [2]. Moreover, we
describe an algorithm for computing an estimate of the dominant eigenbasis of such matrices
based on low rank updates and downdates of indefinite matrices.

We show that the proposed algorithms are well–suited for large scale problems since they
are efficient in terms of complexity as well as data management.

Some numerical experiments showing the behavior of the proposed algorithms are pre-
sented.
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We discuss the eigenvalue distribution in the Weyl sense of general matrix-sequences
associated to a symbol. As a specific case we consider Toeplitz sequences generated by
matrix-valued (non Hermitian) bounded functions. We show that the canonical distribution can
be proved under mild assumptions on the spectral range of the given symbol. Finally some
applications are introduced and discussed.
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Orthogonal polynomials on the real line satisfy a three term recurrence relation. This re-
lation can be written in matrix notation by using a tridiagonal matrix. Similarly, orthogonal
polynomials on the unit circle satisfy a Szegő recurrence relation that corresponds to an (al-
most) unitary Hessenberg matrix. It turns out that orthogonal rational functions with prescribed
poles satisfy a recurrence relation that corresponds to diagonal plus semiseparable matrices.
This leads to efficient algorithms for computing the recurrence parameters for these orthogonal
rational functions by solving corresponding linear algebra problems. In this talk we will study
several of these connections between orthogonal functions and matrix computations and give
some numerical examples illustrating the numerical behaviour of these algorithms.
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The QR-algorithm is a renowned method for computing all eigenvalues of an arbitrary
matrix. A preliminary unitary similarity transformation to Hessenberg form is indispensable
for keeping the computational complexity of the subsequent QR-steps under control. In this
paper, a whole new family of matrices, sharing the major qualities of Hessenberg matrices, will
be put forward. This gives rise to the development of innovative implicit QR-type algorithms,
pursuing rotations instead of bulges.

The key idea is to benefit from the QR-factorization of the matrices involved. The pre-
scribed order of rotations in the decomposition of the Q-factor uniquely characterizes several
matrix types such as, for example, Hessenberg, inverse Hessenberg and CMV matrices.
Loosening the fixed ordering of these rotations provides us the class of matrices under con-
sideration.

Establishing a new implicit QR-type algorithm for these matrices requires a generalization
of diverse well-established concepts. We consider: the preliminary unitary similarity transfor-
mation; a proof of uniqueness of this reduction; an explicit and implicit QR-type algorithm and;
a convergence analysis of this novel method.

A detailed complexity analysis illustrates the competitiveness of the novel method with
the traditional Hessenberg approach. The numerical experiments show comparable accuracy
for a wide variety of matrix types, but discloses an intriguing difference between the average
number of iterations before deflation can be applied.
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In this talk I will review some early work on iterative methods for solving linear systems by
Italian mathematicians during the 1930s, with particular attention to the contributions of Lam-
berto Cesari (1910–1990) and Gianfranco Cimmino (1908–1989). I will also provide some
background information on Italian applied mathematics and especially on Mauro Picone’s Is-
tituto Nazionale per le Applicazioni del Calcolo, where most of this early numerical work took
place. Finally, I will illustrate the influence of Cimmino’s work on modern and current research.
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André Louis Cholesky (1875–1918) is well know for his method for solving a system of
equations with a symmetric positive definite matrix.

First, indications about his ancestors and his family will be given. Then, his biography
will be presented. Finally, some of its achievements in topography and mathematics will be
reviewed.

Cholesky’s method was first published in 1924 by a fellow of him, the Commandant Benoit
whose life will be shortly described.

The talk is illustrated by many photos and documents including his handwritten unpub-
lished paper on his method, dated December 2, 1910.
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Centre Koyré, EHESS, 27 rue Damesme, F-75013, Paris

Jean.Dhombres@damesme.cnrs.fr

By the end of the 18th century, many proofs had already been proposed for the fundamen-
tal theorem of algebra, by Euler, by d’Alembert (around 1750), by Lagrange, de Foncenex,
and Laplace (around 1795). All such proofs, except d’Alembert’s one, required the existence
of “imaginary” quantities, and the proof was to reduce such quantities to complex numbers. In
1799, Gauss in his Dissertation thesis, proposed a proof inspired by d’Alembert, but requiring
a rather difficult result on algebraic curves entering a bounded closed subset of the topologi-
cal plane, more difficult in fact that the theorem to be proved. All such algebraic proofs were
indirect ones, based as if it was obvious on the intermediate value theorem, which was then
conceived as a computing result. In many papers of the time, there was a sort of antinomy
between computing and what we may call commutative algebra. Using an idea of Legendre
in number theory (in fact the maximum principle idea for holomorphic functions), Argand who
was not known in the main mathematical circles in Paris, proposed in 1806 a direct and el-
ementary proof, as well as his famous representation of imaginary quantities (this time such
quantities indeed were complex numbers). There is a failure in the proof, and later Cauchy,
using Argand’s ideas, went back to an indirect proof. But the idea was maintained that there
was something in Argand’s proof, which was coming from computing methods and had an al-
gorithmic flavour. An elementary but rather sophisticated proof by Kneser settled the situation
in our in the middle of the 20th century. My aim is to discuss, on this concrete example, a sort
of mentality of mathematicians concerning practical methods as opposed to theoretical ones.
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The finite element method has become indispensable for the numerical simulation of par-
tial differential equations. But where does this method come from? How was it invented? I
will show in my talk how everything started with Euler and Lagrange, and their discrete and
continuous formulations of variational problems, which led to the highway of variational calcu-
lus. We will then see the fundamental contributions of the Swiss physicist and mathematician
Walther Ritz in detail, and his method to compute Chladni figures. The development went
further on a detour to Russia, to Timoshenko, Bubnov and Galerkin, who immediately realized
the importance of Ritz’ method, and used it to solve hard problems in science and engineering.
The western world in contrast was at that time more interested in existence and uniqueness
proofs around Hilbert and Courant. The value of Ritz’ invention was only recognized much
later by Courant, who presented the first finite element calculation we were able to find in an
address to the AMS. The name Finite Element Method was finally coined by Ray Clough and
collaborators at Boeing. The mathematical development of the finite element method was then
however just to begin.
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During the year 1902, Robert de Montessus de Ballore (1870-1937) proved his famous
theorem ([3]) on the convergence of Padé’s approximants of meromorphic functions ([2]). Until
1909, Robert de Montessus published works on algebraic continued fractions. We investigate
the circulation of this theorem and give other results proved by Robert de Montessus. First
of all, the genesis of the theorem is explained thanks to letters and first drafts that we have
recovered ([1]). These letters have been adressed to Robert de Montessus by differents math-
ematicians. Extracts of some letters and first drafts will be done in that paper. Particularly,
Henri Padé and Robert de Montessus corresponded by letter during the years 1901-1902. In
a second part, we deal with authors who mention the theorem.The theorem was rapidly cited
by mathematicians like Nörlund and O. Perron. Let us mention that Robert de Montessus dealt
with Probabilities at the same period. But, it is quite surprising that Robert did’nt take an inter-
est in the metric theory of continued fractions as E. Borel did. Yet, Robert de Montessus and
E. Borel were in correspondance.
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We consider the history of convergence acceleration methods before 1723. Taken up
methods are as follows. Names in brackets are discoverers or provers.

1. Using the correction terms [Mādhava (c.1400), Isaac Newton (1676)]

2. Linear acceleration

(i) the arithmetic weighted mean [Willebrord Snell (1621), Christiaan Huygens (1654)]
(ii) the Richardson extrapolation [C. Huygens (1654)]
(iii) the Euler transformation [I. Newton (1684), Jean Christophe Fatio de Duillier (be-

fore 1704)]
(iv) the iterated Richardson extrapolation [Katahiro Takebe (before 1711)]

3. Nonlinear acceleration

(i) the harmonic weighted mean [Nikolaus van Kues (before 1464), W. Snell (1621),
C. Huygens (1654)]

(ii) the Aitken ∆2 process [Takakazu Seki (1680)]

We give an asymptotic error estimate for each taken up method and focus on the Aitken
∆2 process by Takakazu Seki and the iterated Richardson extrapolation by Katahiro Takebe.
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In this talk, I would like to explore the various methods used during 18th and 19th centuries
to numerically integrate the ballistic differential equation and to calculate firing tables for the
needs of artillery.

Throughout this period, there has been an interesting interaction between analytic theory
of differential equations, numerical and graphical techniques of integration, and empirical re-
search by means of experimental measures. Mathematicians, ballisticians and artillerymen,
although belonging to different milieus, collaborated and inspired themselves mutually. All this
led however to a relative failure, both experimentally to find a good law of air resistance, and
mathematically to find a simple solution of the ballistic equation.

Mathematical research on the ballistic equation has played nevertheless the role of a labo-
ratory where the modern numerical analysis was able to develop. Mathematicians have indeed
been able to test on this recalcitrant equation all possible approaches to calculate the solution
of a differential equation. There is no doubt that these trials have helped to organize the
domain into an autonomous discipline at the beginning of the 20th century.
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Département de Génie Mathématiques
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Different types of polynomial inequalities have been studied since more one century. The
first type is the so-called Markov-Bernstein inequalities (A. A. Markov in 1889 [5]). More re-
cently other inequalities involving the L2-norm for the Hermite measure were given (see Bo-
janov and Varma [2], Alves and Dimitrov [1]). Inequalities given in the previous papers are
particular cases of the more general ones which can be obtained by using the variational
method. The basis of our study can be found in the papers of Draux and Elhami ([3], [4]). In
this talk we will present the Landau-Kolmogorv inequalities obtained in the case of Hermite
and closely connected measures.
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In the last years the study of the numerical solution of initial value problems (IVPs) for
second order ODEs of special type given by

y′′(x) = f (x, y) , y(x0) = y0 , y′(x0) = y′0, x ∈ [x0, X] , (7)

having periodic and oscillatory solution, has attracted the interest of many authors. When the
problem to be solved is stiff, namely when its solution is a combination of components with
dominant short frequencies and components with large frequencies and small amplitudes,
the use of schemes satisfying “good” stability properties is mandatory. Following the idea of
Dahlquist, a rigorous definition of them was given by Lambert and Watson in [2] for Linear
Multistep Methods (LMMs) which solve (7) in its original formulation. In such paper they es-
tablished that the order of a P-stable LMM, used as Initial Value Method (IVM), cannot exceed
two.
In this talk, it will be shown that the use of LMMs as Boundary Value Methods (BVMs) [1]
may be successful in overcoming the barrier of Lambert and Watson. In particular, a family
of P-stable BVMs, called PGSCMs and obtained as a generalization of the Störmer-Cowell
schemes, will be presented.
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The IDRstab method [2] has been proposed for solving large nonsymmetric linear sys-
tems. IDRstab is more effective than both IDR(s) and BiCGstab(`), but the residual norms still
oscillate, and the convergence of recursively computed residual norms sometimes does not
coincide with that of true residual norms by numerical errors on some model problems.

In this talk, we use the residual smoothing techniques presented in [3] to overcome these
difficulties. Here, we apply the smoothing techniques to an alternative implementation of
IDRstab noted in [2] to reduce the computational cost. Since it is known that the approxi-
mate solutions obtained by the smoothing algorithms are not more accurate than that of the
non-smoothed one [1], we present a strategy to improve the accuracy of the approximate so-
lutions by combining the smoothing techniques and the alternative implementation of IDRstab.
Numerical experiments demonstrate the efficiency of our smoothed variant of IDRstab.
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In this talk, we deal with the numerical inversion of the first kind Fredholm integral equa-

tion G∗(w) =
∫ ∞

0
k(w, τ)H(τ)dτ, where the kernel is given by k(w, τ) =

iw
τ(1 + iwτ)

. This

inverse problem is widely known to be ill-conditioned. The complex modulus G∗ is typically
given as a discrete data measured experimentally in industrial Rheology context.

We use an expansion method based on a sequence of orthogonal polynomials with re-
spect to a given weight function for computing approximations of the relaxation spectrum func-
tion H. Then numerical tests are given using the experimental data.
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This paper deals to the study and approximation of systems of differential-algebraic equa-
tions based on an analysis of a certain error functional. In seeking to minimize the error by
using standard descent schemes, the procedure can never get stuck in local minima, but will
always and steadily decrease the error until getting to the solution sought. Starting with an ini-
tial approximation to the solution, we improve it, adding the solution of some associated linear
problems, in such a way that the error is significantly decreased. A variable step procedure is
proposed in order to improve the implementation. Some numerical examples are presented
to illustrate the main theoretical conclusions. Finally, we should mention that we have already
explored in some previous papers this point of view [1], [2], [3]. However, the main hypothesis
in these papers asks for some requirements that essentially rule out the application to singular
problems.
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We design and analyse a numerical method for the solution of the following second order
integro-differential boundary value problem,

ν(y)g(y) =
∫ ∞

0
k(x)g(x)dx

(
D(y)g′(y)

)′
+ p(y), y ≥ 0, g′(0) = 0, g(+∞) = 0,

which arises in the study of the kinetic theory of dusty plasmas.
First we provide those informations on the existence and other qualitative properties of the
solution that will be essential in the numerical investigation. Then we propose a method which
is based on the discretization of the differential and integral terms and on an iteration process
to solve the resulting nonlinear system. Under suitable hypotheses we prove the convergence
of the overall method. The peculiarity of this equation is that the coefficients of the differential
terms depend on the integral of the unknown function. This influences both the choice of
the discretization process and the approach for studying its convergence. We will show the
characteristics of the method by means of some numerical simulations.
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The solution of the (generalized) saddle point linear system of the form Ax = b, where

A =

[
A B>

B −C

]
and A is symmetric positive definite, C is symmetric semi-positive defi-

nite, and B a full-rank rectangular matrix, is encountered in many field such as e.g. constrained
optimization, least squares, coupled consolidation problems and Navier-Stokes equations. It-
erative solution is recommended against direct factorization methods due to the extremely
large size of these systems. We propose here a development of the Mixed Constraint Precon-
ditioners (MCP) introduced in [1] which is based on two preconditioners for A (PA and P̃A) and

a preconditioner (PS) for a suitable Schur complement matrix S = BP̃A
−1

B> + C. The family
of Relaxed MCP is denoted byM−1(ω) where

M(ω) =

[
I 0

BP−1
A I

] [
PA 0
0 −ωPS

] [
I P−1

A B>

0 I

]
. (8)

We perform a complete eigenanalysis ofM−1(ω)A showing that the optimal value of ω can
be put in connection with the largest positive eigenvalues of Ã = P−1

A A and S̃ = P−1
S S.

Numerical results on geomechanical coupled consolidation problems of size up to 2 × 106

unknowns show that proper choice of ω based on a cheap estimation of spectral radius of Ã
and S̃ may lead to a 70% CPU time saving with respect to the naive MCP.
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Meshless elastic polyharmonic splines are useful for the approximation of vector fields
from scattered data points without using any mesh nor grid [1, 2, 4]. They are based on
a minimization of certain energy in an appropriate functional native space. A such energy is
related to the strain tensor constraint and to the divergence of the vector field. The computation
of such splines leads to a large linear system. In this talk, we will discuss how to transform
a such linear system to a general Sylvester matrix equation [3]. So, we will use global Krylov
subspace methods to compute approximations to the solution.
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The importance of singular and hypersingular integral transforms, coming from their many
applications, justifies some interest in their numerical approximation. The literature about the
numerical evaluation of such integrals on bounded intervals is wide and quite satisfactory;
instead only few papers deal with the numerical evaluation of such integral transforms on half-
infinite intervals or on the real line. Here, we propose some quadrature formulas for integrals
of this kind and we compare the new convergence and stability results with that in [1], [2].
Further, following the idea of [3], we construct another quadrature rule, characterized by the
Möbius transformation and the Gauss-Jacobi quadrature formula. Also in this case we prove
the convergence and the stability.
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We study polynomials which satisfy the same recurrence relation as the Szegő polynomi-
als, however, with the restriction that the (reflection) coefficients in the recurrence are larger
than one in modulus. Para-ortogonal polynomials that follows from these Szegő polynomi-
als are also considered. With two particular choice of real values (positive and alternatively
positive) for the reflection coefficients, zeros of the Szegő polynomials, para-orthogonal poly-
nomials and associated quadrature rules are also studied. Finally, again for the two particular
choice of real values for the reflection coefficients, interlacing properties of the Szegő polyno-
mials and polynomials arising from canonical spectral transformations are obtained.
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We present multistep collocation based numerical methods for Volterra Integro-Differential
Equations (VIDEs). Multistep collocation methods and several modifications have already
been proposed for ordinary differential equations [3] and for Volterra integral equations [1, 2].
These methods allow to increase the uniform order of convergence with respect to classical
one-step collocation methods, at the same computational cost. We extend the analysis of
multistep collocation methods to VIDEs with the aim of combining high accuracy with good
stability properties. We analyze the convergence properties of the constructed methods and
carry out the numerical stability with respect to the basic test equation and to test equation
with decomposable kernel. Moreover classes of A0-stable methods are provided. Numer-
ical experiments confirm theoretical expectations and make comparisons with the one-step
collocation methods.
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In this article we develop two numerical methods to compute the band spectra of 2D pho-
tonic crystals without impurities, a finite difference frequency domain (FDFD) method and a
finite element frequency domain (FEFD) method. Exploiting periodicity to identify discretiza-
tion points differing by a period, the computational complexity of the algorithms is reduced
significantly. Numerical results on the three test problems most considered in the literature are
presented.

∗Research supported by the Italian Ministery of Education and Research (MIUR) under PRIN grant No.
2006017542–003, by INdAM, and by the Autonomous Region of Sardinia under grant L.R.7/2007 “Promozione
della Ricerca Scientifica e della Innovazione Tecnologica in Sardegna.”
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The frequency analysis problem consists of determining unknown frequencies (possibly
anharmonic) from a signal consisting of the superposition of sinusoidal waves using a sample
of observed data at equal intervals of time. Much work has been published on the mathe-
matical theory of positive Perron-Caratheodory continued fractions (PPC-fractions) and Szegő
polynomials and their application to frequency analysis. This talk explores applications of this
theory to specific examples of frequency analysis, illustrating the effectiveness of the method
and its limitations.
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Large Eddy Simulation (LES) of turbulent flows is based on the idea of directly computing
the dynamics of the flow scales responsible for the energy transfer, while modeling the dynam-
ics of the scales where dissipation takes place. Although LES has a reduced cost with respect
to Direct Numerical Simulation, where all the scales are solved, it is a computationally expen-
sive technique, and its application to realistic flows is a usual context for high-performance
computing. In this talk, we focus on the design and development of a parallel LES code
for wall-bounded incompressible turbulent flows. Starting from suitably filtered Navier-Stokes
equations, a projection method is applied for decoupling the continuity and momentum equa-
tions. The discretization of the resulting equations leads to a numerical procedure that re-
quires, at each time step, two main tasks: computation of convective and diffusive fluxes, and
solution of large and sparse linear systems. Our software design methodology is based on
a formulation of these tasks in terms of basic linear algebra operations involving sparse ma-
trices, to use reliable and efficient open-source scientific software, such as PSBLAS [1] and
MLD2P4 [2], for developing an effective simulation code.
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In this talk we investigate the linear stability properties of the new family of General Linear
Nyström methods (GLNs), which is an extension of General Linear Methods to special second
order ODEs y′′ = f (x, y). We present the extension of the classical notions of stability matrix,
stability polynomial, stability and periodicity interval, A-stability and P-stability to the family of
GLNs. We next focus our interest on the derivation of highly stable GLNs inheriting the same
stability properties of highly stable numerical methods existing in literature, i.e. Runge-Kutta-
Nyström methods based on indirect collocation on Gauss-Legendre points: this property, in
analogy to a similar feature introduced for General Linear Methods solving first order ODEs,
is called Runge-Kutta-Nyström stability. The stability properties of GLNs with Runge-Kutta-
Nyström stability depend on a quadratic polynomial, which is exactly the stability polynomial
of the best Runge-Kutta-Nyström assumed as reference. We also provide examples of GLNs
with Runge-Kutta-Nyström stability.
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A new framework for transforming arbitrary matrices to compressed representations is
presented. The framework provides a generic way of transforming a matrix via unitary sim-
ilarity transformations to e.g. Hessenberg, Hessenberg-like and combinations of both. The
new algorithms are deduced, based on the QR-factorization of the original matrix. Based on
manipulations with Givens transformations, all the algorithms consist of eliminating the correct
set of Givens transformations, resulting in a matrix obeying the desired structural constraints.

Starting from this new reduction procedure we investigate further correspondences such
as irreducibility, unicity of the reduction procedure and the link with (rational) Krylov methods.

The unitary similarity transform to Hessenberg-like form as presented here, differs signifi-
cantly from the one presented in earlier works [1, 2]. Not only does it use less Givens transfor-
mations to obtain the desired structure, but also the convergence to rational Ritz values is not
observed in the standard way.
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PDE-constrained optimization problems arise in many applications, such as optimal con-
trol, shape design, and parameter estimation. Their size and complexity demands for efficient
numerical methods able to exploit high-performance computing resources. In this context, mo-
tivations for using multigrid methods [1] include their optimal convergence rates as well as the
possibility of developing scalable implementations. We focus on parallel algebraic multigrid
(AMG) preconditioners for the solution, through Krylov methods, of large-scale linear systems
resulting from the discretization of the optimality conditions for distributed elliptic optimal con-
trol problems. We present AMG preconditioners based on Schwarz methods and a modifica-
tion of the smoothed aggregation coarsening technique. This modification exploits the block
structure of the matrix that results from ordering the unknowns so that the degrees of freedom
corresponding to the same node of the discretization grid are consecutive. The aggregation
and the prolongation and restriction operators are built by using only the entries of the blocks
corresponding to the PDE constraint. This approach has been implemented within the frame-
work of the parallel preconditioning package MLD2P4 [2]. Numerical experiments show the
effectiveness of the preconditioners and their parallel efficiency.
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Recently we have introduced a new technique for combining classical bivariate Shepard
operators with three point polynomial interpolation operators. This technique is based on the
association, to each sample point V, of a triangle with a vertex in V and other ones in a
neighborhood of V, to minimize the error of the three point polynomial interpolant. The combi-
nation inherits both degree of exactness and interpolation conditions, at each node V, of the
polynomial interpolant, so that in [1] we succeed to extend Lidstone interpolation to scattered
data sets by combining Shepard operators with the three point Lidstone interpolation polyno-
mial [2]. Complementary Lidstone interpolation was recently introduced in [3] and drawn on
by Agarwal, Pinelas and Wong. Complementary Lidstone interpolation naturally complements
Lidstone interpolation. In this talk we generalize Complementary Lidstone interpolation to the
case of bivariate scattered sample points. Numerical results are provided.
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Let L2(Ω; µm), m = 0, 1, be Hilbert spaces of square integrable real functions on the
open set Ω ⊂ R for the positive Borel measures µm supported on Ω. The norm on this space
is defined from the inner product

‖ f ‖L2(Ω;µm)= (
∫

Ω
f (x)2dµm)

1
2 , ∀ f ∈ L2(Ω; µm), m = 0, 1.

Let Pn be the vector space of real polynomials in one variable of degree at most equal to n. A
Markov-Bernstein inequality corresponds to

||p′||L2(Ω;µ1)
≤ Mn||p||L2(Ω;µ0)

, ∀p ∈ Pn,

where p′ is the derivative of p. The smallest possible value of Mn is called the constant of
Markov-Bernstein. It is well known that this best constant is linked with the smallest eigenvalue
α1,n of a n× n positive definite symmetric matrix : Mn = 1√

α1,n
. It is exceptional to obtain the

exact value of Mn. So, it remains the solution to produce formal lower and upper bounds of
α1,n in order to give the asymptotic behavior of this eigenvalue.

Our aim is to do a review of the use of formal different versions of the qd algorithm in such
a way that some sequences of upper bounds are given for this smallest eigenvalue α1,n in
the case of the classical measures (Laguerre-Sonin, Jacobi) and partially in the case of the
generalized Gegenbauer measure.

A problem is still open : to use such a formal algorithm for finding an upper bound of the
smallest eigenvalue of a generalized eigenvalue problem Ax = λBx, where (in our case) A
and B are n× n positive definite symmetric matrices.
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Ruhe’s Rational Krylov Subspace is recognized as a powerful tool within Model Order
Reduction techniques for linear dynamical systems. However, its success has been hindered
by the lack of procedures, which would generate the sequence of shifts used to build the space
with good approximation properties.

We begin with the first order passive problems Au + ut = 0, u|t=0 = b for 0 ≤ t < ∞,
where u(t), ϕ ∈ RN and A ∈ RN×N. We will solve this problem by projecting it onto the
Rational Krylov Subspace (RKS). We first assume that the numerical range W(A) is known
and design a-priori algorithms of optimal shift generation. We consider this problem in the
frequency domain and reduce it to the third Zolotaryov problem in complex plane.

Then we propose a recursive greedy algorithm for adaptive choice of shifts taking into
account non-uniformity of the spectrum. The algorithm is based on an explicit formula for the
residual in the frequency domain allowing adaptive shift optimization at negligible cost.

Finally, we extend the our approach from the first order problem to the solution of passive
high and infinite order dynamical systems.

We illustrate obtained results with application to first order and fractional diffusion Maxwell’s
system.
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Let A be a linear self-adjoint operator from H to H, where H is a real infinite dimensional
Hilbert space with the inner product (·, ·). For positive powers of A, the Hilbert space H
could be infinite dimensional, while, for negative powers it is always assumed to be a finite
dimensional, and, in this case, A is also assumed to be invertible. Using the singular value
decomposition for a compact linear self-adjoint operator A and its moments, we can define it’s
fractional powers by Aνz = ∑k σν

k (z, uk)uk, and its fractional moments by cν(z) = (z, Aνz) =
∑k σν

k α2
k(z), where αk(z) = (z, uk), for ν ∈ Q.

We will approximate cq(z) by interpolating or extrapolating, at the point q ∈ Q, the cn(z)’s
for different values of the non-negative integer index n by a conveniently chosen function ob-
tained by keeping only one or two terms in the preceding summations.

Estimates of the trace of Aq, for q ∈ Q, and of the norm of the error when solving a system
Ax = f ∈ H will be given. For q = −1, other estimates of the trace of the inverse of a matrix
could be found in [1, 2].
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Beam and Warming proved in [1] that the supercompact wavelets can exactly represent
any piecewise polynomial function in one variable, generalizing the fact that Haar wavelet can
exactly represent any piecewise constant function. Higher level of accuracy is attained by
higher order polynomials of supercompact wavelets. Later, in [2], the authors developed an
extension of the work [1] to the case of surfaces defined over uniform meshes of the domain
of the surface. Such construction keeps the same advantages attained by [1] in relation with
orthogonality, short support, approximation of surfaces with no border effects, detection of
discontinuities, higher degree of accuracy and compressibility. The approach in [2] allows
transfer information of a function between different resolution levels by means of reconstruction
and decomposition algorithms stated in a multiresolution context.

Actually, we are working in generalizations of [2] in two different ways: First of all, we
extend the multiresolution scheme for surfaces to the case of non-uniform meshes. On the
other hand, we handle the problem of generalizing the multiresolution analysis with the aim of
transfering other kinds of information, like derivative or integral values, curvatures,...between
different resolution levels.
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IDR(s)-based Residual Reduction (abbreviated as IDR(s)-R2) method [3] was proposed as
one of iterative methods based on IDR theorem by P. Sonneveld and M. van Gijzen in 2008[2].
Since the iteration matrix is considered as one of preconditionings, we can choose flexibly
preconditionings. This article estimates effectiveness of some preconditioning techniques for
symmetric matrices applied to IDR(s)-R2 method. In particular, we focus on IC factorization
with inverse-based dropping[1], and demonstrate its efficiency through numerical experiments.
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The qd algorithm [1], for computing eigenvalues, has a close relationship with the inte-
grable discrete Toda equation. It is known that the discrete Toda equation is extended to the
discrete hungry Toda (dhToda) equation through the study of the box and ball system [2].

In this talk, we propose a new matrix eigenvalue algorithm in terms of the dhToda equation.
We first show that a time evolution from n to n + 1 of the dhToda equation corresponds to a
similarity transformation of a totally nonnegative (TN) matrix. Here the TN matrix is a matrix
with all nonnegative minors. We next reveal that the the dhToda variable has a periodical
asymptotic behavior. As n becomes sufficiently large, the implicit equilibrium points are related
to the eigenvalues of the TN matrix. Based on this property, we design a new algorithm, named
the dhToda algorithm, for eigenvalues of the TN matrix. Numerical examples show that the
dhToda algorithm is with high relative accuracy. We also describe some other properties of the
algorithm.
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The estimation of the diagonal of the inverse of a symmetric matrix, A, is an important
problem in many applications. Following the statistical estimation approach of Hutschinson,
several methods for this task (e.g. [1, 3]) depend on presence of an effective method for com-
puting z>A−1z for a suite of suitably selected vectors z. Recently, some of these techniques
were combined with conjugate gradients, iterative refinement and parallel processing to pro-
duce a method that for large matrices gave substantially better performance than previous
approaches ([2]). In this paper we propose solvers based on projections that exploit the mul-
tiple right-hand sides. We discuss the design of these algorithms and show that they further
improve the performance of diagonal matrix inverse estimators.
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Exponential integrators are powerful and well–established methods particularly suited for
the time–integration of semilinear systems of ordinary differential equations (ODEs) with lin-
ear stiffness. By solving exactly the stiff term, exponential integrators allow to integrate the
remaining non–stiff part of the system by means of explicit schemes without calling for severe
restrictions on the step-size.

In this talk we discuss the generalization of exponential integrators to problems of non
integer orders, namely fractional differential equations (FDEs), which are nowadays used in
several areas, including biology, finance, physics and control theory, to model systems exhibit-
ing anomalous dynamics [1].

The generalization of exponential integrators to FDEs presents some challenges: indeed,
a more difficult function, specifically a Mittag-Leffler type function, has to be evaluated with
matrix arguments; furthermore the presence of a persistent memory (a typical feature of FDEs)
demands for different and more expensive techniques for the time–discretization [2].

In this talk we discuss the main computational issues and we present a class of exponential
integrators for FDEs. Some results on accuracy and stability are also studied and we show, by
means of some numerical experiments, the effectiveness of the proposed approach.
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A method based on one-dimensional Gaussian quadratures is developed for evaluating
double integrals of the type indicated in the title. If the singularities occur only along the
diagonal and the regular part of the integrand is a polynomial of total degree d, the method can
be made exact by choosing the number of quadrature points larger than, or equal to, 1 + d/2.
Numerical examples are given as well as an application to a problem in aerodynamics.
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As is well known resonances play important roles in many processes in physics and chem-
istry. e.g., in dissociative attachment, associative detachment, vibrational excitation, etc., just
to mention a few. For description of the above mentioned resonance processes an accurate
knowledge of resonance energies and widths is required. To calculate these is however a
complicated problem. There exist very efficient commercial programs for calculation of bound
states but not an easy to apply method to calculate resonances. It is therefore natural to
ask whether one could obtain some information on the resonance energies and widths using
bound state energy calculations only. The answer is affirmative and one method following this
idea was proposed already in seventieths in the field of nuclear physics. It works as follows: it
is intuitively clear that if we modify the Hamiltonian in such a way so as to make the interaction
between the colliding particles more attractive the bound states become more deeply bound. If
the additional interaction is strong enough the resonances are eventually converted into bound
states. One can calculate the bound state energy for various potential strength and then con-
struct an analytic function by means of analytic continuation. Once the analytical expression is
found, the resonance energy and width is determined by simply setting the additional potential
strength to zero. Thus from a knowledge of bound state energies for only a slightly modified
problem we can determine the resonance parameters. It is the purpose of this contribution to
study the numerical performance of the process of analytical continuation on simple analytical
models by means of the statistical Padé approximation. It is well known that the process of
analytical continuation represents an ill-conditioned problem. It will be shown that the applica-
tion of the Padé approximation nevertheless allows us to obtain very precise continued data
provided the input data were accurate enough.
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A second order finite volume scheme is considered [1]. The scheme includes total field
- scattered field formulation and a perfectly matched layer [2]. It was applied to evaluation of
optical properties of photonic crystal waveguides [3]. Reflection and transmission coefficients
were studied for a range of frequencies inside the photonic crystal bandgap for different config-
urations. Our results compare well with simplified analytic models from previous researchers
[4].
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We consider integral equations of type
∫

γ
K(x, y)u(y)dSy = f (x), x ∈ Γ, where γ and

Γ are some closed disjoint curves or surfaces. Equations of this type arise when solving
boundary value problems of elliptic partial differential equations by interior source methods.
These methods generate the solution of the differential equation as an integral over a contour
or a surface outside the closure of the (usually exterior) domain. Typically K has a singularity
at x = y, and if Γ and γ are disjoint, the singularity is avoided. In fact, if Γ and γ are analytic,
then the integral equation has an analytic kernel. Results about existence and uniqueness of
the solution can often be obtained only in spaces of linear analytic functionals, and in general
case, only density of the range of the integral operator can be proved.

We look for approximate solutions of the integral equation as linear combinations of Dirac’s
δ-functions. For the corresponding collocation method, in case of analytic data the conver-
gence is exponential in the number of variables. If the boundary is only piecewise smooth,
the convergence rate deteriorates to algebraic. To get a more robust method, one can choose
on Γ more points than on γ, and solve the corresponding overdetermined system by least
squares.
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A (0, 1,−1) matrix W = W(n, n − k), k = 1, 2, . . ., of order n satisfying WTW =
WWT = (n− k)In is called a weighing matrix of order n and weight n− k or simply a weigh-
ing matrix. Every row and column of a W(n, n− k) contains exactly k zeros.
The talk will be concentrated on the evaluation of minors for weighing matrices W(n, n− 1)
with zeros on the diagonal. Theoretical proofs concerning their minors up to the order of
(n − 3) × (n − 3) will be derived. A general theorem specifying the analytical form of any
(n− k)× (n− k) minor will be developed.
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The maximum likelihood technique for identification of linear discrete-time stochastic sys-
tems incorporates optimization algorithms that may require calculation of the log likelihood
gradient (known as a ”score”) and the Fisher information matrix (FIM). The gradient evaluation
demands the determination of the sensitivities of the system state to unknown parameters.
It leads to implementation of roughly p + 1 equivalent Kalman filters (KFs), where p is the
dimension of the unknown system parameter vector.

Algorithms for the score and FIM calculation could be described and derived more com-
pactly and simply by recasting the filtering problem in the so-called array form. Such algorithms
do not propagate the Riccati recursion directly and, hence, are often much simpler to describe
and implement (in software and hardware) than explicit sets of equations. They are becoming
the method of choice in many applications.

Having been inspired by these and related problems, we construct a new square-root al-
gorithm for the log-likelihood gradient evaluation. This avoids the use of the conventional KF
with its inherent numerical instabilities and improves the robustness of computations against
roundoff errors. Apart from the numerical advantages, the convenient array form allows for ef-
fective calculation method where the required ”bank” of the filters is replaced by an augmented
array to which the orthogonal transformations are applied.
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Instituto Superior Técnico, TU Lisbon
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Recently, Kulikov presented the idea of double quasi-consistency, which facilitates global
error estimation and control, considerably. More precisely, a local error control implemented
in doubly quasi-consistent numerical methods plays a part of global error control at the same
time. However, Kulikov studied only Nordsieck formulas and proved that there exists no doubly
quasi-consistent scheme among those methods.

In this paper, we prove that the class of doubly quasi-consistent formulas is not empty
and present the first example of such sort. This scheme belongs to the family of supercon-
vergent explicit two-step peer methods constructed by Weiner et al. We present a sample
of s-stage fixed-stepsize doubly quasi-consistent parallel explicit peer methods of order s− 1
when s = 3. Then, we discuss variable-stepsize explicit parallel peer methods grounded in
the interpolation idea. Approximation, stability and convergence are studied in detail. In par-
ticular, we prove that some interpolation-type peer methods are stable on any variable mesh
in practice. Double quasi-consistency is utilized to introduce an efficient global error estima-
tion formula in the numerical methods under discussion. The main advantage of these new
adaptive schemes is the capacity of producing numerical solutions for user-supplied accuracy
conditions in automatic mode and almost at no extra cost. This means that a usual local er-
ror control mechanism monitors and regulates the global error at the same time because the
true error of any doubly quasi-consistent numerical method is asymptotically equal to its local
error. Numerical experiments support theoretical results of this paper and illustrate how the
new global error control concept works in practice. We also conduct a comparison with explicit
ODE solvers in MatLab.
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The Algebraic Optimized Schwarz Methods (AOSM) have been introduced in [1]. These
methods mimic in the algebraic form the well-known optimized Schwarz methods (OMS). The
AOSM methods are based on the modification of the block matrices associated to the trans-
mission conditions between sub-domains. The transmission blocks are replaced by modified
blocks to improve the convergence of the corresponding methods. In the optimal case, the
convergence can be achieved in two iterations. We are interested in how the algebraic opti-
mized Schwarz methods, used as preconditioner solvers, perform in solving partial differential
equations. We are also interested in their asymptotic behavior with respect to change in prob-
lems parameters. We will present different numerical simulations corresponding to different
type of problems in two- and three-dimensions.
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Radial basis function (RBF) based approximation methods are interesting in the context
of PDE solving due to their ease of implementation, their potentially spectral convergence
rates, and their flexibility with respect to geometry. However, a persistent problem has been
the severe ill-conditioning of the systems of equations that typically need to be solved. This
ill-conditioning is partly related to the size of the system, but even more so to the shape pa-
rameter of the RBFs. As the shape parameter is decreased, the RBFs become increasingly
flat, leading to a nearly linearly dependent basis. However, the nearly flat limit in many cases
provide the best approximation properties. The recently developed RBF-QR method [1] pro-
vides numerically stable evaluations for the small shape parameter range in up to three space
dimension. With the conditioning obstacle removed, the focus can be turned to more general
computational issues such as computational cost and memory requirements. Instead of us-
ing a global RBF method resulting in a dense linear system, we propose a partition of unity
approach with local RBF approximants. The locality reduces both memory usage and compu-
tational cost compared with the global method. We show that the RBF-QR algorithm is a key
to success and provide both theoretical results and numerical experiments showing spectral
convergence with respect to the local problem size and algebraic convergence with respect to
the partition size.
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In 1795, Gaspard Riche de Prony presented a method for interpolating a sum of exponen-
tial functions. Closely related to Padé approximation, Prony’s method has found applications
in the shape from moments problem, spectral estimation, and lately sparse sampling of digital
signals with finite rate of innovation.

The interesting connection between Prony’s method and error-correcting codes has led
to the development of symbolic-numeric sparse polynomial interpolation, which has also ex-
ploited a reformulation of Prony’s method as a generalized eigenvalue problem and a link to
Rutishauser’s qd-algorithm.

Recall that a meromorphic function is a function analytic everywhere except at a set of
isolated points that are called the poles of the function. Rutishauser’s qd-algorithm can deter-
mine the poles of a meromorphic function from its Taylor expansion. In the multivariate case
such poles form a set of solutions of the associated multivariate polynomial equations. The in-
terdependence between the Taylor expansion and poles becomes less obvious because there
can be various ways to order the multivariate Taylor coefficients.

Recent progress in the multivariate qd-algorithm expands our understanding in associating
the convergence of multivariate poles to the different orderings of Taylor coefficients, among
which a special case has been implemented in developing numerical multivariate polynomial
factorization. Resorting to the link from qd to Padé leads us to a multivariate Prony’s method,
which intricately involves higher-order tensors and their decompositions.
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The problem of finding a global minimum of a real function on a set S ⊆ Rn occurs in many
real world problems [2], [3]. Since its computational complexity is exponential, its solution
can be a very expensive computational task. In this paper, we introduce a parallel algorithm
that exploits the latest computers in the market equipped with more than one processor, and
can be used in a clusters of computers. The algorithm belongs to the improvement of local
minima algorithm family, and carries on local minimum searches iteratively but trying not to
find an already found local optimizer [1]. Numerical experiments have been carried out on two
computers equipped with four and six processors; fourteen configurations of the computing
resources have been investigated. To evaluate the algorithm performances the speedup and
the efficiency are reported for each configuration.
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We discuss the analytical properties and the numerical treatment of a nonlinear singu-
lar second order boundary value problem in ordinary differential equations, posed on an un-
bounded domain, which represents the density profile equation for the description of the for-
mation of microscopic bubbles in a non-homogeneous non-newtonian fluid. First, we give an
asymptotic analysis of the underlying equation and provide asymptotic expansions of the one-
parameter families of solutions satisfying the boundary conditions at the singular points. Then,
after the transformation of the problem into a new one, defined on a bounded interval, polyno-
mial collocation is applied to solve the new problem. The results of the numerical simulation
are presented and discussed.

In the present work, the analysis and computational methods proposed earlier for the case
of newtonian fluids (see [1], [2]), are extended to the non-newtonian case.
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Classical Appell polynomials are defined by differential equation A
′
n = nAn−1, n ∈ N,

where n ∈ N is the degree of polynomials An(x). Now we define Appell polynomials of
second kind the polynomials given by

∆An = nAn−1, n ∈N (9)

where ∆ is the classical difference operator: ∆ f (x) = f (x + 1)− f (x).
Well known examples are Bernoulli polynomials of second kind and Boole polynomials.
Let L be a linear functional on the space of real function defined in [0, 1]. We look for a
polynomial Pn( f , x) of degree n such that

L
(

∆kPn

)
= L

(
∆k f

)
, k = 0, ..., n. (10)

We prove that this interpolation problem has the unique solution

Pn( f , x) =
n

∑
k=0

L
(
∆k f

)
k!

AL
n (11)

where AL
n is the class of Appell polynomials of second kind related to L.
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A polynomial sequence generated by powers of certain first order differential operators
will be under discussion. Despite their non-regular orthogonality, the corresponding canonical
element of its dual sequence is a classical form of Hermite, Laguerre, Bessel and Jacobi. They
will be thoroughly characterized.
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HIGH-PERFORMANCE SPECTRAL-ELEMENT SIMULATION OF CARDIAC

ELECTRICAL FUNCTION USING GPUS
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Models of cardiac electrophysiology consist of a system of partial differential equations
coupled with a system of ordinary differential equations representing cell membrane dynam-
ics. Discretization with an average nodal spacing of 0.2 mm as required to prevent the on-
set of non-physical, spurious effects when these equations are solved numerically using fi-
nite element (FE), or finite difference (FD) methods generates a mesh with many millions of
nodes, making whole heart simulation a demanding scientific computing problem. As an al-
ternate choice, spectral-element method (SEM) can be adopted. SEM is designed to combine
the good accuracy properties of pseudospectral techniques such as Legendre or Chebyshev
methods with the geometrical flexibility of classical low-order FE methods. As a result, SEM
is extremely efficient to model propagation phenomena on complex shapes using fewer mesh
nodes than its FE equivalent (for the same level of accuracy).

Another issue is that current simulation software does not provide the required computa-
tional speed for practical applications. One reason for this is that little use is made of recent
developments in hardware architecture for throughput-oriented computing and in the associ-
ated programming models, such as GPGPU (general purpose computation on GPUs).

Combining GPU programming with higher order discretization methods we developed a
CUDA implementation of a spectral element code to perform the numerical simulation of car-
diac action potential on a whole heart. We discuss the implementation and optimization of
the code and compare it to an existing CPU based solver. We provide some examples that
demonstrate the robustness of the method and the use of these numerical models, focusing
specifically on some selected model problems.
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ITERATED FUNCTIONS AND THE SOLUTION OF AN INVERSE PROBLEM
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Consider the random process in R given by xn+1 = δ(xn − β) + β, where 0 < δ < 1
is a real parameter and β is drawn randomly from a probability distribution σ(β). Clearly, the
points x are attracted towards the points β and, in the limit, their distribution converges to a
measure µ. This latter is the invariant measure of a system of Iterated Functions (I.F.S.).

Usually in I.F.S. theory, the distribution σ(β) is discrete and composed of a finite number
of atoms. In this talk, we allow σ to be any compactly supported distribution. We describe a
new technique for computing the Jacobi matrix of the measure µ, that is numerically stable for
matrix orders as large as hundreds of thousands. The same theory can be reversed into an
efficient technique for solving an inverse reconstruction problem, that requires to find σ from
the knowledge of µ. This problem can be cast in the form of a generalized Gaussian integration
problem. Introductory results to the new material presented here can be found in [1, 2].
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That the linear systems of algebraic equations arising upon the discretization of elliptic
PDEs can be solved very rapidly is well-known, and many successful iterative solvers with
linear complexity have been constructed (multigrid, Krylov methods, etc). More recently, it has
been demonstrated that it is also often possible to directly compute an approximate inverse
(or LU/Cholesky factorization) to the coefficient matrix in linear or close to linear time. The
inverse is computed in a data-sparse format that exploits internal matrix structure such as
rank-deficiencies in the off-diagonal blocks.

The talk will focus on methods relying on the Hierarchically Semi-Separable (HSS) matrix
format to efficiently represent the solution operator to the PDE. This format is less versatile than
the more popular H and H2 matrix formats, but typically results in very high performance in
terms of speed and accuracy when it can be made to work. For problems on 1D domains such
as a boundary integral equation (BIE) on a domain in the plane, the adaptation of the HSS
format is straight-forward, and problems in higher dimensions can be handled via recursive
domain decomposition techniques that reduce the dimensionality of the domain on which the
compressed operator acts.

The talk will describe numerical examples in both two and three dimensions. Variable
coefficient problems are handled via accelerated nested dissection methods, while constant
coefficient problems are solved via the corresponding boundary integral equation formulations.
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In this work we study the minimization of a linear functional defined on a set of approximate
solutions of a discrete ill-posed problem. The primary application is computation of confidence
intervals for components of the true solution. We exploit the technique introduced by Elden
in 1990 ([1]), based on a parametric programming reformulation involving the solution of a
sequence of quadratically constrained least squares problems. To minimize the number of
matrix-vector products, we apply a numerical method based on Lanczos bidiagonalization and
Gauss-type quadrature rules to solve the trust-region subproblems.
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The results we present here concern geometrically continuous polynomial splines, in the
sense that the left/right derivatives at the knots are linked by connection matrices. A classical
sufficient condition for spaces of such splines to be suitable for either Approximation or Ge-
ometric Design is the total positivity of all their connection matrices (i.e., all their minors are
non-negative) [1]. Their entries can then serve as shape parameters. As an example, they
can be used in spline interpolation to make up for the Gibbs phenomenon.

We show how to obtain all the connection matrices leading to suitable spline spaces. The
results in themselves are interesting in so far as they permit more efficient shape effects than
total positivity. Even more interesting is the way we achieve them. They follow from considering
polynomial splines as special instances of Chebyshevian splines and polynomial spaces on a
closed bounded interval as special instance of Extented Chebyshev spaces [3, 2].
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We introduce for the first time the notion of good pivot patterns as follows. A pivot pattern
{p1, p2, . . . , pn} appearing after application of Gaussian Elimination (GE) with complete piv-
oting on a matrix of order n is called good, if its pivots satisfy pi pn−i+1 = n, i = 1, . . . , n.

Clearly, good pivot patterns are of the form
{

p1, p2, . . . , p n
2
, n

p n
2

, . . . , n
p2

, n
p1

}
.

It is important to specify the possible existence of good pivot patterns appearing after ap-
plication of GE on Completely Pivoted (CP) Hadamard matrices of various orders [2]. The
appearance of this property confirms Cryer’s conjecture [1] for all Hadamard matrices pos-
sessing good pivots and for those belonging to the same H-equivalence class, namely that
their growth factor is equal to their order.

We shall prove that for every pivot pk, k = 2, . . . , n, of a CP Hadamard matrix H of order
n it holds pk > 1. Based on this fact, we take a small step towards the equality portion of
Cryer’s conjecture proving that if the pivots {p1, p2, . . . , pn} of a CP Hadamard matrix H of
order n are good, then its growth is equal to its order.

Hadamard matrices are the only matrices known so far that lead to good pivot patterns.
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ON A FORMAL SOLUTION FOR A DISCRETIZED SIRS EPIDEMIC MODEL
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To understand infection mechanisms, the stability of the solution for continuous epidemic
models is often discussed. However, Acedo et al. [1] recently proposed a formal solution for
a continuous SIRS model. We apply analytical approach by [1] to a discretized SIRS model.
This analytical approach can not be applied to discretized model using traditional numerical
schemes. Sekiguchi and Ishiwata [2] recently obtained a discretized SIRS model using the
nonstandard discretization in [3] and also showed the sufficient conditions for global behaviors
of the solution, which are corresponding to those of the original continuous model. Similarly, we
derive a discretized SIRS model and, as in [1], we obtain a formal solution for this discretized
model.
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We consider a quadrature method based on the alternate trapezoidal quadrature for the
eigenvalue problem given by the Fredholm integral equation of second kind. The understand-
ing of the spectral properties of this quadrature method is of interest to the numerical compu-
tation of the periodic Hilbert transform and related operators without resorting to the spectral
method. We prove that, for some convolution-type integral kernels, such a quadrature method
always yields eigenvalues with double multiplicity. This could help to reduce the computational
cost of the quadrature method by exploring the decoupling of the resulting discrete eigenvalue
problem.
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In this talk we introduce the notion of Hamiltonian motion of algebraic curves [1]. This
motion generates a deformation of the algebraic curve which is an interesting subclass of
coisotropic deformations of algebraic varieties [2]. Such Hamiltonian deformations are related,
in a large number of cases, to the integrability of suitable PDE systems. As an example we
present the case of the elliptic curves and the relations with the motion of an inviscid vortex
filament.
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In this talk we describe the family of General Linear Nyström methods (GLNs), which
provides the extension of the family of General Linear Methods for the numerical solution of
first order Ordinary Differential Equations (ODEs) [1, 2] to special second order ODEs. The
family of GLNs properly includes all the classical methods already considered in the literature
for y′′ = f (x, y), such as linear multistep methods, Runge-Kutta-Nyström methods, two-step
hybrid methods and two-step Runge-Kutta-Nyström methods as special cases. The family
of methods we aim to consider is wider and more general with respect to the ones already
considered in the literature: in fact, our new methods depend on more parameters which can
be exploited, for instance, in order to provide a better balance between order of convergence
and stability properties. At the same time, the theory of GLNs allows to provide an unifying
approach for the analysis of the properties of convergence, consistency and stability. We
present the re-formulation of the classical methods according to the new approach and the
main results regarding consistency, zero-stability, convergence, order conditions and linear
stability theory. Using GLNs theory, new examples of numerical methods for second order
ODEs are introduced and discussed. The approach we will use is the natural extension of the
General Linear Methods theory developed for first order ODEs [1, 2].
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In a nonlinear two-parameter eigenvalue problem (NMEP) we are searching for a pair
(λ, µ) and nonzero vectors x1, x2, such that

F1(λ, µ)x1 = 0,
F2(λ, µ)x2 = 0,

where Fi : C2 → Cni×ni is a nonlinear operator for i = 1, 2. In such case (λ, µ) is an
eigenvalue and x1 ⊗ x2 is the corresponding eigenvector. We assume that the problem is
regular, i.e., det(Fi(λ, µ)) 6≡ 0 for i = 1, 2.

NMEP can be viewed as a generalization of the nonlinear eigenvalue problem (NEP) as
well as a generalization of the algebraic two-parameter eigenvalue problem (MEP) of the form

(A1 + λB1 + µC1)x1 = 0,
(A2 + λB2 + µC2)x2 = 0,

where Ai, Bi, Ci are ni × ni complex matrices. We will show that many numerical methods
and theoretical results for NEP and MEP can be generalized to NMEP.

An example of a NMEP is a quadratic two-parameter eigenvalue problem (QMEP) which
appears in the study of linear time-delay systems for the single delay case.
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Matrix functions are of great importance in lots of applications. This work deals with the
numerical approximation of the action of matrix functions frequently occurring in the numerical
solution of real life models. This issue is faced by means of rational Krylov methods and, for
a wide class of matrices, error estimates are developed. In order to enhance the performance
an adaptively restarted version is also proposed.
Numerical experiments related to important applications are presented to validate the theoret-
ical results and to better explain the implementation aspects.
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RATIONAL GAUSS QUADRATURE
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We present three types of reccurence relations for orthogonal rational functions with arbi-
trary real and/or complex conjugate poles and their application to rational Gauss quadrature
formulae. A matrix which has the same role for computation of rational Gauss quadrature as
Jacobi matrix does for classical Gauss quadrature is now septadiagonal matrix (or pentadiag-
onal if we do not have complex poles) with 5× 5 and/or 3× 3 blocks along a diagonal.
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In many practical applications, piecewise polynomial surfaces need to be connected by us-
ing different smoothness degrees and, in the literature, tensor product spline surfaces of such
a kind have been widely investigated. Several problems can arise with tensor product sur-
faces, for example this choice may cause oscillations far from the shape to be built. Therefore,
in some cases spline surfaces of total degree are preferable (see e.g. [1, 2]).

In [2], the authors presented the idea of quadratic spline spaces Sµ
2 (Tmn) with smoothness

µ = 0, 1, on criss-cross triangulations Tmn of a rectangular domain, in order to construct
NURBS surfaces. In this paper we continue the investigation of such spaces, introducing also
the jump case, i.e. µ = −1, with particular reference to the computation of their dimension
and the construction and analysis of their local bases. Finally, we propose a computational
procedure to construct such bases and we give some applications.
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Originally, the Tau method proposed by Lanczos was developed to approximate the solu-
tion of a linear ordinary differential equation. The operational version of the method, as in other
methods of weighted residuals, or in other spectral methods, is based on solving a system of
linear algebraic equations, obtained by imposing certain conditions for the minimization of the
residual.

The generalization of the Tau method for solving nonlinear differential equations usually
involves some kind of linearization of the problem and the subsequent use of the method’s
version for linear problems. In this work we propose an alternative technique by associating
a nonlinear algebraic system to the nonlinear differential problem. We show that this system
can be rearranged in order to allow resolution using forward substitution, and so avoiding the
linearization of the given problem.

We present the application of an adaptive step by step version of this alternative non-
linear Tau method to several nonlinear dynamical systems problems, including to the Lorenz
equations where we verify that the method is sufficiently stable to recover the known attractor.
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METHODS

C. Campos, J. E. Roman
Instituto I3M

Universitat Politècnica de València
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In the context of symmetric-definite generalized eigenvalue problems, Ax = λBx, it is
often required to compute all eigenvalues contained in a prescribed interval. Research in this
topic culminated with the paper by Grimes et al. [1], where a robust and efficient procedure
is proposed. This technique, usually referred to as spectrum slicing, combines several in-
gredients: (1) unrestarted block Lanczos method with B-orthogonalization, (2) shift-and-invert
spectral transformation, i.e., to solve (A − σB)−1Bx = θx for a given shift σ, (3) dynamic
shift selection, and (4) use of inertia information to determine the number of eigenvalues in a
given subinterval. Nowadays, robust Krylov methods are based on restarted variants such as
the thick-restart Lanczos method [2]. We propose an updated spectrum slicing methodology
that relies on such variants, and explore several strategies for shift selection, locking, enforce-
ment of multiplicity, etc. Our aim is to provide an industrial-strength parallel implementation in
SLEPc [3].
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We describe some new methods for the solution of nonlinear equations in one and two
variables based on Hermite interpolation by polynomial or rational splines. In the univariate
case, the method is an extension of Newton and secant methods. Numerical tests show that
the convergence is cubic.
In the bivariate case, the solution of the system f = g = 0 is based on the approximation of
functions f and g by convenient quadratic polynomial or rational spline approximants φ and
ψ, followed by the solution of the system φ = ψ = 0. Numerical examples will illustrate the
method.
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The symplectic Gram-Schmidt (SGS) orthogonalization process is a crutial procedure for
some important structure-preserving methods in linear algebra. The algorithm perfoms a fac-
torization A = SR, where the ordered columns of the matrix S form a symplectic basis of the
range of A, and R is J-upper triangular. There exist two versions of SGS, the classical (CSGS)
and the modified (MSGS). Both are equivalent in exact arithmetic, but have different numerical
behaviors. In this paper, a numerical equivalence is showed between the MSGS algorithm
and Householder SR algorithm applied to an embedded matrix obtained from A by adding two
blocks of zeros in the middle and the bottom of the matrix A. The latter algorithm is based
on transformations which are symplectic and rank-one modification of the identity (symplectic
Householder transformations).
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We show how a newly developed multivariate data fitting technique enables to solve a
variety of scientific computing problems in:
• filtering,
• queueing,
• networks,
• metamodelling,
• computational finance,
• computer graphics,
• antenna design,

and more.
We can capture linear as well as nonlinear phenomena because we use a generalized

multivariate rational model.
The technique is a refinement of the basic ideas developed in [1] and interpolates inter-

val data. Intervals allow to take the inherent data error in measurements and simulation into
consideration, whilst guaranteeing an upper bound on the tolerated range of uncertainty. The
latter is the main difference with a least squares technique which does as well as it can, but
without respecting an imposed threshold on the approximation error. In applications where in-
dustry standards need to be guaranteed, the interval interpolation technique may be a valuable
alternative.
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We focus on the solution of discrete ill-posed problems to recover the original information
from blurred signals in the presence of Gaussian white noise more accurately. For a certain
class of blur operators and signals we develop a diagonal preconditioner to improve the re-
construction quality, both for direct and iterative regularization methods. In this respect, we
incorporate the variation of the signal data during the construction of the preconditioner. For
general blur operators and signals we present the impact of a piecewise reconstruction using
a partitioning approach to improve the quality. Embedding both methods in an outer iteration
may yield further improvement of the solution. In connection with iterative regularization meth-
ods we modify the stopping criterion and investigate two approaches to estimate the optimal
number of iterations. Reconstructions of discrete ill-posed model problems, arising both from
realistic applications and examples generated on our own, demonstrate the effect of the pre-
sented approaches. Regarding the stopping criteria, we provide comparison to standard tools
known from literature which we moderatly adjust for certain problems.
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It is well–known that the hyperbolic Jacobi-like algorithm is an accurate algorithm for com-
putation of the eigendecomposition of symmetric, but indefinite matrices. The first phase of
the algorithm is the symmetric indefinite factorization, followed by the one-sided hyperbolic
Jacobi-like orthogonalization of a matrix factor. The second phase could be replaced by the
Kolgetliantz–like hyperbolic singular value decomposition (HSVD) of a matrix factor. In this talk
we will present this algorithm, and compare it with the already known Jacobi HSVD algorithm.
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We deal with some polynomial quasi–projections defined starting from certain means of
Fourier partial sums corresponding to a given system of orthogonal polynomial. In particular
we discuss some applications to the weighted–L1 polynomial approximation problem. The
results we show are interesting in the case of non–smooth L1 functions.
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COMPARISON AMONG MULTIRESOLUTION SCHEMES WITH AND WITHOUT

ERROR CONTROL STRATEGIES.

S. Amat, B. Marı́a Dolores, and J. C. Trillo
Department of Applied Mathematics and Statistics

Universidad Politécnica de Cartagena, Spain
jctrillo@upct.es

Multiresolution representations of data are widely used nowadays in several applications.
Nonlinear methods are appropriate to deal with data containing singularities. The stability
of nonlinear schemes is usually difficult to check. Thus, one can make use of error control
algorithms to ensure it. Other approaches to study the stability of multiresolution schemes
are studied in [2] and [1]. In [2] the authors compare Harten error control algorithms ([3]) with
the syncronization strategy proposed by Sweldens ([4]). In [1] another possible modification
of the Harten error control algorithms is proposed. In this work we analyze the advantages
and disadvantages of the different approaches to control the error in comparison with the
application of the schemes without any error control strategy.
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ADAPTIVE FILON METHODS FOR THE COMPUTATION OF HIGHLY OSCILLATORY

INTEGRALS

V. Ledoux and M. Van Daele
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First we revisit some important families of quadrature methods (Filon type methods and
exponentially fitted methods) for highly oscillatory integrals, all sharing the remarkable property
that their accuracy drastically improves as the frequency grows and we apply these methods
to integrals of the form

∫ h
0 f (x)eiωxdx, ω > 0. We also show that, for this type of problem, the

methods are strongly related.
The EF rules depend upon frequency dependent nodes that start off at the Gauss nodes

when the frequency is zero and end up at the Lobatto nodes when the frequency tends to
infinity. This makes the rules well suited for small and very large frequencies. However, for
a particular frequency of moderate size, the computation of the nodes is expensive (due to
ill-conditioning and iteration).

On the other side, the Filon-type rules with (fixed, i.e. frequency independent) Lobatto
nodes behave very well for large frequencies, but not so good for smaller frequencies, because
Lobatto-type methods are of lower classical order than Gauss-type methods.

What we propose in this talk is a new type of quadrature rules with frequency dependent
nodes, for which the evaluation for a particular value of the frequency is cheap, and which is
suited for small as well as large frequencies. The ill-conditioning and the need for iteration is
removed by the introduction of some S-shaped functions.

Finally a technique is proposed that can be used to produce accurate error estimates,
allowing a successful practical implementation of the quadrature rules discussed.
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We will present numerical option pricing with the use of finite differences. For option
pricing problems where the option depends on several underlying assets (eg stocks) a high-
dimensional PDE has to be solved. Due to this high-dimensionality standard methods will
suffer from the “curse of dimensionality”. To mitigate this curse we use adaptive techniques
based on estimates of truncation errors. Hence, we place grid-points where they are most
needed for accuracy reasons. In some cases we combine the adaptivity with high-order meth-
ods. We will show examples from both European options as well as options of American type.
The latter type of options can be exercised at any time prior to the expiration date leading to
an open boundary problem.

The whole procedure from discretization to the numerical solution of the linear system of
equations that has to be solved each time-step will be presented.
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Many modern series acceleration methods are built around an input of a sequence {sn}
of partial sums of the series, and a remainder estimate ρn; they then proceed by extrapolating
from the sn and ρn a limit or antilimit of the sequence, based on the corrections to the remainder
estimate assumed by the particular acceleration method. Generally, the remainder estimates
are quite simple, at best correct to leading order, because precise forms for the remainders
are usually not known. In this talk we show that whenever an asymptotic expansion for the
ratio of the terms of the series is known in inverse powers of n, we can derive an asymptotic
expansion ρn ∼ ωn ∑k ck/nk. Here the leading term ωn may contain a power or factorial in
n and can be determined analytically, but more importantly the asymptotic coefficients ck can
be explicitly computed to any desired order from the asymptotic expansion of the term ratio.
We outline the derivation of this method and the circumstances under which it either acceler-
ates the convergence or improves the divergence of an analytic series, and we give several
examples of its application: to generalized hypergeometric functions, zeta functions, and some
slowly convergent Fourier series. We thereby extend the results of [1], which considered only
generalized hypergeometric series q+1Fq.
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APPROXIMATE GREATEST COMMON DIVISORS OF BERNSTEIN POLYNOMIALS

N. Yang and J. Winkler
Department of Computer Science

The University of Sheffield
Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom

j.winkler@dcs.shef.ac.uk

This paper considers the computation of the degree of an approximate greatest common
divisor (AGCD) of two Bernstein basis polynomials f (y) and g(y). This computation is usually
performed either by Euclid’s algorithm, or by computing the singular value decomposition of
the Sylvester resultant matrix S( f , g), where f = f (y) and g = g(y), and determining the
rank loss of this matrix. These methods give, however, poor results when f (y) and g(y) are
corrupted by noise, which is the situation encountered in practical problems.

Two new methods for the computation of the degree of an AGCD of the inexact polynomi-
als f (y) and g(y) are described, and computational results are presented when the greatest
common divisor of the theoretically exact forms of f (y) and g(y) is of high degree. It is shown
that the polynomials must be preprocessed by three operations before these methods are
implemented. One of these preprocessing operations is the normalisation of the coefficients
of f (y) and g(y), and it is shown that normalisation by the geometric means of their coeffi-
cients is superior to normalising by the 2-norms of their coefficients. The effect of the second
preprocessing operation is the destruction of the Bernstein basis, that is, f (y) and g(y) are
transformed to another basis. All computations are performed in the new basis, and the results
obtained with this new basis are compared with the results obtained when the preprocessing
operations are omitted, that is, the computations are performed in the Bernstein basis. It is
shown that the inclusion of the preprocessing operations yields a considerable improvement
in the computed results with respect to the results obtained when the computations are per-
formed in the Bernstein basis, even when the theoretically exact forms of f (y) and g(y) have
roots in the interval [0, . . . , 1]. A possible explanation for these improved results is considered.
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PARJOINV: HIGH-PERFORMANCE SCIENTIFIC COMPUTING FOR

MULTIDIMENSIONAL JOINT INVERSION
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This talk deals with the study of a Tikhonov-like approach to the joint inversion of multidi-
mensional data, based on an edge-preserving regularizer (M.D. Zhdanov et al., 2004; E. Haber
et al., 1997), and its parallel implementation in an HPC software package. The package is built
on top of the well known and widely used high-performance parallel libraries PETSc and TAO.
The starting point is a joint work with G. Vignoli. Effective methods and efficient codes for a
truly joint inversion have recently received increasing interest, because multiple types of obser-
vations of the same object can be used at once in a single procedure to recover an estimate of
the object itself via non-invasive inspection (M.D. Jegen et al., 2009; M. Meceira et al., 2008;
N. Linde et al., 2008; L.A. Gallardo et al., 2007, 2005; Dell’Aversana, 2007; D. Colombo et al.,
2007; G. Vignoli et al., 2005). Indeed, jointly inverting different kind of data could allow to re-
duce both the ill-posedness of the data reconstruction problem and the total number of data to
be collected, while still preserving the accuracy of the results. This is relevant to a large num-
ber of research and industrial fields such as Biology, Geophysics, Medicine and many others.
Unfortunately, the study and the coding are more difficult than in the classical inversion. We
discuss the current development of the software, which can use both first- and second-order
methods to solve the underlying optimization problem. Finally, we report the preliminary results
of a numerical experimentation that shows its potential for large-scale real-world applications.
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ON THE REGULARIZATION OF GALERKIN BEM HYPERSINGULAR BILINEAR

FORMS
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We will discuss about the definition and regularization of bilinear forms related to Galerkin
Boundary Element Methods for elliptic and hyperbolic problems, which involve double integrals
with hypersingular kernels in space variables.
At first, starting from the classical definition of Hadamard Finite Part Integral, various charac-
terizations of this type of integrals in one and two dimensions will be given, extending those
recently presented in [2]. These characterizations are used to give a meaning to the so-
called hypersingular bilinear form arising in the weak formulation of elliptic and hyperbolic
problems with Neumann boundary conditions, rewritten in terms of hypersingular Boundary
Integral Equations.
A unifying view of different regularization technique used in this context by mathematicians
and engineers (see e.g. [3, 1]) will be given.

References

[1] G. Frangi, Elastodynamics by BEM: a new direct formulation, Int. J. Numer. Meth. Engrg.,
45 (1999), 721–740.

[2] G. Monegato, Definitions, properties and applications of finite part integrals, J. Comput.
Appl. Math., 229 (2009), pp. 425–439.
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Let

Tn = lTn [t0, t1, . . . , tn−1]

be a nonsingular lower triangular Toeplitz matrix with complex coefficients from the ring of n×
n matrices over a field. The special structure of triangular Toeplitz matrices arise in a number
of applications in scientific computing, signal and image processing. In this paper we consider
the problem of a triangular Toeplitz matrice inversion. Explicitly, we propose an approximate
algorithm of a n × n complex triangular Toeplitz matrice by using trigonometric polynomial
interpolation [2, 4, 3] via two FFTs, one fast cosine transform (DCT) and one fast sine transform
(DST) of 2n-vectors. Moreover, our method can be used to improve the complexity of the
approximate block diagonalization algorithm for complex Hankel matrices introduced in [1].
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NUMERICAL INTEGRATION ON SCATTERED DATA BY LOBACHEVSKY SPLINES
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In this paper we investigate the problem of numerical integration on scattered data by a
class of spline functions, called Lobachevsky splines. Thus, starting from the interpolation
results given in [1, 2], we focus on the construction of new cubature formulas. The use of
Lobachevsky splines takes advantages of their feature of being expressible in the multivariate
setting as a product of univariate functions. Numerical results using Lobachevsky splines turn
out to be interesting and promising, for both good accuracy and simplicity in computation.
Finally, a comparison with radial basis functions (RBFs) [3, 4] confirms the goodness of the
proposed approach.
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Electromagnetic induction measurements are often used for non-destructive investigation
of soil properties, like the electrical conductivity and the magnetic permeability. Inversion of
electromagnetic data allows one to theoretically determine the electromagnetic parameters
of the subsurface, and so to ascertain the presence of particular substances and to identify
their spatial position. These data are often measured by a ground conductivity meter, and
two models can be found in the literature to describe its behaviour: a nonlinear model, arising
from Maxwell equations, and a linear one, that may be used under suitable assumptions. The
inverse problem is severely ill-conditioned in both cases, so regularization is needed. We
computed the solution of the linear model by TSVD and Tikhonov regularization, whereas in
the case of nonlinear model a Tikhonov-Newton methods has been implemented. Both the
models will be described and we will present the results of numerical experiments in realistic
applicative settings, for which experimental data are available.
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AN IMPLICIT TIME DOMAIN MESHLESS FORMULATION FOR MAXWELL’S PDES
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A meshless particle approach based on an unconditionally stable time-domain method
devoted to electromagnetic transient simulations, is presented. Maxwell’s PDEs are solved
by using a set of particles, arbitrarily placed in the problem domain [1]. An heavy limit in
applying meshless formulation is usually in making use of an explicit finite difference scheme
accounted for time stepping. In fact, as well as in the time domain grid schemes, the CFL-
like relations strongly condition the performance of the numerical algorithm. In this paper, the
meshless particle method is approached with an unconditionally stable time stepping scheme.
A leapfrog alternating directions implicit finite difference algorithm [2] is taken into account.
The computational tool is assessed and simulation results are discussed in order to validate
the proposed approach.
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MICROWAVE RADIOMETRY PRODUCT GENERATION
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Microwave radiometers, such as the special sensor microwave imaged SSM/I, play a fun-
damental role in several remote sensing applications. A dense spatial and temporal coverage
represents radiometers peculiarity to perform operational earth observation monitoring. Ocean
surface wind speed, rain rate, integrated water vapor maps are routinely generated exploiting
various radiometer channels. In order to apply such models we need to have measurements
of the same resolution scale.

Unfortunately, due to the different electrical size of the antenna at different wavelengths, it
is unavoidable that the channels are characterized by different spatial resolution. The preferred
approach is to enhance the low resolution measurements up to that of the high resolution. The
optimal methods to increase spatial resolution rely on an overlap of the adjacent antenna mea-
surements gain functions. This information redundancy enables the resolution enhancement
retrieval.

Mathematically, it is a linear inversion problem. The matrix which describes the model and
depends on antenna gain, is undetermined and ill-conditioned. The system inversion causes
noise amplification. Proper regularization techniques take into control noise amplification when
the inversion is done.

Here, an inversion technique based on TSVD method for the 2-D case is described. The
antenna gain is assumed separable (D.G. Long private communication). This inversion method
is very attractive in terms of computational efficiency since the expansion coefficients depend
only on the system configuration and not on measurements.

The study is conducted using synthetic microwave radiometer measurements. Radiomet-
ric measurements are simulated considering an hypothetical ideal sensor with a linear scan-
ning configuration as the SSM/I.
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Let j ≥ 0 be a fixed integer , {ak}k, {bk}k be real sequences with ∀k, bk > 0 and
N−1(j, z) ≡ 0, N0(j, z) ≡ 1,

∀k ≥ 0, Nk+1(j, z) = (z− ak+j)Nk(j, z)− bk+jNk−1(j, z) (1)

then we have the following classical result:

Theorem (Markov) If the sequence {ak}k and {bk}k are bounded then there exits an unique
positive measure ν and a compact set supp(ν) in R such that

∀z ∈ C− supp(ν) lim
k→∞

Nk−1(1, z)
Nk(z)

= c
∫

supp(ν)

dν(x)
z− x

and this convergence is uniform on every compact subset of the complex plane that does not
intersect supp(ν).
It is well known that the above result plays a fundamental role in the study of orthogonal
polynomials, in the asymptotic behaviour of certain continous fractions and in many other
types of numerical applications. Here, we give some new results about this Theorem when
recurrence relation (1) is perturbed as well as its order. This work is the sequel of the paper
[1].
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The kernels Kn(z) = Kn(z, w) in the remainder terms Rn( f ) of the Gauss-type quadra-
ture formulas∫ 1

−1
f (t)w(t) dt = Gn[ f ] + Rn( f ), Gn[ f ] =

n

∑
ν=1

λν f (τν) (n ∈ N)

for analytic functions inside elliptical contours Eρ with foci at ∓1 and the sum of semi-axes
ρ > 1, where w is a nonnegative and integrable weight function of Bernstein-Szegő type,
are studied. The derivation of effective bounds for |Rn( f )| is possible if good estimates for
maxz∈Eρ

|Kn(z)| are available, especially if we know the location of the extremal point η ∈ Eρ

at which |Kn| attains its maximum. In such a case, instead of looking for upper bounds for
maxz∈Eρ

|Kn(z)| one can simply try to calculate |Kn(η, w)|. In the case under consideration
the location on the elliptic contours where the modulus of the kernel attains its maximum value
is investigated. This leads to effective bounds for |Rn( f )|.
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In this work we consider the problem of the modal analysis for ring resonators realized
with magneto-optic materials [1]. Considering the lossless case (including no radiation loss),
we have implemented the finite element method in a cylindrical coordinate systems using the
node-based formulation with second order shape functions. The penalty function [2] have been
introduced to move out the spurious solutions and the final quadratic eigenvalue problem have
been solved using the krylov method.
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GEOMETRIC DESIGN OF A DAM BY VARIATIONAL SPLINE APPROXIMATION

A. H. Delgado, M. Pasadas and M. L. Rodrı́guez
Department of Applied Mathematics

University of Granada
E.T.S. Civil Engeniering of Granada, Spain

miguelrg@ugr.es

Our aim is to study how to combine conditions of interpolation and approxima- tion in order
to generate a surface. Our method is developed from a variational approach. As an application
of the use of the proposed methodology, we have designed the walls (surfaces) of a dam with
all the geometric calculations and their computerized processing.
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We present a novel approach for solving ill-conditioned linear systems Ax = b based on
the computation of matrix functions. Starting from the Tikhonov regularized solution

xλ = arg min
x

(‖Ax− b‖+ λ ‖Hx‖)

where λ > 0 and H is the regularization matrix, we consider the relationship between xλ and
the exact solution of the system, that can be stated in terms of a suitable matrix function times a
vector. We employ the standard Arnoldi method to compute this operation. The arising Krylov
method seems to be competitive with the most powerful iterative solvers in terms of speed and
accuracy, and the dependence on the regularization parameter λ is heavily reduced.

Numerical experiments on classical test problems and image restoration are presented.
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The subject of our investigation is the 2-component nonlinear Schrödinger equation in the
normal dispersion regime (defocusing VNLS). Our research builds upon previous results [1, 2]
where the Inverse Scattering Transform (IST) was developed to solve the initial value problem
for VNLS under nonvanishing boundary conditions. We use the IST machinery to construct
multisoliton solutions to the equation. Such solutions include dark-dark solitons, which have
dark solitonic behavior in both components, as well as dark-bright soliton solutions, which have
one dark and one bright component. In particular, we present the explicit expressions of one
and two soliton solutions for all possible cases: two dark-dark solitons, two dark-bright soli-
tons, and one dark-dark and one dark-bright soliton. We then compute the long-time asymp-
totic behavior of these solutions before and after any interactions and obtain the phase shifts
associated to the interactions.
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