Modelling photonic crystal devices using second order finite volume method

T. Z. Ismagilov

Department of Information Technology Department of Mathematics and Mechanics Novosibirsk State University Pirogova 2, Novosibirsk, 630090, Russia ismagilov@academ.org

A second order finite volume scheme is considered [1]. The scheme includes total field - scattered field formulation and a perfectly matched layer [2]. It was applied to evaluation of optical properties of photonic crystal waveguides [3]. Reflection and transmission coefficients were studied for a range of frequencies inside the photonic crystal bandgap for different configurations. Our results compare well with simplified analytic models from previous researchers [4].

References

- S. M. Rao Time Domain Electromagnetics, San Diego, Academic Press, 1999.
- [2] J. P. Berenger A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994) pp. 185–200.
- [3] J. D. Joannopoulos, S. G. Johnson , J. N. Winn, R. D. Meade *Photonic Crystals: Molding the Flow of Light*, Princeton University Press, 2008.
- [4] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos *High Transmission through Sharp Bends in Photonic Crystal Waveguides*, Phys. Rev. Lett. 77 (1996) pp. 3787–3790.