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17. Caterina Fenu (kate.fenu@gmail.com)
Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy.

18. Luisa Fermo (fermo@unica.it)
Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy.

19. Giovanni Frosali (giovanni.frosali@unifi.it)
Dipartimento di Matematica e Informatica, Università di Firenze, Firenze, Italy.
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GEOMETRIC MEANS OF MATRICES: ANALYSIS AND ALGORITHMS

D. A. Bini
Department of Mathematics, University of Pisa

Largo Bruno Pontecorvo, 5, Pisa, Italy
bini@dm.unipi.it

Matrix geometric means provide a tool to average a set of positive definite matrices in such a way that the
inverse of the matrix mean coincides with the mean of the inverse matrices. Different definitions of matrix mean
have been given in the literature together with algorithms for their computations.

In some applications one needs to compute the geometric mean of a set of structured matrices. This happens,
for instance, in radar detection problems where the matrices to average are Toeplitz. For physical reasons, one
requires that the mean of structured matrices maintains the same structure of the input matrices. Unfortunately
this requirement is not satisfied by the available definitions.

In this talk we give an overview on matrix geometric means, and recall their relationships with the Riemannian
geometry of the cone of positive definite matrices. Then we treat with more attention the Karcher mean, relate it
to a matrix equation, and provide numerical algorithms for its solution. Finally we present a modified version of
the Karcher mean which preserves the structure of the input matrices and satisfies almost all the nice properties
of the scalar geometric mean. An effective numerical algorithm for its computation is given in terms of solution of
a vector equation.

References

[1] T. Ando, C. Li, and R. Mathias. Geometric means. Linear Algebra and its Applications, 385:305–334, 2004.
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RATIONAL SOLITONS OF RESONANT WAVE INTERACTION MODELS

A. Degasperis and S. Lombardo
INFN sez. di Roma,

Department of Physics, Sapienza University of Rome
Piazzale Aldo Moro 2, 00185 Italy

antonio.degasperis@roma1.infn.it

Integrable models of resonant interaction of two or more waves in 1+1 dimensions are known to be of ap-
plicative interest in several areas. Here we consider a system of three coupled wave equations which includes as
special cases the vector nonlinear Schrödinger equations and the equations describing the resonant interaction
of three waves. The Darboux construction of soliton solutions is applied with the condition that the solutions have
rational, or mixed rational-exponential, dependence on coordinates. Our algebraic construction relies on the use
of nilpotent matrices and their Jordan form.
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SPECTRAL PROBLEMS ASSOCIATED WITH THE MATRIX-VALUED AKNS EQUATION

M. Klaus
Department of Mathematics, Virginia Tech

Blacksburg, VA 24061, USA
klaus@math.vt.edu

We will discuss spectral problems arising in the study of the matrix-valued AKNS system. The main focus
will be on results that can be obtained under minimal local assumptions and for matrix coefficients that have
nonvanishing and different asymptotics as x → ±∞. In addition to giving a partial review of prior work on this
subject we will describe some recent results and problems that might warrant further study.
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RECENT RESULTS IN RATIONAL EXTENDED THERMODYNAMICS: MACROSCOPIC APPROACH

AND MAXIMUM ENTROPY PRINCIPLE FOR DENSE AND RAREFIED POLYATOMIC GASES

T. Ruggeri
Dipartimento di Matematica,
Università di Bologna, Italy

tommaso.ruggeri@unibo.it

After a brief survey on the principles of Rational Extended Thermodynamics of monatomic gas (entropy
principle, constitutive equations of local type, symmetric hyperbolic systems, main field, principal sub-system)
we present in this talk a recent new approach to deduce hyperbolic system for dense gases not necessarily
monatomic.
In the first part of the talk we study extended thermodynamics of dense gases by adopting the system of field
equations with a different hierarchy structure to that adopted in the previous works. It is the theory of 14 fields
of mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux. As a result, all the
constitutive equations can be determined explicitly by the caloric and thermal equations of state as in the case
of monatomic gases. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of
gases.
In the second part, we limit the result to the physically interesting case of rarefied polyatomic gases and we show
a perfect coincidence between ET and the procedure of Maximum Entropy Principle. The main difference with
respect to usual procedure is the existence of two hierarchies of macroscopic equations for moments of suitable
distribution function, in which the internal energy of a molecule is taken into account.

References

[1] I. Müller and T. Ruggeri, Rational Extended Thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy
37, (1998) Springer-Verlag (New York).
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(2012), 597–611

[4] T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Extended thermodynamics of dense gases, Continuum
Mech. Thermodyn. 24 (2012), 271-292.

[5] T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Extended thermodynamics of real gases with dynamic
pressure: An extension of Meixner theory, Phys. Lett. A (2012), 2799-2803.

[6] T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Dispersion relation for sound in rarefied polyatomic
gases based on extended thermodynamics, Continuum Mech. Thermodyn. (2012), DOI 10.1007/s00161-
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1. Session on
Nonlinear Evolution Equations



SCALAR AND VECTOR NONLINEAR SCHRÖDINGER SYSTEMS WITH NON-ZERO BOUNDARY

CONDITIONS

G. Biondini
Department of Mathematics, State University of New York at Buffalo, USA

biondini@buffalo.edu

Despite having been intensely investigated over the last forty years, nonlinear Schrödinger (NLS) systems
still offer many surprises. In this talk we discuss recent results on both focusing and defocusing, both scalar and
vector, NLS equations with non-zero boundary conditions at infinity. A number of explicit soliton solutions will be
discussed, as well as spectral problems for special classes of initial conditions.
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INTEGRABLE FLOWS FOR STARLIKE CURVES IN CENTROAFFINE SPACES

A. Calini
Department of Mathematics, College of Charleston

Charleston, South Carolina, United States of America
calinia@cofc.edu

We construct integrable hierarchies of flows for curves in centroaffine R3 through a natural pre-symplectic
structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations
for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted
hierarchy of flows on curves that project to conics in RP2 induces the Kaup-Kuperschmidt hierarchy at the
curvature level.

This is joint work with Tom Ivey (College of Charleston), and Gloria Marı́ Beffa (University of Wisconsin-
Madison).

References

[1] A. Calini, T. Ivey, and G. Marı́ Beffa, Integrable Flows for Starlike Curves in Centroaffine Space, SIGMA, 9
(2013), 022, 21pages.
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COMPUTATION OF RELEVANT SCATTERING DATA IN THE ZAKHAROV-SHABAT SYSTEM

L. Fermo, C. van der Mee and S. Seatzu

Dept. of Mathematics and Computer Science, University of Cagliari
Viale Merello 92, 09123 Cagliari

fermo@unica.it

In the numerical solution of non-linear PDEs of integrable type by means of the Inverse Scattering Transform
technique, the first step consists of identifying the relevant scattering parameters of the associated Zakharov-
Shabat system. In particular, it is important to identify both the bound state parameters with their multiplicities,
and the so-called norming constants.

To this end, it is necessary to compute the coefficients {cjs}
M, nj−1
j=1, s=0 and the parameters { f j}M

j=1 of a monomial-
exponential sum of the type

h(x) =
M

∑
j=1

nj−1

∑
s=0

cjsxse f jx,

where M and {nj}M
j=1 are positive integers and {cjs}

M, nj−1
j=1, s=0 and { f j}M

j=1 are complex or real parameters with

cj,nj−1 6= 0, given 2N sampled data h(k) for k = k0, k0 + 1, . . . , k0 + 2N with k0 ∈ N+ = {0, 1, 2, . . . } and
N ≥ L = n1 + · · ·+ nM.

In this talk we illustrate a linearization technique to numerically solve this non-linear approximation problem.
It is based on the following steps:

1. Identification of the common rank of two square Hankel matrices H0 and H1 of order N generated by the
2N given data;

2. Computation of the parameters M, {nj}M
j=1 and { f j}M

j=1 by solving a generalized eigenvalue problem;

3. Computation of the coefficients {cjs}
M, nj−1
j=1, s=0 by solving an overdetermined linear system.
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GLOBAL NORMAL FORMS AND SPECTRAL PROPERTIES FOR PERTURBATIONS OF HARMONIC

OSCILLATORS

T. Gramchev
Dipartimento di Matematica e Informatica,

Via Ospedale 72, Cagliari, Italy
todor@unica.it

We outline some recent investigations on global normal forms and spectral properties problems second order
linear differential operators which might be viewed as perturbations (not necessarily self-adjoint) of multidimen-

sional anisotropic harmonic oscillators H = −∆ + ∑n
j=1 ωjx

2kj
j , ωj ∈ C, Re ωj > 0, k j ∈N, j = 1, . . . , n.

The results are obtained in collaboration with G. Tranquilli (Università di Cagliari).
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AUTOMORPHIC LIE ALGEBRAS

S. Lombardo1, and J. A. Sanders2

1Department of Mathematics and Information Sciences
Northumbria University, Newcastle upon Tyne, UK

2Department of Mathematics,
Vrije Universiteit, Amsterdam, The Netherlands
sara.lombardo@northumbria.ac.uk

Automorphic Lie Algebras are Lie algebras tensored with homogeneous functions of the spectral parameter,
such that the elements are invariant under the combined action of a Platonic group acting via two irreducible
representations on both the original simple Lie algebra and the spectral parameter (e.g. [1], [2]). They have
been introduced in the context of algebraic reduction of integrable systems (Lax pairs), but they turn out to be
very interesting in their own right, they show much more structure than originally anticipated and they can be
described almost completely independent of the chosen group. The presence of a modular invariant complicates
the analysis of the structure theory along the lines of the classical classification theory of complex Lie algebras,
but final results are now becoming visible and this talk will report on the latest developments [3].

References

[1] S. Lombardo and A. V. Mikhailov: Reduction Groups and Automorphic Lie Algebras, Communications in
Mathematical Physics 258, 179-202 (2005)

[2] S. Lombardo and J. A. Sanders: On the classification of Automorphic Lie Algebras, Communications in
Mathematical Physics 299, 793-824 (2010)

[3] S. Lombardo and J. A. Sanders: Higher dimensional Automorphic Lie Algebras, in preparation
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BREAKING MECHANISM FROM A VACUUM POINT IN THE DEFOCUSING NONLINEAR

SCHROEDINGER EQUATION

S. Trillo, A. Moro
Department of Mathematics and Information Sciences

Northumbria University, Newcastle upon Tyne, UK
antonio.moro@northumbria.ac.uk

We study the wave breaking mechanism for the weakly dispersive defocusing nonlinear Schroedinger (NLS)
equation with a constant phase dark initial datum that contains a vacuum point at the origin. We prove by means
of the exact solution of the initial value problem that, in the dispersionless limit, the vacuum point is preserved
by the dynamics until breaking occurs at a finite critical time. In particular, both Riemann invariants experience a
simultaneous breaking at the origin. Although the initial vacuum point is no longer preserved in the presence of a
finite dispersion, the critical behavior manifests itself through an abrupt transition occurring around the breaking
time.
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SYLVESTER EQUATIONS AND INTEGRABLE SYSTEMS: A BIDIFFERENTIAL CALCULUS

PERSPECTIVE

F. Mueller-Hoissen
Max-Planck-Institute for Dynamics and Self-Organization, Germany

folkert.mueller-hoissen@ds.mpg.de

Matrix Sylvester equations frequently show up in connection with soliton solutions of integrable partial differen-
tial and difference equations. Special solutions are Cauchy-like matrices. In the bidifferential calculus approach,
matrix Sylvester equations emerge from a quite general result about binary Darboux transformations (A. Dimakis
and F. Mueller-Hoissen, SIGMA 9 (2013) 009). We recall this result and present several examples.
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EFFECTS OF INERTIA AND STRATIFICATION IN INCOMPRESSIBLE IDEAL FLUIDS: PRESSURE

IMBALANCES BY RIGID CONFINEMENT

R. Camassa, S. Chen, G. Falqui, G. Ortenzi, and M. Pedroni
Department of Mathematics and Applications,

University of Milano Bicocca, Milano, Italy
giovanni.ortenzi@unimib.it

This talk will be principally addressed on the inertial properties of an incompressible Euler two dimensional
fluid filling a horizontal channel and in hydrostatic equilibrium at infinity. The interplay between action-at-a-
distance, incompressibility and constraints can lead to non-conservation of horizontal momentum even if there
are no external horizontal forces acting on the system. The variation of density along the boundaries affects the
evolution of the total vorticity of the fluid. The results of Euler equations obtained for small density variations will
be compared with long-wave asymptotic models which provide closed-form mathematical expressions for more
general results.
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INTEGRABLE MULTIDIMENSIONAL PDES OF HYDRODYNAMIC TYPE: METHOD OF SOLUTION

AND MULTIDIMENSIONAL WAVE BREAKING

S. V. Manakov, and P. M. Santini
Department of Physics, University of Roma “La Sapienza”

Piazz.le A. Moro n. 2, 00185 Roma, Italy
paolo.santini@roma1.infn.it

Integrable PDEs of hydrodynamic type, including physically relevant examples like the dispersionless Kadomt-
sev - Petviashvili, the Boyer - Finley and the heavenly equations, arise from the commutation of vector fields and
can be studied using a novel Inverse Spectral Transform [1, 2]. In particular, the nonlinear Riemann - Hilbert
inverse problem is a powerful tool i) to study the longtime behavior of localized solutions, ii) to establish if such
solutions break, due to the lack of dispersion and dissipation, and, if they do, to extract the analytic features of
such a breaking in a surprisingly explicit way; iii) to construct distinguished examples of exact implicit solutions [3].
A summary of the above theory is presented, together with some recent results on the rigorous aspects of such
a theory, obtained in collaboration with P. G. Grinevich and D. Wu. This presentation is dedicated to Manakov’s
memory.
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MULTIPLE-POLE SOLUTIONS OF THE NONLINEAR SCHRÖDINGER EQUATION

C. Schiebold
NVD, Mid Sweden University

cornelia.schiebold@miun.se

We will start by a short resume on an operator theoretic approach to the Nonlinear Schrödinger equation, with
the aim to motivate a solution formula which gives a unified access to the multiple-pole solutions. The main result
is a complete asymptotic description of these solutions, which was so far only achieved for cases of low complexity
by Olmedilla. After an overview on the geometric and algebraic ingredients of the proof, we will conclude by a
discussion of cases of higher degeneracy and a comparison with the situation for the KdV equation.
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ANALYTICAL APPROXIMATIONS OF THE NONLINEAR SCHRÖDINGER EQUATION: APPLICATIONS

TO OPTICAL COMMUNICATIONS AND INFORMATION THEORY

M. Secondini, D. Marsella, and E. Forestieri
TeCIP Institute, Scuola Superiore Sant’Anna

Via G. Moruzzi 1, Pisa, Italy
marco.secondini@sssup.it

The propagation of light in fiber-optic links is governed by the nonlinear Schrödinger equation with variable
coefficients. Efficient numerical integration algorithms and analytical models for the evolution of the statistical
properties of a stochastic signal are the main ingredients to solve several fundamental problems in the field of
optical communication and information theory [1, 2].

Here, we introduce some approximated solutions of the equation and discuss their accuracy, complexity, and
possible applications. In particular, as a working example, we consider the evaluation of the maximum information
rate that can be reliably transmitted through a nonlinear fiber-optic channel [1, 3].
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PROPAGATION AND CONTROL OF NANOSCALE MAGNETIC-DROPLET SOLITONS

M. A. Hoefer1, T. J. Silva2, and M. Sommacal3
1North Carolina State University, Raleigh, North Carolina 27695, USA

2National Institute of Standards and Technology, Boulder, Colorado 80305, USA
3Northumbria University, Newcastle upon Tyne, NE21XE, UK

matteo.sommacal@northumbria.ac.uk

Recent results on propagating, solitary magnetic wave solutions of the Landau-Lifshitz equation with uniaxial,
easy-axis anisotropy in thin (two-dimensional) magnetic films will be illustrated. These localized, nontopological
wave structures, parametrized by their precessional frequency and propagation speed, extend the stationary, co-
herently precessing “magnon droplet” to the moving frame, a non-trivial generalization due to the lack of Galilean
invariance. Propagating droplets move on a spin wave background with a nonlinear droplet dispersion relation
that yields a limited range of allowable droplet speeds and frequencies. The droplet is found to propagate as a
Nonlinear Schroedinger bright soliton in the weakly nonlinear regime [1]. Using spin transfer torque underneath a
nanocontact on a magnetic thin film with perpendicular magnetic anisotropy (PMA), the generation of dissipative
magnetic droplet solitons was announced this year for the first time, following its theoretical prediction [2]. Rich
dynamical properties (including droplet oscillatory motion, droplet spinning, and droplet breather states) have
been experimentally observed and reported. After reviewing the conservative magnetic droplet, some properties
of the soliton in a lossy medium will be discussed [3]. In particular, it will be shown that the propagation of the
dissipative droplet can be accelerated and controlled by means of an external magnetic field. Soliton perturbation
theory corroborated by two-dimensional micromagnetic simulations predicts several intriguing physical effects, in-
cluding the acceleration of a stationary soliton by a magnetic field gradient, the stabilization of a stationary droplet
by a uniform control field in the absence of spin torque, and the ability to control the solitons speed by use of a
time-varying, spatially uniform external field. Soliton propagation distances approach 10 µm in low-loss media,
suggesting that droplet solitons could be viable information carriers in future spintronic applications, analogous
to optical solitons in fiber optic communications.
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A KELLER-SEGEL MODEL IN CHEMOTAXIS WITH BLOW-UP SOLUTIONS

S. Vernier Piro
Dip. di Matematica e Informatica, Viale Merello 92, Cagliari, Italy

svernier@unica.it

We study the Neumann initial-boundary value problem for the fully parabolic Keller-Segel type system [1] with
time dependent coefficients

ut = ∆u + k1(t) div(u∇v), x ∈ Ω, t ∈ (0, t∗),

vt = k2(t)∆v− k3(t)v + k4(t)u, x ∈ Ω, t ∈ (0, t∗),

∂u
∂n

=
∂v
∂n

= 0, x ∈ ∂Ω, t ∈ (0, t∗),

u(x, t) = u0(x), v(x, t) = v0(x), x ∈ Ω,

where Ω is a bounded domain in RN with smooth boundary, ∂
∂n is the normal derivative on the boundary and t∗

is the blow up time. This system forms the core of numerous models used in mathematical biology to describe
the spatio-temporal evolution of cell populations governed by both diffusive migration and chemotactic movement
towards increasing gradients of a chemical that they produce themselves (chemotaxis). We derive conditions on
the data and geometry of Ω, sufficient to obtain an explicit lower bound for the blow-up time.
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THE INVERSE SCATTERING TRANSFORM FOR THE DEFOCUSING NONLINEAR SCHRÖDINGER

EQUATION WITH NONZERO BOUNDARY CONDITIONS

F. Demontis, B. Prinari, C. van der Mee, and F. Vitale
Department of Mathematics and Physics, University of Salento

Lecce, Italy
federica.vitale@le.infn.it

We have developed a rigorous theory of the inverse scattering transform for the defocusing nonlinear Schrödinger
equation with nonvanishing boundary values q± ≡ q0eiθ± as x → ±∞. The direct problem is shown to be well-
posed for potentials q such that q − q± ∈ L1,2(R±), for which analyticity properties of eigenfunctions and
scattering data are established. The inverse scattering problem is formulated and solved both via Marchenko
integral equations, and as a Riemann-Hilbert problem in terms of a suitable uniform variable. The asymptotic
behavior of the scattering data is determined and shown to ensure the linear system solving the inverse problem
is well-defined. Finally, the triplet method is developed as a tool to obtain explicit multisoliton solutions by solving
the Marchenko integral equation via separation of variables.
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SIGNAL-NOISE INTERACTION IN NONLINEAR OPTICAL FIBERS: A FLUID-DYNAMIC APPROACH

L. Barletti
Dipartimento di Matematica, Università di Firenze (Italia)

barletti@math.unifi.it

We consider the one-dimensional NLSE for opical fibers under noisy input conditions. Assuming small disper-
sion, we (formally) approximate the NLSE with a “semiclassical” fluid-dynamic system of Madelung type. Then,
assuming high signal-to-noise ratio, a perturbative procedure is applied to the Madelung system in order to study
the propagation of a deterministic signal affected by a band-limited white noise.
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SOME NEW RESULTS IN GEOMETRICAL OPTICS

F. Borghero
Dip. di Matematica e Informatica, Università di Cagliari, Italy

borghero@unica.it

In this talk I want to present some recent results obtained in the framework of Geometrical Optics from the
inverse point of view. We shall be concerned with the propagation of light in a continuous transparent inho-
mogeneous and isotropic medium, dispersive or not. We put and solve the two following inverse problems of
geometrical optics:
1) 3-dimensional inverse problem: Given a two-parametric family of curves F2: f (x, y, z) = c1, g(x, y, z) =
c2, inside a 3-dimensional mediumM3, we want to find the refractive-index distributions n(x, y, z) allowing for
the creation of the given family of curves as a family of monochromatic light rays.
2) 2-dimensional inverse problem: Given a monoparametric family of curves F1: inside a 2-dimensional
medium M2, lying on a regular surface S, we want to find the refractive-index distributions n = n(u, v) al-
lowing for the creation of the given family of curves as a family of monochromatic light rays. Our main results are:
Proposition 1: Given a family F2 lying on a mediumM3, all the refractive-index distributions n(x, y, z) allowing
for the creation of the given family of curves as a family of monochromatic light rays, are solutions of the system
of two first order linear PDE: αnx − ny + Ω1n = 0, βnx − nz + Ω2n = 0, in the unique unknown function
n(x, y, z) where α(x, y, z), β(x, y, z), Ω1(x, y, z), Ω2(x, y, z) are functions depending only on the given
family of light rays.
Proposition 2: Given a family F1, inside a mediumM2 lying on a regular surface S, with a line element
given by ds2 = Edu2 + 2Fdudv + Gdv2, all the refractive-index distributions n(u, v) allowing for the
creation of the given family of curves as a family of monochromatic light rays, are solutions of the linear
first order PDE: (G− γF)nu − (F− γE)nv + Ωn = 0, in the unknown function n(u, v), where γ = fv

fu
is

a function of u, v depending only on the given family; E, F, G are the coefficients of the assigned metric
on S, and Ω is a functions of u, v depending both of the family and on the metric.
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NONLINEAR ANALYSIS OF THE TWO-MASS-SKATE BICYCLE MODEL

G. Frosali and F. Ricci
Department of Mathematics and Informatics, Università di Firenze

giovanni.frosali@unifi.it
f.ricci12@imperial.ac.uk

A simplified model of bicycle, called two-mass-skate (TMS), was recently developed by Kooijmann
et al. [3] to show that the self-stability of a bicycle does not depend on neither gyroscopic nor caster
effects.

In this paper, we improve this model by revising its kinematics and by imposing no restrictions on
the geometry of the rear and front frames, that is, we consider their distributed masses. Furthermore,
we assume that the two point wheels have masses without moments of inertia, thus, the trail is always
zero.

Taking the nonholonomic constraints on the velocities into account, we then derive the nonlinear
equations of motion for the system from a geometric point of view [1], [2]. Further, studying the be-
haviour of this system, we analyze its stability, which exhibits some peculiar aspects due to the non-
holonomy of the problem.
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ANALYTICAL MECHANICS OF A RELATIVISTIC PARTICLE IN A POSITIONAL POTENTIAL

S. Mignemi
Department of Mathematics, University of Cagliari

viale Merello 92, 09123 Cagliari, Italy
smignemi@unica.it

We discuss the Lagrangian and Hamiltonian formulation of the dynamics of a classical particle
subject to a potential that depends only on its position. In particular, consistency requires that time
reparametrization invariance be preserved. First quantization of the model leads to a Klein-Gordon
equation coupled to a scalar potential. The approach proposed in this letter can be useful in the study
of phenomenological models where the potential is not derived from first principles.
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EXTENDED THERMODYNAMICS FROM THE LAGRANGIAN VIEW-POINT

S. Pennisi and M.C. Carrisi
Dip. di Matematica ed Informatica

Universitá di Cagliari, Italy, spennisi@unica.it

Extended Thermodynamics (E.T.) is a powerful and well established theory (see [1] as example). It
leads to first order quasi-linear symmetric hyperbolic systems of field equations, guarantees the well-
posedness of initial value problem and finite speeds of propagation. Usually it is formulated from the
Eulerian view-point: For every point x and time t, attention is focused to the physical properties of the
material particle transiting trough that position at the time t. In this talk it will be shown how the same
considerations may be followed from the Lagrangian view-point: Attention is focused to each material
particle and to its physical properties, during all the motion of the same particle.

The conservation laws of mass, momentum and energy, from the Lagrangian view-point, have al-
ready been treated in literature (see, for example, the textbook [2] from page 64). Here a similar proce-
dure is followed for all the balance laws of E.T. with an arbitrary number of moments.

It is also shown how the Galilean Relativity Principle and some symmetry condition, which are
present in the Eulerian view-point, can be “translated” in the Lagrangian view-point, where they are no
more so self-evident.

This treatment may be applied to many possible physical situations, for example to semi-conductors,
to E.T. of a moving surface and of an extensible wire.
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DECAY PROPERTIES FOR FUNCTIONS OF MATRICES OVER C∗-ALGEBRAS

M. Benzi
Department of Mathematics and Computer Science, Emory University

Atlanta, GA 30322, USA
benzi@mathcs.emory.edu

and P. Boito
DMI-XLIM UMR 7252, Université de Limoges - CNRS

87060 Limoges Cedex, France

We extend existing results on the off-diagonal decay of the entries of analytic functions of banded
and sparse matrices to the case where the matrix entries are elements of a C∗-algebra. For instance,
the matrix entries could be bounded linear operators on a Hilbert space or continuous complex-valued
functions on a compact Hausdorff space. The main ingredients are classical approximation theory and
the holomorphic functional calculus.

The case of quaternionic matrices will also be discussed, together with possible applications.
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CHARACTERISTIC CURVES IN MODELING OF THE EARTH CRUST AND UPPER MANTLE

G. Boyadzhiev
ICTP, Trieste, Italy, IMI BAS, Sofia, Bulgaria
georgi boyadzhiev@yahoo.com

Nearly all applied in geophysics and seismology mathematical models of the Earth crust and upper
mantle are based on representation of our planet as non-elastic solid body. The wave propagation in
such body is described by a system S of three strongly coupled linear hyperbolic equations. Follow-
ing the standard geophysical approach, Earth structure is locally modeled as a half space with jump
discontinuities, and therefore the coefficients in S are piece-wise constant functions. In this talk is con-
sidered one geometrical approach to the solutions of system S. It is based on the geometric properties of
characteristic curves of S and Geometrical optics is used to compute reflection and refraction of the char-
acteristics at the discontinuities. This approach allows reasonable 3-D modeling of the Earth structure
and implementing of algorithms for 3-D inverse problem in geophysics
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REGULARIZED NONCONVEX MINIMIZATION FOR IMAGE RESTORATION

F. Di Benedetto, C. Estatico
Department of Mathematics, University of Genova

Via Dodecaneso 35, I-16146 Genova, Italy
estatico@dima.unige.it

Tikhonov regularization for the linear equation Ax = y involves the minimization of a convex func-
tional of type Φ(x) = Q(Ax− y) + αG(x), where Q measures the residual term Ax− y, G is a penalty
function incorporating the solution x or its derivatives, and α is the regularization parameter. In partic-
ular, both Q(·) and G(·) are the square of the L2-norm, ‖ · ‖2

2, in the simplest case of classical Tikhonov
regularization in Hilbert spaces.

In this talk, we discuss, in Banach spaces setting, a regularization functional Φ whose penalty term
G depends on the model operator A, as introduced in [2] for Hilbert spaces. Furthermore, we solve the
associated minimization problem by an iterative approach based on a variant of the Landweber method
[1]. To speed up the iterations, otherwise too slow, a modification of the penalty term is used, leading to
a nonconvex functional.

The obtained nonlinear algorithm has been applied to the linear problem of image deblurring, the
removal of blur and noise from a digital image.
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A MODULARITY-BASED SPECTRAL GRAPH ANALYSIS

D. Fasino, and F. Tudisco
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The modularity matrix of a graph is a special rank-one modification of the adjacency matrix, intro-
duced by Newman and Grivan in the framework of graph clustering and community detection prob-
lems, see e.g., [1]. In fact, eigenvectors of modularity matrices can be exploited in community detection
algorithms in the same way as eigenvectors of Laplacian matrices are currently utilized for solving graph
partitioning or bandwidth reduction problems.

We perform an in-depth spectral analysis of modularity matrices. In particular, we prove certain
properties of nodal domains induced by eigenvectors of modularity matrices, analogous to those known
for graph Laplacian matrices, see e.g., [2]; and we outline the relationship between eigenvalues of mod-
ularity matrices and certain combinatorial descriptions of tightly connected subgraphs.
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FAST RANKING OF NODES ON DIGRAPHS

J. Baglama, C. Fenu, L. Reichel, G. Rodriguez
Department of Mathematics and Computer Science
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kate.fenu@unica.it

One of the main issues in complex networks theory is to find the “most important” nodes within a
graph G. To this aim, one can use matrix functions applied to its adjacency matrix. We will introduce
a new computational method to rank the nodes of a directed unweighted network according to the
values of these functions. The algorithm uses a partial singular value decomposition, in order to obtain
a low-rank approximation of the adjacency matrix, and then Gauss quadrature is used to refine the
computation. The method is compared to other approaches on networks coming from real applications,
e.g. in software engineering, bibliometry and social networks.
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FREDHOLM INTEGRAL EQUATIONS ON THE REAL SEMIAXIS: A NUMERICAL METHOD

G. Mastroianni and I. Notarangelo
Department of Mathematics, Computer Sciences and Economics,

University of Basilicata
viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
giuseppe.mastroianni@unibas.it

In this talk we consider Fredholm integral equations of the form

f (x) + µ
∫ ∞

0
k(x, y) f (y)w(y)dy = g(x) , x ∈ (0, ∞) , (1)

where w(y) = e−
1

yα −yβ

, α > 0, β > 1, µ ∈ R, and the given functions k and g are continuous and
exponentially monotonic at the endpoints of the interval (0, ∞).

We approximate the solution of (1) by using a Nyström method, which we prove to be stable and
convergent. The theoretical background of the method (i.e. the main difficulty) is the construction of
new function spaces connected to the weight w and the related estimates of the error of best polynomial
approximation (see [1]).
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ON THE SOLUTION OF CERTAIN ALGEBRAIC RICCATI EQUATIONS ARISING FLUID QUEUES

B. Meini
Dipartimento di Matematica, Università di Pisa, Italy

meini@dm.unipi.it

Consider a nonsymmetric algebraic Riccati equation (NARE) C + XA + DX − XBX = 0, where
the unknown X has size m× n, and where the coefficients A, B, C and D are real n× n, n×m, m× n
and m×m matrices, respectively. Assume that the block coefficients are such that M =

[ A −B
C D

]
is a

nonsingular M-matrix or a singular irreducible M-matrix. The solution X of interest is the minimal
nonnegative.

In the modeling of an adaptive MMAP[K]/PH[K]/1 queue, the matrix D is a K× K block diagonal
matrix with h× h blocks. We present a new algorithm for computing the minimal nonnegative solution
of the NARE where we exploit the structure of the matrix D. The solution of the original NARE is com-
puted by solving a set of correlated NAREs, with coefficients of small size, obtained by a suitable block
partitioning of the coefficients A, B, C and D. More specifically, the sought solution X is partitioned in
blocks Xi, i = 1, . . . , K, and Xi is the minimal nonnegative solution of the i-th NARE

Ci + XÃi + DiX− XBiX = 0, Ãi = A−
K

∑
j=1,j 6=i

BjXj, (2)

for i = 1, . . . , K, where the coefficient Ãi of the above equation depends on the solutions Xj, with j 6= i,
of the remaining K− 1 NAREs. To solve the above equations we propose an iterative scheme, where we
replace the unknown coefficient Ãi with an approximation. Convergence results are proved by using
properties of nonnegative matrices and M-matrices. From the analysis of the computational cost and
from the numerical experiments, the algorithm is more effective than the standard algorithms when the
block size K is larger than h.
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A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

L. Reichel, S. Noschese
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Dipartimento di Matematica, SAPIENZA Università di Roma
P.le A. Moro, 2, I-00185 Roma, Italy
noschese@mat.uniroma1.it

Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-
posed problems with a small to moderately sized matrix A. Regularization is achieved by replacing
the matrix A by its best rank-k approximant, which we denote by Ak. The rank may be determined in a
variety of ways, e.g., by the discrepancy principle or the L-curve criterion. In this talk, we present a novel
regularization approach, in which A is replaced by the closest matrix in a unitarily invariant matrix norm
with the same condition number as Ak. Numerical examples illustrate that this regularization approach
often yields approximate solutions of higher quality than the replacement of A by Ak.
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MODAL ANALYSIS IN NON RECIPROCAL WAVEGUIDE BASED ON THE FINITE ELEMENT METHOD

P. Pintus
Istituto TeCIP, Scuola Superiore Sant’Anna

via Moruzzi 1, 56124, Pisa, Italy
paolo.pintus@sssup.it

The study of the electromagnetic fields in photonic components, like optical waveguides, is the key
starting point to design novel and advanced optical devices before their manufacturing. For this reason,
the development and the optimization of accurate mathematical models is a very important issue.

In this talk, we present an accurate modal analysis for non-reciprocal waveguide using the finite
element method. Such a waveguide can be used to perform optical isolator [1], where the forward and
backward waves are characterized by a different propagation constants. While the most used method
for computing the shift between the forward and the backward propagation constants is the pertur-
bative method [2], here we present a more rigorous approach which allows to directly compute the
electromagnetic modes and the corresponding propagation constant [3].
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ASYMPTOTICS OF THE SMALLEST SINGULAR VALUE OF A CLASS OF TOEPLITZ-GENERATED

MATRICES AND RELATED FINITE RANK PERTURBATIONS

A.C.M.Ran and H. Rabe
Department of Mathematics, VU University

Amsterdam, The Netherlands
and Unit for BMI, North-West University

Potchefstroom, South Africa
a.c.m.ran@vu.nl

Square matrices of the form Xn = Tn + fn(T−1
n )∗, where Tn is an n × n invertible banded Toeplitz

matrix and fn some positive sequence are considered. The norms of their inverses are described asymp-
totically as their size n increases. As an example, for

Xn =



1 + 1
n −1 0 · · · · · · 0

1
n 1 + 1

n −1 0
...

...
. . . . . .

...
...

. . . . . . −1 0
...

. . . . . . . . . −1
1
n · · · · · · · · · 1

n 1 + 1
n


,

it will be shown that

lim
n→∞

2‖X−1
n ‖√
n

= 1.

Certain finite rank perturbations of these matrices are shown to have no effect on this behaviour. In
the concrete example above, for the matrix Kn obtained from Xn by adding one to each entry in the first
column, one also has

lim
n→∞

2‖K−1
n ‖√
n

= 1.
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RATIONAL KRYLOV METHODS AND GAUSS QUADRATURE

L. Reichel
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Kent, OH 44242, USA
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The need to evaluate expressions of the form f (A)v or vH f (A)v, where A is a large sparse or struc-
tured matrix, v is a vector, f is a nonlinear function, and H denotes transposition and complex conju-
gation, arises in many applications. Rational Krylov methods can be attractive for computing approxi-
mations of such expressions. These methods project the approximation problem onto a rational Krylov
subspace of fairly small dimension, and then solve the small approximation problem so obtained. We are
interested in the situation when the rational functions that define the rational Krylov subspace have few
distinct poles. We discuss the case when A is Hermitian and an orthogonal basis for the rational Krylov
subspace can be generated with short recursion formulas. Rational Gauss quadrature rules for the ap-
proximation of vH f (A)v will be described. When A is non-Hermitian, the recursions can be described
by a generalized Hessenberg matrix. Applications to pseudospectrum computations are presented.
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A SYMBOL APPROACH IN IGA MATRIX ANALYSIS (AND IN THE DESIGN OF EFFICIENT

MULTIGRID METHODS)

C. Garoni, C. Manni, F. Pelosi, H. Speleers, and S. Serra-Capizzano
Department of Science and High Technology

University of Insubria, Como, Italy
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We study the spectral properties of stiffness matrices that arise when isogeometric analysis is em-
ployed for the numerical solution of classical second order elliptic problems. Motivated by the applica-
tive interest in the fast solution (by preconditioned Krylov or multigrid methods) of the related linear
systems, we look for a spectral characterization of the involved matrices. In particular, we investigate
non-singularity, conditioning (extremal behavior), spectral distribution in the Weyl sense, as well as
clustering of the eigenvalues to a certain (compact) subset of the complex field. All the analysis is re-
lated to the notion of symbol in the Toeplitz setting and is carried out both for the cases of 1D and 2D
problems.

The spectral properties represent the starting point for designing fast two-grid methods for which
we provide a numerical confirmation of the optimality, meaning that the spectral radii of the related
iteration matrices are bounded by a constant cp for all n, cp < 1: a formal proof of optimality for p = 2
and p = 3 is given. An extension of the results to the two-level case is provided, together with a wide set
of numerical tests including the V-cycle and the W-cycle applied to approximated 1D and 2D problems.
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M. Van Barel
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For the interval [−1, 1], it is well-known that interpolating in Chebyshev points is much better than
using equidistant points in the same interval (Runge phenomenon). This fact forms the basis of Chebfun,
a Matlab-toolbox that uses Chebyshev points for the interpolation and Chebyshev polynomials for the
representation of the interpolant. Quantitatively, the fact that the Chebyshev points are “good” points
for interpolation with a polynomial of degree δ corresponds to the fact that the Lebesgue constant grows
as log δ while this Lebesgue constant grows much faster in case of equidistant interpolation points. The
Lebesgue constant is the maximum of the Lebesgue-function on the geometry considered, in this case
the interval [−1, 1].

Also for the multivariate case and for different geometries, sets of “good” points were investigated
(e.g., Padua points on the unit square) and other “good” point configurations were computed by opti-
mization algorithms. In this talk we will describe an alternative optimization method to compute point
configurations with a small Lebesgue constant for different geometries. This method consists of sev-
eral smaller optimization procedures, taking each more and more computational effort but leading to
smaller and smaller Lebesgue constants. It will turn out that the choice of a good basis for a specific ge-
ometry is essential to be able to solve the polynomial interpolation problem over that geometry. We will
use an orthonormal basis with respect to a discrete inner product where the points of the inner product
are lying in the geometry that we are considering at that moment. No explicit representation for these
basis polynomials will be computed but we will evaluate them using a recurrence relation, generalizing
the three-term recurrence relation on the real line and the Szegö recurrence relation on the complex unit
circle.
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A FREE BOUNDARY NUMERICAL METHOD FOR SOLVING AN OVERDETERMINED ELLIPTIC

PROBLEM

A. Gonzalez, J. Murcia, G. Viglialoro
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This work presents a mathematical problem related to the equilibrium analysis of a prestressed mem-
brane with rigid and cable boundaries. The membrane is represented by a regular surface z(x, y), its
stresses (tensions) by a positive tensor σ(x, y), and its boundary by a set of regular curves; Γr and Γc, i.e.
rigid and cable boundary respectively. The membrane-cable interface equilibrium requires taking into
account a singular condition on Γc, and it makes the problem more difficult. Precisely, if H represents
the Hessian matrix of z and t is the tangent unit vector to Γc, once σ is fixed we have to find z in a
bounded domain D such that

div (σ · ∇z) = 0 in D,
z = g on Γr, z = h on Γc (Dirichlet boundary conditions),
t · (H · t) = 0 on Γc (unusual boundary condition),

(3)

g and h being two functions defined in Γr and Γc (∂D = Γc ∪ Γc). In the last system it is not possible to
arbitrarily choose both functions g and h; in fact, an overdetermined elliptic problem would be obtained
and its solution z would not necessarily solve also the unusual boundary condition on Γc. Therefore, we
consider Γc as a free portion of ∂D and, by means of an iterative procedure, it is possible to fit the shapes
of the cable (i.e. Γc) and of the membrane (i.e. z) so that system (3) is completely verified.

The aim of the talk is to define and discuss this mathematical problem and, successively, to present
some numerical results regarding the iterative approach.
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PROPAGATION AND INTERACTION OF COHERENT STRUCTURES IN FERROMAGNETIC SYSTEMS

R. Brown
Department of Mathematics and Information Sciences

University of Northumbria (UK)
richard.brown@northumbria.ac.uk

Magnetic materials yield a rich variety of intriguing nonlinear wave phenomena. Recent theoretical
and experimental developments have enabled the controlled manipulation of magnetic moments on the
nanometer length scale, the magnetic exchange length, thereby generating further interest in the field of
nanomagnetism, particularly as for future spin based information storage and processing technologies.
Finally, the generation of coherent and localized magnetic structures (droplet solitons) has been recently
experimentally observed, by using spin transfer torque underneath a nanocontact on a magnetic thin
film with perpendicular magnetic anisotropy.

The existence, stability, and properties of propagating, (one-droplet) solitary waves in ferromag-
netic systems have been inquired into and studied at various times since the first derivation of the
corresponding governing equation, the Landau–Lifshitz (LL) equation. Although the LL equation for
a one-dimensional uniaxial ferromagnetic system has been shown to be integrable by means of the in-
verse scattering transform, only the one-droplet solution has been studied extensively in the literature.
The research illustrated in this poster is focused on the multi-droplet solutions of the one-dimensional
LL equation for an easy-axis ferromagnetic system, in particular on the open problem of describing the
propagation and interaction of N-droplets on the line. The solution to such a problem not only may
lead to a better mathematical understanding of the LL equation, but may also provide a deeper physical
insight into magnetic phenomena on the nanometer length scale.
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PARAMETER SELECTION STRATEGIES FOR THE ARNOLDI-TIKHONOV METHOD

S. Gazzola, P. Novati, and M. R. Russo
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In this work we describe some strategies for setting the regularization parameter when performing
the Arnoldi-Tikhonov method.

Often, when dealing with linear discrete ill-posed problems of huge dimensions, just a purely itera-
tive or a hybrid approach to regularization can be adopted. The class of the Arnoldi-Tikhonov methods
[1] is based on the projection of the original Tikhonov-regularized problem onto Krylov subspaces of
small but increasing dimensions; in particular, we are concerned with formulations that can deal with
an arbitrary initial guess for the solution and a generic regularization matrix.

In this setting, a suitable value for the Tikhonov regularization parameter should be set at each
iteration, as well as a stopping criterion for the underlying Arnoldi algorithm. We present two refor-
mulations of the classical discrepancy principle, including a new scheme that can be applied without
any initial estimate on the noise level, which is recovered during the iterations. An efficient reformula-
tion of the Generalized Cross Validation method is presented, too. We briefly address some theoretical
estimates, in order to justify our approach [2].
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CONVERGENCE ACCELERATION OF ROW ACTION METHODS

C. Brezinski, A. Karapiperi, and M. Redivo-Zaglia
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During the last decades, the class of the row projection, also called row-action, methods for solving a
(possibly large) system of linear equations received much attention since they have several interesting
properties (i.e. no changes to the original matrix and no operations on the matrix as a whole). Although
the convergence of these methods is quite slow, many acceleration schemes have been proposed, based
on different techniques.

Here we present some results already obtained for Kaczmarz’s method [2] and new results on Cim-
mino’s method [3]. The acceleration is based on sequence transformations [1]. Two algorithms are pro-
posed: in the first one the accelerated sequence is obtained directly by using the sequence obtained by
the original method (Accelerated algorithm); in the second algorithm, the accelerated sequence, is com-
puted by restarting the original method from a vector obtained by an extrapolation method (Restarted
algorithm).

Numerical results for both Kaczmarz and Cimmino methods will be presented.
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V. Knibbeler, S. Lombardo, and J. A. Sanders
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The idea of Automorphic Lie Algebras [1] arose from the concept of reduction groups studied in the
early 80s in the field of integrable systems [2]. They are obtained by imposing a discrete group symmetry
on a current algebra of Krichever Novikov type. That is, for g a simple Lie algebra, M(C) the field
of meromorphic functions on the Riemann sphere, and G a finite subgroup of Aut(g ⊗M(C)), the
Automorphic Lie Algebra is the space of invariants (g⊗M(C))G

Γ where Γ ⊂ C is a single G-orbit where
poles are allowed. Past work shows remarkable resemblance between Automorphic Lie Algebras with
different reduction groups G [3], [4]. For example, if g = sl(2, C) and Γ is an exceptional orbit, |Γ| < |G|,
changing the group does not affect the Lie algebra structure, although the elements of the algebra are
different. In the present research we fix G to be the dihedral group DN , and vary the orbit of poles
and the Lie algebra, as well as the G-action on the Lie algebra. We find a uniform description of these
algebras, valid both in the case of generic and exceptional orbits.
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Earth-orbiting microwave radiometers are a key remote sensing tool to provide valuable and ef-
fective large-scale information for oceanic and atmospheric applications. However, there is a growing
interest in other applications that require finer spatial resolution. The resolution of radiometer data can
be enhanced by using either image-processing techniques or special reconstruction algorithms. These
latter do not enhance the resolution of end-products, as done by ad hoc image-processing procedures;
rather, once a low resolution measure of geophysical parameters is provided, they attempt to reconstruct
the geophysical parameters on a finer grid. To this aim, a linear ill-posed problem needs to be inverted,
which can be physically considered as the analog of an antenna-pattern deconvolution. Hence, regular-
ization methods must be accounted for. In literature several methods to enhance the spatial resolution
of radiometer measurements have been proposed, e.g. the Backus-Gilbert, the SIR, the Tikhonov regu-
larization, etc. In this talk, two approaches are proposed:

• A truncated singular value decomposition (TSVD) approach is proposed. The rationale that lies at
the basis of the TSVD approach consists of truncating the SVD solution to discard the components
dominated by noise. The TSVD is properly extended to the 2D case and shown to be very effective
when the kernel is a two-dimensional tensor product.

• An iterative reconstruction technique, based on the gradient method in Banach spaces is proposed.
Banach spaces are complete vector spaces endowed with a norm that only allows to measure
“length” and “distance” between its elements without any scalar product, that is, without mea-
suring any “angle” between them. The technique is shown to overcome the drawbacks of classical
Hilbert space
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We investigate the spectral properties of a secondon order Shubin type differential operator. The
main tool is the reduction to global normal forms.

In particular, we are able to describe completely the spectrum of the following model (normal form)
non–self–operator on the real line

Pu = −u′′(x) + (εx + p)u′ + ωx2 + iqx, ε, p, q ∈, ω ∈ R,

which might be viewed as a perturbation of the complex harmonic oscillator studied by E.B. Davies and
A.B.J Kuijlaars (2004).
The functional frame of our investigations (in addition to the Schwartz class S(R) and the weighted
Sobolev (Shubin)) is formed by the scale of the Gelfand–Shilov spaces Sν

ν(R), µ + ν ≥ 1.
The talk is based on joint work with T. Gramchev (Università di Cagliari).

65



66



Index of speakers

Barletti L., 38
Benzi M., 44
Bini D.A., 16
Borghero F., 39
Boyadzhiev G., 45
Brown R., 60

Calini A., 24

Degasperis A., 18

Estatico C., 46

Fasino D., 47
Fenu C., 48
Fermo L., 25
Frosali G., 40

Gazzola S., 61
Gramchev T., 26

Karapiperi A., 62
Klaus M., 19
Knibbeler V., 63

Lenti F., 64
Lombardo S., 27

Mastroianni G., 49
Meini B., 50
Mignemi S., 41
Moro A., 28
Mueller-Hoissen F., 29

Noschese S., 51

Ortenzi G., 30

Pennisi S., 42
Pintus P., 52

Ran A., 53
Reichel L., 54
Ruggeri T., 20

Santini P., 31
Schiebold C., 32
Secondini M., 33

Serra Capizzano S., 55
Sommacal M., 34

Tranquilli G., 66

Van Barel M., 56
Vernier Piro S., 35
Viglialoro G., 57
Vitale F., 36

67



68





Monday 2 Tuesday 3 Wednesday 4 Thursday 5
8:30–9:00 REGISTRATION

Chair: T. Aktosun B. Prinari S. Pennisi S. Seatzu
9:00–10:00 OPENING Antonio Degasperis (Plenary) Tommaso Ruggeri (Plenary) Dario Bini (Plenary)

Rational solitons of resonant wave interac-
tion models

Recent results in rational extended thermo-
dynamics: macroscopic approach . . .

Geometric means of matrices: analysis and
algorithms

10:00–10:30 Martin Klaus (Plenary) Paolo Santini Giovanni Frosali Lothar Reichel
Spectral problems associated with the matrix-
valued AKNS equation

Integrable multidimensional PDEs of hydro-
dynamic type: method of solution . . .

Nonlinear analysis of the two-mass-skate bi-
cycle model

Rational Krylov methods and Gauss quadra-
ture

10:30–11:00 Sara Lombardo Luigi Barletti Giuseppe Mastroianni
Automorphic Lie Algebras Signal-noise interaction in nonlinear optical

fibers: a fluid-dynamic approach
Fredholm integral equations on the real semi-
axis: a numerical method

11:00–11:20 COFFEE BREAK

Chair: G. Biondini P. Santini G. Frosali L. Reichel
11:20–11:50 Folkert Mueller-Hoissen Matteo Sommacal Sebastiano Pennisi Marc Van Barel

Sylvester equations and integrable systems: a
bidifferential calculus perspective

Propagation and control of nanoscale
magnetic-droplet solitons

Extended Thermodynamics from the La-
grangian view-point

“Good” points for multivariate polynomial
interpolation and approximation

11:50–12:20 Cornelia Schiebold Marco Secondini Todor Gramtchev Andre Ran
Multiple-pole solutions of the Nonlinear
Schroedinger equation

Analytical approximations of the NLS equa-
tion: applications to . . .

Global normal forms and spectral properties
for perturbations of harmonic oscillators

Asymptotics of the smallest singular value of
a class of Toeplitz-generated matrices . . .

12:20–12:50 Annalisa Calini Luisa Fermo Salvatore Mignemi Michele Benzi
Integrable Flows for Starlike Curves in Cen-
troaffine Space

Computation of relevant scattering data in
the Zakharov-Shabat system

Analytical mechanics of a relativistic particle
in a positional potential

Decay properties for functions of matrices
over C∗-algebras

12:50–16:00 LUNCH

Chair: F. Mueller-Hoissen A. Degasperis M. Van Barel D. Bini
16:00–16:30 Stella Piro-Vernier Federica Vitale Stefano Serra Capizzano Beatrice Meini

A Keller-Segel model in chemotaxis with
blow-up solutions

The IST for the defocusing NLS equation with
nonzero boundary conditions

A symbol approach in IgA matrix analysis . . . On the solution of certain algebraic Riccati
equations arising in fluid queues

16:30–17:00 Gino Biondini Giovanni Ortenzi Claudio Estatico Dario Fasino
Scalar and vector nonlinear Schrodinger
equations with nonzero boundary conditions

Effects of inertia and stratification in incom-
pressible ideal fluids . . .

Regularized nonconvex minimization for im-
age restoration

A modularity-based spectral graph analysis

17:00–17:30 Al Osborne Francesco Borghero Silvia Noschese Caterina Fenu
Extending integrable methods to noninte-
grable evolution equations

Some new results in Geometrical Optics A modified TSVD method for discrete ill-
posed problems

Fast ranking of nodes on digraphs

17:30–17:50 COFFEE BREAK

Chair: F. Demontis G. Rodriguez
17:50–18:20 Antonio Moro Poster Session Paolo Pintus

Breaking mechanism from a vacuum point in
the defocusing NLS equation

Modal analysis in non reciprocal wave-guide
based on the finite element method

18:20–18:50 Georgi Boyadzhiev Visit to the museum of wax Giuseppe Viglialoro
Characteristic curves in modeling of the earth
crust and upper mantle

anatomical models A free boundary numerical method for solv-
ing an overdetermined elliptic problem


