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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world. )

Figure: Small complex networks: dolphins, USAir97, Householder93.
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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world. J

Outline:

@ Elements of algebraic graph theory

@ Two problems on complex networks:
@ graph partitioning — Laplacian matrices
@ community detection — modularity matrices

@ Spectral analysis of modularity matrices
@ Complements, comments, conclusion
[4 D. F., F. Tudisco.

An algebraic analysis of the graph modularity.
Preprint (2013).
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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world. J

Notations:
e G =(V,E): (unoriented) graph, vertices V = {1, ..., n},
edges EC V x V

e A subset S C V induces a subgraph, having edge set
E(S) and edge boundary 0S

e if S C V then S denotes complement, |S| denotes
cardinality

o the degree of vertex i is d; = deg (/). The volume of
SCVisvolS =3, sd;

vol S = 2|E(S)| + |0S].
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Introduction — Graphs and networks

A few special matrices are
usually associated to a graph
G: the adjacency matrix A and
the graph Laplacian

L = Diag(ds, ..., d,) — A:

3 0111 3 -1 -1 -1
2 1010 -1 2 -1 0
d= 2 A= 1100 L= -1 -1 2 0
1 1 001 -1 0 0 1
[4 M. Fiedler.
Note: L1 =0. Algebraic connectivity of graphs.

Czech. Math. J., 23 (1973), 298-305.
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Graph partitioning

Graph partitioning problem

Find a partitioning of the vertices into clusters, which
minimizes the total weight (e.g., number) of intercluster edges.

e Number and size of subsets are (roughly, at least) fixed;
e most familiar quality measure of a cut {S,S}:

05|

——————, conductance of S
min{|S|, |S|}

h(S) =
e Minimize h(S) ~» NP-hard ~~ spectral techniques

Let 15 denote the characteristic vector of S.
Then |0S| = 1111, |S| =1115.
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Graph partitioning

Graph partitioning problem

Find a partitioning of the vertices into clusters, which
minimizes the total weight (e.g., number) of intercluster edges.

Spectral partitioning technique
Instead of mings h(S) solve
o viLy
min
vT1=0 v'v

Thenset S ={i:v,> 0o}

The solution is the Fiedler vector: Lf = a(G)f
a(G) = smallest positive e.value of L = algebraic connectivity
of G.
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Level sets of Fiedler vectors

Theorem

Let G be a connected graph with a(G) simple eigenvalue,
Lf =a(G)f. Foro <0, letS={i:f,>0o}.
Then S induces a connected subgraph.

Figure: Spectral bisection of the dolphins network. Left: Fiedler vector.
Right: level sets, o = 0.
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Level sets of Fiedler vectors

Theorem

Let G be a connected graph with a(G) simple eigenvalue,
Lf =a(G)f. Foro <0, letS={i:f,>0o}.
Then S induces a connected subgraph.

More generally, if A;(L) is simple and o = 0 then the connected

components of S and S are no more than / + 1.

Analogous results hold also for Schrodinger operators on
weighted graphs, i.e., Diag(v) — A.

[4 Davies, Gladwell, Leydold, Stadler.
Discrete nodal domain theorems.
Lin. Alg. Appl., 336 (2001), 51-60.
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Community detection

How to partition a graph into “communities”?

@ Many answers available; trade-off betwen intercluster edges
(many) and intracluster edges (few)

@ number and size of clusters are not a priori specified.

Idea [Newman, Girvan 06]

“A good division of a network into communities (...) is one in
which there are fewer than expected edges between communities.”

[4 M. Newman, M. Girvan.
Finding and evaluating community structure in networks.
Phys. Rev. E, 69 (2006), 026113.
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Community detection — modularity

We need a null model to define the expected number of edges
in a subgraph; e.g., the Erdos-Renyi random graph model.
A better choice:

Chung-Lu random graph model

Fixed integers di, ..., d,, the probability that the edge (/,})
exists is d;d;/ >, dk.

Accordingly, the expected number of edges supported in
SCVis
did;  (volS)?

ijes Zk dk N volG

The difference between that number and |E(S)] is a quality
measure for S as a “community” .
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Community detection — modularity

Modularity of S C V:

(vol §)?
S)=2|E(S)| —
a(s) = 21E(S)| - e
vol Svol S =
=Tl PI= Q)
What is a “community”?
A community is a subset S C V having positive modularity. J

Introduce the modularity matrix M = A — dd" /vol G. Then,
Q(S) =1Im1;.
Indeed, 1Al = 2|E(S)| and 11d = vol S. Note: M1 = 0.
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Algebraic modularity

Community detection problem (simplified: just one cluster)
Find S C V which maximizes the modularity Q(S).

Instead of maxscy Q(S) (NP-hard) solve

T
v Mv
m(C) = 1o Ty

Then set S = {i: v; > o}. By far, the most popular and
successful heuristic for community detection
[Newman'06, Fortunato'10, VanDooren+'12. . .]
The solution is Mv = m(G)v
m(G) = algebraic modularity of G.

, v = Newman vector. v'1=0.
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Spectral properties of M

Q(S) = 1IM1s = trace(M(1L15)). Owing to Q(S) = Q(S),

Q(S) = aQ(S) + (1 — @) Q(S) = trace(MB)

for all 0 < o < 1, where B = als1{ + (1 — a)151].
Let a = |S|/n. From Wieland-Hoffman theorem,

Q(S) < M(M)A1(B) + A2(M)X2(B)
|S1|S]

= (M) + 2a(M) =]

n
S )\1(M)17

independently of S.
Owing to M1 = 0 we can replace A\;(M) by m(G).
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Spectral properties of M

Let Go = (V, V x V,wp) the null model weighted graph with
wo(i,j) = did;/vol G, and let Ly be its Laplacian:

L _Wo(i>j) ’7&]
(Lo)s {Zk;ﬁ;wo(i, k) i=]j.

Then, Ly = D — dd" /vol G. Moreover,
M=A—-D+D—dd"/volG = Ly — L.

We also obtain:

dmin — a(G) < a(Gg) — a(G) < M(G) < dnax — a(G). )
_dmin

In particular, m(G) > /(n— 1), optimal bound.
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Level sets of Newman vectors

Theorem

Let Mv = m(G)v with m(G) simple eigenvalue and d”v > 0.
Forall 0 <0, S ={i:v; > o} induces a connected subgraph.

PROOF (sketch, ¢ = 0).

m(G)v = Mv = Av — (d"v/vol G)d < Av.

By contradiction, assume that S consists of 2 disjoint subgraphs:
Reorder entries of v according to partitioning:

() ()
5
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Level sets of Newman vectors

Theorem

Let Mv = m(G)v with m(G) simple eigenvalue and d”v > 0.
Forall 0 <0, S ={i:v; > o} induces a connected subgraph.

PROOF (sketch, ¢ = 0).

m(G)v = Mv = Av — (d"v/vol G)d < Av.

By contradiction, assume that S consists of 2 disjoint subgraphs:
Reorder and partition consistently A, M, v. Then,

m(G)v1 A1l * %1 A11vi
m( G) v | < Ao vl < | A»nw
m(G)vs k% V3 *

By nonnegativity and eigenvalue interlacing,
A has at least 2 eigenvalues > m(G), absurd. O
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Nodal domains: Examples

The dolphins network. Left: Fiedler vector. Right: Newman

vector.

A small graph. Left: Fiedler vector. Right: Newman vector.
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The Householder93 collaboration graph

Figure: Spectral
Figure: Community detection in Householder93. distribution of M
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The Householder93 collaboration graph

Cullu@Strakos
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Figure: Community detection in the Householder93 network.
Left: positive cluster. Right: negative cluster.
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Cheeger-type inequalities — conductance

Definition
The isoperimetric constant (aka Cheeger number) of G is

he = min 1951
° " scvmin{|S[,IS[}

Theorem (Dodziuk'84, Alon-Milman'85, Mohar'89. . .)
If G is k-regular and a(G) its algebraic connectivity then

a(6)
2

< he < /a(G)(2k — 3(G)).
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Cheeger-type inequalities — modularity

Definition (Newman, Girvan 2004)
The modularity of a graph G is

Qc = —2—maxQ(S),  Q(S)=1IMLs.

~ vol G scv

Theorem
If G is k-regular and m(G) its algebraic modularity then

==\, S Q< —

1 k —m(G) m(G)
2n 2k 2k
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Conclusions

Spectral properties of modularity matrices:

e difference of two Laplacians ~» bounds for the algebraic
modularity m(G), relations with a(G)

o level sets of (leading) eigenvectors ~~ Fiedler-type results,
theoretical support to spectral community detection
algorithms

o Cheeger-type inequalities.

Best wishes, Cor!

Thank you.
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