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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world.

Figure: Small complex networks: dolphins, USAir97, Householder93.
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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world.

Outline:

1 Elements of algebraic graph theory
2 Two problems on complex networks:

1 graph partitioning — Laplacian matrices
2 community detection — modularity matrices

3 Spectral analysis of modularity matrices

4 Complements, comments, conclusion

D. F., F. Tudisco.
An algebraic analysis of the graph modularity.
Preprint (2013).
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Introduction — Graphs and networks

A complex network is a (di-)graph found in real world.

Notations:

G = (V ,E ): (unoriented) graph, vertices V = {1, . . . , n},
edges E ⊆ V × V

A subset S ⊆ V induces a subgraph, having edge set
E (S) and edge boundary ∂S

if S ⊆ V then S̄ denotes complement, |S | denotes
cardinality

the degree of vertex i is di = deg (i). The volume of
S ⊆ V is vol S =

∑
i∈S di ;

vol S = 2|E (S)|+ |∂S |.
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Introduction — Graphs and networks

A few special matrices are
usually associated to a graph
G : the adjacency matrix A and
the graph Laplacian
L = Diag(d1, . . . , dn)− A:

G =
4

2
3

1

d =


3
2
2
1

 A =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

 L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1



Note: L1 = 0.
M. Fiedler.
Algebraic connectivity of graphs.
Czech. Math. J., 23 (1973), 298–305.
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Graph partitioning

Graph partitioning problem

Find a partitioning of the vertices into clusters, which
minimizes the total weight (e.g., number) of intercluster edges.

Number and size of subsets are (roughly, at least) fixed;

most familiar quality measure of a cut {S , S̄}:

h(S) =
|∂S |

min{|S |, |S̄ |}
, conductance of S

Minimize h(S) NP-hard  spectral techniques

Let 1S denote the characteristic vector of S .
Then |∂S | = 1T

S L1S , |S | = 1T
S 1S .
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Graph partitioning

Graph partitioning problem

Find a partitioning of the vertices into clusters, which
minimizes the total weight (e.g., number) of intercluster edges.

Spectral partitioning technique

Instead of minS h(S) solve

min
vT1=0

vTLv

vTv

Then set S = {i : vi ≥ σ}.

The solution is the Fiedler vector: Lf = a(G )f
a(G ) = smallest positive e.value of L = algebraic connectivity
of G .
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Level sets of Fiedler vectors

Theorem

Let G be a connected graph with a(G ) simple eigenvalue,
Lf = a(G )f . For σ ≤ 0, let S = {i : fi ≥ σ}.
Then S induces a connected subgraph.

Figure: Spectral bisection of the dolphins network. Left: Fiedler vector.
Right: level sets, σ = 0.
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Level sets of Fiedler vectors

Theorem

Let G be a connected graph with a(G ) simple eigenvalue,
Lf = a(G )f . For σ ≤ 0, let S = {i : fi ≥ σ}.
Then S induces a connected subgraph.

More generally, if λi(L) is simple and σ = 0 then the connected
components of S and S̄ are no more than i + 1.

Analogous results hold also for Schrödinger operators on
weighted graphs, i.e., Diag(v)− A.

Davies, Gladwell, Leydold, Stadler.
Discrete nodal domain theorems.
Lin. Alg. Appl., 336 (2001), 51–60.
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Community detection

How to partition a graph into “communities”?

Many answers available; trade-off betwen intercluster edges
(many) and intracluster edges (few)

number and size of clusters are not a priori specified.

Idea [Newman, Girvan 06]

“A good division of a network into communities (...) is one in
which there are fewer than expected edges between communities.”

M. Newman, M. Girvan.
Finding and evaluating community structure in networks.
Phys. Rev. E, 69 (2006), 026113.
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Community detection — modularity

We need a null model to define the expected number of edges
in a subgraph; e.g., the Erdös-Renyi random graph model.
A better choice:

Chung-Lu random graph model

Fixed integers d1, . . . , dn, the probability that the edge (i , j)
exists is didj/

∑
k dk .

Accordingly, the expected number of edges supported in
S ⊆ V is ∑

i ,j∈S

didj∑
k dk

=
(vol S)2

volG
.

The difference between that number and |E (S)| is a quality
measure for S as a “community”.
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Community detection — modularity

Modularity of S ⊆ V :

Q(S) = 2|E (S)| − (vol S)2

volG

=
vol S vol S̄

volG
− |∂S | = Q(S̄).

What is a “community”?

A community is a subset S ⊂ V having positive modularity.

Introduce the modularity matrix M = A− ddT/volG . Then,

Q(S) = 1T
S M1S .

Indeed, 1T
S A1S = 2|E (S)| and 1T

S d = vol S . Note: M1 = 0.
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Algebraic modularity

Community detection problem (simplified: just one cluster)

Find S ⊂ V which maximizes the modularity Q(S).

Instead of maxS⊂V Q(S) (NP-hard) solve

m(G ) := max
vT1=0

vTMv

vTv

Then set S = {i : vi ≥ σ}. By far, the most popular and
successful heuristic for community detection
[Newman’06, Fortunato’10, VanDooren+’12. . . ]
The solution is Mv = m(G )v
m(G ) = algebraic modularity of G .
Very informally, v = Newman vector. vT1 = 0.
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Spectral properties of M

Q(S) = 1T
S M1S = trace(M(1T

S 1S)). Owing to Q(S) = Q(S̄),

Q(S) = αQ(S) + (1− α)Q(S̄) = trace(MB)

for all 0 ≤ α ≤ 1, where B = α1S1T
S + (1− α)1S̄1

T
S̄

.

Let α = |S̄ |/n. From Wieland-Hoffman theorem,

Q(S) ≤ λ1(M)λ1(B) + λ2(M)λ2(B)

= (λ1(M) + λ2(M))
|S ||S̄ |
n

≤ λ1(M)
n

4
,

independently of S .
Owing to M1 = 0 we can replace λ1(M) by m(G ).
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Spectral properties of M

Let G0 = (V ,V × V , ω0) the null model weighted graph with
ω0(i , j) = didj/volG , and let L0 be its Laplacian:

(L0)ij =

{
−ω0(i , j) i 6= j∑

k 6=i ω0(i , k) i = j .

Then, L0 = D − ddT/volG . Moreover,

M = A− D + D − ddT/volG = L0 − L.

We also obtain:

dmin − a(G ) ≤ a(G0)− a(G ) ≤ m(G ) ≤ dmax − a(G ).

In particular, m(G ) ≥ −dmin/(n − 1), optimal bound.
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Level sets of Newman vectors

Theorem

Let Mv = m(G )v with m(G ) simple eigenvalue and dT v ≥ 0.
For all σ ≤ 0, S = {i : vi ≥ σ} induces a connected subgraph.

Proof (sketch, σ = 0).
m(G )v = Mv = Av − (dT v/volG )d ≤ Av .
By contradiction, assume that S consists of 2 disjoint subgraphs:
Reorder entries of v according to partitioning:

v1

v3

v2

S

S̄
G

LL ??

rr
//
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Level sets of Newman vectors

Theorem

Let Mv = m(G )v with m(G ) simple eigenvalue and dT v ≥ 0.
For all σ ≤ 0, S = {i : vi ≥ σ} induces a connected subgraph.

Proof (sketch, σ = 0).
m(G )v = Mv = Av − (dT v/volG )d ≤ Av .
By contradiction, assume that S consists of 2 disjoint subgraphs:
Reorder and partition consistently A,M, v . Then,m(G )v1

m(G )v2

m(G )v3

 ≤
A11 ∗

A22 ∗
∗ ∗ ∗

v1

v2

v3

 ≤
A11v1

A22v2

∗

 .

By nonnegativity and eigenvalue interlacing,
A has at least 2 eigenvalues > m(G ), absurd. �

D. Fasino, F. Tudisco Modularity-based spectral graph analysis 12/ 18



Nodal domains: Examples

The dolphins network. Left: Fiedler vector. Right: Newman
vector.

A small graph. Left: Fiedler vector. Right: Newman vector.
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The Householder93 collaboration graph

Figure: Community detection in Householder93.

Figure: Spectral
distribution of M
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The Householder93 collaboration graph

Golub i s ne l l a communi ty re l at i va agl i e l ementi posi t i v i di u ∈ Hλ 1(M ) , sc e l to con uT d ≥ 0

Golub

Young

Starke

Marek

Varga
Hochbruck

Ashby

Szy ld

Smi th
Modersi tzk i

Gutknecht

Widlund

OLeary

Bol ey
Overton

Nachti gal

Fi sche r

Dubrul l e

Tang

VanDooren

Luk

Re i che l

Wi lk inson

Saunders

Gu

Zha

Liu
Ng

George

Nichol s

Harrod

SamehBerry

Bo janczyk

Pan Nagy

Gi l l

E i senstat

Chandrasekaran

Heath
P l emmons

Ipsen

Funderl i c
Meyer

Benz i

Varah

Ernst

I l sottografo indotto dagl i e l ementi negati v i di u . No connesso!

K incaid

Wold

ATre fe then

Boman

StrakosCul l um

Ruhe

Dav i s

MuntheKaas

Park

He

NTre fe then

E lden

Bjorstad

Pothen

VanHuffe l

Greenbaum

Kagstrom

NHigham

Bai

Kahan

Ede lman
Duff

Hansen

Ariol i

Tong
Kuo

Ong

Sai ed

Bjorck

Anjos

Kenney

Byers

BunseGerstne r

Kaufman

Ammar Warne r

Borge s

Henri c i

VanLoan

Fi e rro

LeBorne

Hammarl i ngSchre ib e r

Creve l l i

D emmel

TChan

Paige

Laub

Gi lbe rt

Gragg

Mol e rBunch

Mathias

Barl ow

Jessup

Stewart

Figure: Community detection in the Householder93 network.
Left: positive cluster. Right: negative cluster.
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Cheeger-type inequalities — conductance

Definition

The isoperimetric constant (aka Cheeger number) of G is

hG = min
S⊂V

|∂S |
min{|S |, |S̄ |}

.

Theorem (Dodziuk’84, Alon-Milman’85, Mohar’89. . . )

If G is k-regular and a(G ) its algebraic connectivity then

a(G )

2
≤ hG ≤

√
a(G )(2k − a(G )).
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Cheeger-type inequalities — modularity

Definition (Newman, Girvan 2004)

The modularity of a graph G is

QG =
2

volG
max
S⊂V

Q(S), Q(S) = 1T
S M1S .

Theorem

If G is k-regular and m(G ) its algebraic modularity then

1

2n
−

√
k −m(G )

2k
≤ QG ≤

m(G )

2k
.
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Conclusions

Spectral properties of modularity matrices:

difference of two Laplacians  bounds for the algebraic
modularity m(G ), relations with a(G )

level sets of (leading) eigenvectors  Fiedler-type results,
theoretical support to spectral community detection
algorithms

Cheeger-type inequalities.

Best wishes, Cor!

Thank you.
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