A VARIATIONAL MODEL FOR INCISIONS AND GLYPHS EXTRACTION

A. Azzarelli and A. Buccini Department of Mathematics and Computer Science University of Cagliari, Italy andreaazzarelli1@gmail.com

In archaeology it is a common task to extract incisions or glyphs from a surface. This procedure is usually done manually and, therefore, it is prone to errors and it can be extremely time consuming. In this talk we present a variational model to automatically extract these incisions from a smooth surface.

We model this problem in the following way. Let $\mathbf{x} \in \mathbb{R}^n$ be a vector containing a sampling of the archaeological surface, we wish to find two vectors \mathbf{x}_s^* and \mathbf{x}_g^* such that $\mathbf{x} = \mathbf{x}_s^* + \mathbf{x}_g^*$, where \mathbf{x}_s^* is smooth and contains the background and \mathbf{x}_g^* is sparse and contains the glyph. To this aim we consider the model

$$\begin{pmatrix} \mathbf{x}_{s}^{*}, \mathbf{x}_{g}^{*} \end{pmatrix} = \arg \min_{\mathbf{x}_{s}, \mathbf{x}_{g} \in \mathbb{R}^{n \times n}} \frac{1}{2} \| L^{\alpha} \mathbf{x}_{s} \|_{2}^{2} + \mu \| \mathbf{x}_{g} \|_{1},$$

s.t. $\mathbf{x}_{s} + \mathbf{x}_{g} = \mathbf{x}_{s}$

where $\mu > 0$, $\alpha \in [1, 2]$, $\|\mathbf{x}\|_p^p = \sum_{i=1}^n |\mathbf{x}_i|^p$, and $L \in \mathbb{R}^{n \times n}$ denotes the Laplacian operator. To perform the minimization we employ the ADMM algorithm and we show the performances of the proposed method on synthetic data.