Computing the roots of Mandelbrot polynomials: an experimental ANALYSIS

D.A. Bini
Department of Mathematics, University of Pisa
Largo B. Pontecorvo, Pisa, Italy
dario.bini@dm.unipi.it

The celebrated Mandelbrot set is formed by the complex numbers c such that the sequence $x_{0}=0, x_{i+1}=x_{i}^{2}+c$, does not diverge to infinity. Relevant points of this set are the numbers c for which the sequence $\left\{x_{i}\right\}$ provides a cycle of finite length k. These values are the roots of the polynomial $p_{k}(z)$ of degree $n=2^{k}-1$ defined by the recurrence $p_{1}(z)=z+1$, $p_{i+1}=z p_{i}(z)^{2}+1, i=1, \ldots, k-1$. Efforts to compute these roots have been done by several authors [2], [4]. In this talk we provide an algorithm based on the Ehrlich-Aberth iterations [1] complemented by the Fast Multipole Method of [3], and by the fast search of near neighbors of a set of complex numbers, that have a cost of roughly $O(n)$ arithmetic operations per step. In our experiments, the number of iterations needed to arrive at numerical convergence is practically constant. This allows to compute the roots of $p_{k}(x)$ up to degree $n=2^{24}-1$ in a few minutes on a laptop with 16 GB RAM and an Intel I3 processor. Larger degrees can be treated on platforms with a higher amount of RAM.

References

[1] O. Aberth. Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comp., 27 (1973), pp. 339-344.
[2] N. J. Calkin, E. Y. S. Chan, and R. M. Corless. Some facts and conjectures about Mandelbrot polynomials. Maple Trans., 1, (2021).
[3] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73 (1987), pp. 325-348.
[4] D. Schleicher. On the efficient global dynamics of Newton's method for complex polynomials. Nonlinearity, 36 (2023).

