ConicCurv: A CuRvature estimation algorithm for planar polygons

R. Díaz Fuentes, J. Estrada-Sarlabous, and V. Hernández-Mederos
Department of Mathematics, University of Pisa
Pisa, Italy
rafael.diazfuentes@dm.unipi.it

This work presents a derivative free algorithm (ConicCurv) to estimate the curvature of a plane curve from a sample of data points. It is based on a known method to estimate tangents that is grounded on classic results of Projective Geometry and Bézier rational conic curves [1]. The curvature values estimated by ConicCurv are invariant to Euclidean changes of coordinates and reproduce the exact curvature values if the data are sampled from a conic. It is shown that ConicCurv has convergence order 3 and if the sample points are uniformly arclength distributed, the convergence order is 4 . The performance of ConicCurv is compared with some of the most frequently used algorithms to estimate curvatures [2] and its effectiveness is illustrated in the calculation of L-curves corners [3].

References

[1] G. Albrecht, J. P. Bécar, G. Farin, D. Hansford, On the approximation order of tangent estimators, Computer Aided Geometric Design 25 (2008), pp. 80-95.
[2] A. Belyaev, Plane and space curves. Curvature. Curvature-based features. Max-PlanckInstitut für Informatik, (2004).
[3] P. C. Hansen, T. K. Jensen, G. Rodriguez, An adaptive pruning algorithm for the discrete L-curve criterion, Journal of Computational and Applied Mathematics, 198(2), (2007), pp. 483-492.

