ON ANTI-GAUSSIAN SCHEMES APPLIED TO INTEGRAL EQUATIONS

L. Fermo

Department of Mathematics and Computer Science, University of Cagliari Via Ospedale 72, 09124 Cagliari, Italy fermo@unica.it

This talk deals with the application of anti-Gaussian schemes to second-kind Fredholm integral equations of the type

$$f(y) + \int_{\mathcal{D}} k(x,y) f(x) d\mu(x) = g(y), \quad y \in \mathcal{D}.$$

Here, the kernel k and right-hand side g are given, the function f is to be determined, and $d\mu(x)$ is a nonnegative measure supported on a bounded or unbounded domain $\mathcal{D} \subset \mathbb{R}$.

Old and new results will be presented, including extensions to the bivariate case.

This work has been developed with Giuseppe Rodriguez and other collaborators of the Cagliari Numerical Analysis Group.

References

- P. Díaz de Alba, L. Fermo, G. Rodriguez. Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules. Numerische Mathematik 146:699–728, 2020.
- [2] P. Díaz de Alba, L. Fermo, G. Rodriguez. Anti-Gauss cubature rules with applications to Fredholm integral equations on the square. In progress.
- [3] D. L. Djukić, L. Fermo, R. Mutavdžić Djukić. Averaged cubature schemes on the real positive semiaxis. Numerical Algorithms, 92: 545–569, 2023.
- [4] D. L. Djukić, L. Fermo, R. Mutavdžić Djukić. On the numerical solution of bivariate Fredholm integral equations on unbounded domains. In progress.
- [5] L. Fermo, L. Reichel, G. Rodriguez, and M. M. Spalević. Averaged Nyström interpolants for the solution of Fredholm integral equations of the second kind. Submitted.