GAUSS-TYPE QUADRATURE RULES FOR VARIABLE-SIGN WEIGHT FUNCTIONS

J. Tomanović

Department of Mathematics, FME, University of Belgrade Kraljice Marije 16, 11120 Belgrade 35, Serbia jtomanovic@mas.bg.ac.rs

When the Gauss quadrature formula G_n is applied, it is usually assumed that the weight function (or the measure) is non-negative on the integration interval [a, b]. In the present paper, we introduce a Gauss-type quadrature formula Q_n for weight functions that change the sign in the interior of [a, b]. It proves that all nodes of Q_n are pairwise distinct and contained in the interior of [a, b]. Moreover, G_n (with a non-negative weight function) turns out to be a special case of Q_n . Obtained results on the remainder term of Q_n suggest that the application of Q_n makes sense both when the points from the interior of [a, b] at which the weight function changes sign are known exactly, as well as when those points are known approximately. The accuracy of Q_n is confirmed by numerical examples.

Keywords: Gauss quadrature rule, variable-sign weight function, modifier function, Vandermonde matrix, maximum norm