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A goal of this meeting is to spur interaction and collaboration between participants with
different expertise. Such cross fertilization has served the scientific computing community well
to reach the present state of knowledge.

The conference will be held at Santa Margherita di Pula outside Cagliari, Sardinia, Italy. A
focus of the conference will be new developments in large-scale computation, with an empha-
sis on image restoration. However, many other topics also will be covered, including Krylov
subspace iterative methods, preconditioning, matrix functions, solution of partial differential
equations, network analysis, and the solution of ill-posed problems. The conference will have
contributed and invited talks, as well as contributed and invited minisymposia.

In addition to providing a forum for researchers to exchange and develop new ideas, the
conference also will celebrate the birthdays of ETNA (the 25th) and of Fiorella Sgallari.
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ITERATIVE SOLUTION TECHNIQUES FOR THE COUPLED STOKES–DARCY

PROBLEM

M. Benzi
Scuola Normale Superiore

Piazza dei Cavalieri 7, 56126 Pisa, Italy
michele.benzi@sns.it

The Stokes–Darcy problem is a coupled system of partial differential equations that arises
in fluid mechanics. Discretization of the weak form of these equations by finite element meth-
ods leads to large, sparse linear systems with a double (or nested) saddle-point structure. In
this talk I will discuss the iterative solution of these linear systems by preconditioned Krylov
subspace methods. New block preconditioners will be introduced, analyzed, and compared
with existing solvers. The effectiveness of the proposed preconditioners will be demonstrated
both theoretically and numerically.

This is joint work with Fatemeh Panjeh Ali Beik (Valie-e-Asr University of Rafsanjan, Iran).
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ON MATRIX EQUATIONS ASSOCIATED WITH RANDOM WALKS IN THE QUARTER

PLANE

D. A. Bini
Department of Mathematics, University of Pisa

Largo Bruno Pontecorvo 5, Pisa, Italy
dario.bini@unipi.it

The numerical solution of random walks in the quarter plane leads to solving matrix equa-
tions of the kind X = A1X2 + A0X + A−1 where A−1, A0, A1 are semi-infinite tridiagonal
matrices which share the Toeplitz structure everywhere except in the first row. Solving this
kind of equations is an important task in the analysis of queuing networks encountered in the
applications.

In this talk, we provide an introduction to the problem, present some models from the
applications which motivate this analysis, and discuss some algorithmic approaches.

In particular, we provide conditions under which the solution can be written as the sum
of a Toeplitz matrix and a compact correction, and present some algorithms which separetly
approximate the Toeplitz part and the correction part of the solution. The algorithms which
we analyze include fixed point iterations, Newton’s method, and the cyclic reduction iteration.
Some computational issues are discussed, in particular, solving a Sylvester matrix equation
having coefficients with infinite size, representing infinite matrices with a finite number of pa-
rameters, and implementing a matrix arithmetic for infinite matrices.
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THE VIRTUAL ELEMENT METHODS. AN OVERVIEW

F. Brezzi
Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes

Consiglio Nazionale delle Ricerche
Pavia, Italy

brezzi@imati.cnr.it

The talk will recall the basic principles, the main features, and some more recent results of
the Virtual Element Methods. The method is a member of the family of “Galerkin Methods” for
dealing with the numerical solution of Partial Differential Equations, and is particularly aimed at
the use of decompositions of the computational domain in polygons of polyhedral of very gen-
eral shape, including elements with curved edges. Some applications to classical Engineering
problems will also be outlined.
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MULTIGRID PRECONDITIONERS FOR SPACE-FRACTIONAL DIFFUSION

EQUATIONS

M. Donatelli
Department of Science and High Technology, University of Insubria

Via Valleggio, 11 – 22100 Como
marco.donatelli@uninsubria.it

In the last decade Fractional Diffusion Equations (FDEs) have gained a lot of attention
in wide range of applicative fields like finance, biology, turbulent flow, image processing, and
cardiac electrophysiology. The reason essentially relies on the fact that the so-called fractional
derivative order can be tuned in order to model enhanced diffusivity.

Even with local discretization methods like finite differences, the nonlocal nature of the
fractional operators leads to dense linear systems to be solved. Fortunately, the resulting
matrices have a Toeplitz-like structure, in the sense that they are expressed as a sum of
products between diagonal and dense Toeplitz matrices.

Our contribution in this field is twofold. From one side, we exploit the aforementioned
Toeplitz-like structure in order to perform a spectral analysis of the resulting coefficient ma-
trices. On the other hand, we use the obtained spectral information for designing effective
multigrid preconditioners for Krylov methods and for studying their convergence properties
[1]. Moreover, we propose a robust multigrid preconditioner for the anisotropic problems with
application to a space-fractional model for cardiac electrophysiology [2].

References

[1] M. Dehghan, M. Donatelli, M. Mazza, H. Moghaderi, Multigrid methods for two-
dimensional space-fractional diffusion equations, J. Comput. Phys., 350 (2017) 992–
1011.

[2] M. Donatelli, R. Krause, M. Mazza, K. Trotti, Multigrid preconditioned GMRES for
anisotropic space-fractional diffusion equations, submitted.
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ANALYSIS OF BLOCK KRYLOV SUBSPACE METHODS RELYING ON GENERAL

BLOCK INNER PRODUCTS

A. Frommer, K. Lund and D.B. Szyld
Fakultät für Mathematik und Naturwissenschaften

Bergische Universität Wuppertal
42097 Wuppertal, Germany

frommer@math.uni-wuppertal.de

Block Krylov subspace methods for solving s simultaneous linear systems

AX = B, where A ∈ Cn×n, B = [b1| · · · |bs] ∈ Cn×s

can be faster than methods that treat individually the systems Axi = bi, i = 1, . . . , s, for
two reasons: Since a block Krylov subspace is larger than any of the individual subspaces,
one can extract more accurate approximations for the same total investment of matrix-vector
multiplications. And since the multiplication of A with a block vector B can be implemented
more efficiently than s individual multiplications, they require less memory access and allow
for batch communication.

Starting from the block FOM method, we develop a general concept of modified block FOM
methods which includes block GMRES and a “Radau-Arnoldi" variant. We present results on
variational characterizations, on properties of the underlying residual matrix polynomials and
on comparisons between the iterates for different block inner products. Particular emphasis
will then be put on shifted families of block linear systems of the form

(A + tI)Xt = B, t ∈ T ⊆ C,

where we discuss a computational strategy to keep block residuals “co-spatial” for all t in the
presence of restarts. This allows to build the block Krylov subspace only once for all shifts t,
even after a restart. We show to which extent results from the non-block case do have a natural
counterpart for the block case. Maintaining co-spatiality in restarts is mandatory for being able
to express the error when approximating matrix functions via block Krylov subspaces, a topic
which will be investigated in depth in Kathryn Lund’s contributed talk.
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SEVEN THINGS I WOULD HAVE LIKED TO KNOW WHEN STARTING TO WORK ON

DOMAIN DECOMPOSITION

M. J. Gander
Section of Mathematics, University of Geneva

2-4 Rue du Lievre, CP64, 1211 Geneva
martin.gander@unige.ch

It is not easy to start working in a new field of research. I will give a personal overview
over seven things I would have liked to know when I started working on domain decomposition
(DD) methods:

1. Seminal contributions to DD not easy to start with

2. Seminal contributions to DD ideal to start with

3. DD solvers are obtained by discretizing 2.

4. There are better transmission conditions than Dirichlet or Neumann

5. “Optimal” in classical DD means scalable

6. Coarse space components can do more than provide scalability

7. DD methods should always be used as preconditioners
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HEURISTIC PARAMETER CHOICE RULES IN INVERSE PROBLEMS

S. Kindermann
Industrial Mathematics Institute, Johannes Kepler University of Linz

Linz, Austria
kindermann@indmath.uni-linz.ac.at

The choice of the regularization parameter is one of the most important part when com-
puting a regularization for ill-posed problems. It strongly determines the quality of the recon-
structed approximate solution and optimal convergence is only obtained by an appropriate
selection of the regularization parameter.

One can distinguish between different types of parameter choice rules, namely those that
use additional information on the exact solution or the noiselevel and those that only require
the given data. The latter ones are called heuristic (or data-driven, noiselevel-free) parameter
choice rules. Although they are the most practical ones from an application point of view, by a
well-known result of Bakushinskii such methods cannot converge in the worst case. Neverthe-
less, a recent fruitful convergence theory for certain heuristic methods has been established
by postulating additional properties of the noise in form of noise condition. In many situations,
such noise conditions are satisfied both for random and also deterministic noise, such that the
theory covers both deterministic and stochastic inverse problems.

In this talk we would like to give an overview on these rules and the philosophy behind and
discuss the main convergence results for the most useful minimization-based heuristic rules,
such as the heuristic discrepancy, the Hanke-Raus, and the quasioptimality rules for linear
regularization theory. We end with an outlook on the extension of these results to convex
Tikhonov regularization.
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NUMERICAL ANALYSIS OF FINITE ELEMENT SYSTEMS MODELING ELASTIC

STENTS

L. Grubišić, M. Ljulj, V. Mehrmann, J. Tambača
Institute for Mathematics, MA 4-5, TU Berlin
Str. des 17 Juni 136, 10623 Berlin, Germany

mehrmann@math.tu-berlin.de

A new model description for the numerical simulation of elastic stents is proposed. Based
on the new formulation an inf-sup inequality for the finite element discretization is proved
and the proof of the inf-sup inequality for the continuous problem is simplified. The new
formulation also leads to faster simulation times despite an increased number of variables.
The techniques also simplify the analysis and numerical solution of the evolution problem
describing the movement of the stent under external forces. The results are illustrated via
numerical examples, see [1].

References

[1] L. Grubišić, M. Ljulj, V. Mehrmann, and J. Tambača, Modeling and discretization methods
for the numerical simulation of elastic stents, https://arxiv.org/1812.10096, Preprint 01-
2019, Institute of Mathematics, TU Berlin, submitted for publication, 2019.
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SPARSITY-INDUCING NON-CONVEX NON-SEPARABLE REGULARIZATION FOR

CONVEX IMAGE PROCESSING

S. Morigi,
Department of Mathematics, University of Bologna

P.zza Porta San Donato 5, 40126 Bologna, Italy
serena.morigi@unibo.it

A popular strategy for determining solutions to linear least-squares problems relies on us-
ing sparsity-promoting regularizers and is widely exploited in image processing applications
such as, e.g., image denoising, deblurring and inpainting. It is well known that, in general,
non-convex regularizers hold the potential for promoting sparsity more effectively than convex
regularizers such as, e.g., those involving the `1 norm. To avoid the intrinsic difficulties related
to non-convex optimization, the Convex Non-Convex (CNC) strategy has been proposed [2, 1],
which allows the use of non-convex regularization while maintaining convexity of the total ob-
jective function. In this talk, a unified CNC variational model is proposed, based on a more
general parametric non-convex non-separable regularizer. A primal-dual forward-backward
splitting algorithm is proposed for solving the related saddle-point problem. Numerical exper-
iments related to image deblurring, denoising and inpainting are presented which prove the
effectiveness of the proposed approach.

References

[1] A. Lanza, S. Morigi, I. Selesnick, F. Sgallari, Nonconvex nonsmooth optimization via
convex-nonconvex majorization-minimization, Numerische Mathematik, 136(2) (2017),
pp. 343–381.

[2] A. Lanza, S. Morigi, F. Sgallari, Convex Image Denoising via Non-convex Regularization
with Parameter Selection, Journal of Mathematical Imaging and Vision, (56)2 (2016),
pp.195–220.
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SPACE-VARIANT REGULARIZATION FOR IMAGE RESTORATION PROBLEMS

F. Sgallari
Department of Mathematics, University of Bologna

Piazza di Porta San Donato 5, Bologna, Italy
fiorella.sgallari@unibo.it

Ill-posed problems arise in many areas of science and engineering. Their solutions, if
they exist, are very sensitive to perturbations in the data. Regularization aims to reduce this
sensitivity. Typically, regularization methods replace the original problem by a minimization
problem with a fidelity term and a regularization term. Image restoration is a typical ill-posed
problem, which deals with the recovery of the original image from its degraded version by
blur and noise. Regularizers for imaging problems can often be derived from a Bayesian
framework and determined through a statistical point of view. In this talk we will discuss recent
space-variant and directional variational regularization terms for image restoration problems
based on explicit statistical assumptions on the gradients of the target image. In particular,
starting from the classical TV regularizer, we will introduce several space-variant and also
anisotropic generalizations based on sophisticated probabilistic assumptions. Compared to
TV, the new regularizers are much more flexible and their several space-variant parameters
are automatically computed. The numerical solution of the corresponding image restoration
models will be presented and discussed.
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ASYNCHRONOUS OPTIMIZED SCHWARZ METHODS FOR THE SOLUTION OF

PDES ON BOUNDED DOMAINS

M. El Haddad, J. C. Garay, F. Magoulés, and D. B. Szyld
Department of Mathematics, Temple University

Philadelphia, PA, USA
szyld@temple.edu

Asynchronous methods refer to parallel iterative procedures where each process performs
its task without waiting for other processes to be completed, i.e., with whatever information it
has locally available and with no synchronizations with other processes. In this talk, an asyn-
chronous version of the optimized Schwarz method is presented for the solution of differential
equations on a large parallel computational environment. Convergence is proved under very
mild conditions on the size of the subdomains, when optimal as well as approximate (non-
optimal) interface conditions are utilized for Poisson’s equation (and others) on the plane and
on bounded rectangular domains. Numerical results are presented on large three-dimensional
problems illustrating the efficiency of the proposed asynchronous parallel implementation of
the method.
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QRYLOV

R. Vandebril
Department of Computer Science, KU Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium.
raf.vandebril@cs.kuleuven.be

In this lecture we will investigate the intimite connection between Krylov subspaces, struc-
tured matrices, and the QR algorithm.

We start by revisiting how Krylov subspaces are lurking behind the convergence and the
implicit Q theorem in the classical QR algorithm. Both are essential in understanding Francis’s
implicitly shifted QR algorithm. From the QR algorithm, operating on a Hessenberg matrix, it
is straightforward to deduce the QZ algorithm, operating on a Hessenberg – upper triangular
pair. The implicit QZ algorithm is, like the QR algorithm, a bulge chasing algorithm, with the
bulge hopping from one matrix to the other.

Next, we examine extended Krylov subspaces and see that the theory carries over neatly.
Instead of a Hessenberg – upper triangular pair we end up with an extended Hessenberg –
Hessenberg pair. The extended Hessenberg pair is highly structured: the i-th subdiagonal
element must be zero in exactly one of the two Hessenbergs. The associated extended QZ
algorithm is still a bulge chasing/hopping algorithm.

Finally, we discuss rational Krylov subspaces. Now we will have to deal with a Hessenberg
– Hessenberg pair, where the poles determining the rational Krylov subspace are encoded in
the subdiagonal elements of these Hessenberg matrices. Again we can deduce an implicit Q
theorem and develop a rational QZ algorithm. We will, however, not be able to chase bulges
anymore, instead we will have to manipulate the poles and end up with a pole swapping al-
gorithm. The convergence will be governed by subspace iteration driven by rational functions.
Some numerical experiments will reveal the advantages of using this rational QZ algorithm.

Many people contributed to this research. I especially like to thank Daan Camps, Karl
Meerbergen, Paul Van Dooren, Nicola Mastronardi, David S. Watkins, and Thomas Mach.
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ON THE SOLUTION OF THE NONSYMMETRIC T-RICCATI EQUATION

P. Benner and D. Palitta
Computational Methods in Systems and Control Theory (CSC)

Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany

benner@mpi-magdeburg.mpg.de

We consider the nonsymmetric T-Riccati equation

0 = RT(X) := DX + XT A− XTBX + C, (1)

where A, B, C, D ∈ Rn×n and sufficient conditions for the existence and uniqueness of a min-
imal (w.r.t. entry-wise comparison) solution Xmin ∈ Rn×n are provided. To date, the nonlinear
matrix equation (1) is still an unexplored problem in numerical analysis and both theoretical
results and computational methods are lacking in the literature. We provide some sufficient
conditions for the existence and uniqueness of a nonnegative minimal solution and discuss
its efficient computation. Both the small-scale and the large-scale settings are addressed and
Newton-Kleinman-like methods are derived. The convergence of these procedures to the min-
imal solution is proved and several numerical results illustrate the computational efficiency of
the proposed methods.
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UNIQUENESS OF SOLUTION OF GENERALIZED SYLVESTER-LIKE EQUATIONS

WITH RECTANGULAR COEFFICIENTS

F. De Terán, B. Iannazzo, F. Poloni, and L. Robol
Department of Mathematics, Universidad Carlos III de Madrid

Avda. Universidad 30, 28911, Leganés, Spain
fteran@math.uc3m.es

We provide necessary and sufficient conditions for the generalized ?-Sylvester matrix
equation, AXB + CX?D = E, to have exactly one solution for any right-hand side E. These
conditions are given for arbitrary coefficient matrices A, B, C, D (either square or rectangular)
and generalize existing results for the same equation with square coefficients [1]. We also
review the known results regarding the existence and uniqueness of solution for generalized
Sylvester and ?-Sylvester equations. The contents of this talk have been recently published in
[2].
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SCHUR ALGORITHMS FOR MATRIX EQUATIONS

M. Fasi and B. Iannazzo
Department of Mathematics and Computer Science,

University of Perugia, Italy
bruno.iannazzo@unipg.it

We consider matrix equations of the type r(X) = A, where r is a rational function and A
and X are square matrices of the same size. We provide two algorithms for solving the matrix
equation, deduced from two different evaluation schemes of the rational function r and more
efficient, in term of computational cost, than existing algorithms for the same problem [1].

The algorithms are based on a reduction to (block) triangular matrices using the Schur
form, followed by a substitution procedure. For triangular data and unknown, our algorithms
for solving the equation have the same asymptotic cost as the evaluation schemes from which
they are deduced.

The algorithms are then applied to the computation of primary matrix functions defined
by an equation of the type f (X) = A, such as the matrix logarithm [2] and the Lambert W
function (defined by the equation X exp(X) = A) [3].
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LOW-RANK UPDATES AND DIVIDE-AND-CONQUER METHODS FOR MATRIX

EQUATIONS

D. Kressner, P. Kürschner, S. Massei, and L. Robol
Institute of Mathematics, EPFL

Lausanne, Switzerland
daniel.kressner@epfl.ch

Linear and quadratic matrix equations, such as the Sylvester and Riccati equations, play an
important role in various applications, including the stability analysis and dimensionality reduc-
tion of linear dynamical control systems and the solution of partial differential equations. In this
talk, we present algorithms for quickly updating the solution of such a matrix equation when
its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized,
including the derivation of a new divide-and-conquer approach for matrix equations that fea-
ture hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical
experiments demonstrate the advantages of divide-and-conquer over existing approaches, in
terms of computational time and memory consumption.

This talk is based on [1, 2].
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RANK STRUCTURE BASED SOLVERS FOR 2D FRACTIONAL DIFFUSION

EQUATIONS

S. Massei, M. Mazza, and L. Robol
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Via Valleggio 11, 22100 Como Italy
mariarosa.mazza@uninsubria.it

In this work, we consider the discretization of time-space diffusion equations with fractional
derivatives in space and either 1D or 2D spatial domains. The use of implicit Euler scheme
in time and finite differences or finite elements in space leads to a sequence of dense large
scale linear systems describing the behavior of the solution over a time interval. We prove that
the coefficient matrices arising in the 1D context are rank structured and can be efficiently rep-
resented using hierarchical matrices (HODLR format). Qualitative and quantitative estimates
for the rank of the off-diagonal blocks of these matrices are presented. Their rank structure
is then leveraged to design fast solvers for problems with 2D spatial domains that can be re-
formulated as matrix equations. In detail, when the right-hand side of the fractional diffusion
problem is regular or sparse, the known term of the matrix equation has low-rank properties.
This enables the use of Krylov subspace methods which combined with the technology of hi-
erarchically rank structured matrices yields a lower computational complexity in comparison
with the current state of the art techniques.
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MATRIX EQUATIONS IN MARKOV MODULATED BROWNIAN MOTION:
THEORETICAL PROPERTIES AND NUMERICAL SOLUTION

S. Ahn and B. Meini
Dipartimento of Matematica, Università di Pisa

Italy
beatrice.meini@unipi.it

The stationary analysis of a Markov modulated Brownian motion [2] becomes easy once
the distribution of suitable first passage times is determined. However, this distribution cannot
be obtained explicitly and its computation is ultimately reduced to solving a quadratic matrix
equation (QME) in [2]. In relation to this, Ahn and Ramaswami [1] derived a nonsymmetric
algebraic Riccati equation (NARE) and proved that the distribution can be obtained by using
the minimal nonnegative solution of the equation.

In this talk we provide an algebraic connection between the QME and the NARE. More
specifically we show that the NARE can be obtained by means of a linearization of a quadratic
matrix polynomial associated with the QME. As a consequence, we explicitly relate the solu-
tions of the QME with the solutions of the NARE. To conclude, we discuss some algorithms
and accelerating techniques for computing the minimal nonnegative solution of the NARE.
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LOW-RANK UPDATES OF MATRIX FUNCTIONS

B. Beckermann
Department of Mathematics, Université de Lille

59655 Villeneuve d’Ascq, France
Bernhard?Beckermann@univ-lille.fr

We consider the task of updating a matrix function f (A) when the matrix A or order n is
subject to a low-rank modification. In other words, we aim at approximating f (A+ D)− f (A)
for a matrix D of rank k � n. The approach proposed in this paper attains efficiency by
projecting onto tensorized Krylov subspaces produced by matrix-vector multiplications with
A andA∗. We prove the approximations obtained from m steps of the proposed methods
are exact if f is a polynomial of degree at most m and use this as a basis for proving a
variety of convergence results, in particular for the matrix exponential and for Markov functions.
We illustrate the performance of our method by considering various examples from network
analysis, where our approach can be used to cheaply update centrality and communicability
measures.

Joint work with D. Kressner & M. Schweitzer (EPFL).
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THE FRÉCHET DERIVATIVE OF RATIONAL APPROXIMATIONS TO THE MATRIX

EXPONENTIAL AND ITS APPLICATION ON INVERSE PARABOLIC PROBLEMS

M. Helm
Institute for Numerical Mathematics and Optimization,

TU Bergakademie Freiberg
D-09596 Freiberg, Germany

mario.helm@math.tu-freiberg.de

We consider an inverse problem, where a high dimensional parameter c has to be identified
from measurements of some components of the solution of the parametric initial value problem

u′(t) = A(c)u(t), u(0) = b

at some given time points. Here A(c) is a large sparse symmetric negative definite matrix.
Applying Gauß-Newton’s method it is important to have information about the sensitivity of
the forward solution with respect to the parameter c. But due to the size of the problem, it
is unfeasible to compute the dense and large Jacobian J directly. Therefore we will solve
the linearized least square problems iteratively (e. g. by LSQR) which requires algorithms to
compute products of the form Jv and JTw

We present a new approach, where the forward solution is approximated using the rational
best approximation of the exponential function. We will focus on the Fréchet derivatives of the
corresponding rational matrix functions, their numerical evaluation and approximation errors
with respect to the Fréchet derivative of the matrix exponential. We show how products with the
Jacobian and its transpose can be implemented in an economic way, and present numerical
examples.
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ON THE NUMERICAL APPROXIMATION OF THE MATRIX MITTAG-LEFFLER

FUNCTION WITH APPLICATIONS TO FRACTIONAL CALCULUS

R. Garrappa and M. Popolizio
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The important role played by the Mittag-Leffler (ML) function in fractional calculus is widely
known. Furthermore, the ML function evaluated in matrix arguments has useful applications
in studying theoretical properties of systems of fractional differential equations and in finding
their solution.

In this talk we introduce the ML function with matrix arguments, we review some of its main
applications and we discuss the problem of its computation with the challenges it raises.

Since the evaluation at matrix arguments may require the computation of derivatives of
the ML function of possible high order we discuss in detail this topic and we show some new
formulas for the ML function derivatives.
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COMPUTATION OF MATRIX FUNCTIONS BY SHANKS’ TRANSFORMATIONS

C. Brezinski∗and M. Redivo-Zaglia
Dipartimento di Matematica “Tullio Levi-Civita”

Università degli Studi di Padova, Italy
michela.redivozaglia@unipd.it

Shanks’ transformation is a well know sequence transformation for accelerating the con-
vergence of scalar sequences. It can be recursively implemented by the scalar ε–algorithm
of Wynn who also extended it to sequences of vectors and of square matrices satisfying a
linear difference equation with scalar coefficients [4]. Another extension of the transformation
to sequences of elements of a general vector space was proposed and studied by Brezinski
in 1975, and can be implemented by the simplified topological ε–algorithm [1, 2]. Recently,
a more general extension to the matrix case where the matrices can be rectangular and sat-
isfy a difference equation with matrix coefficients, was proposed [3]. In the particular case of
square matrices, this transformation can be recursively implemented by the matrix ε–algorithm
of Wynn.

Numerical experiments on the computation of matrix functions will be presented.
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APPROXIMATION OF THE TRACE OF MATRIX FUNCTIONS BASED ON DECAY

BOUNDS

A. Frommer and C. Schimmel
Department of Mathematics, University of Wuppertal

Gaußstraße 20, 42119 Wuppertal, Germany
schimmel@math.uni-wuppertal.de

The computation of the trace of functions of sparse matrices is an important task in numer-
ous applications. Since we assume A to be large and sparse, it is not possible to compute
f (A) and extract the diagonal entries. Commonly, for sparse matrices A, the matrix f (A)
exhibits a rapid decay away from the sparsity pattern of A, such that many entries of f (A)
are very small in magnitude. Based on this observation, we present a method for approximat-
ing the trace of f (A). The method requires decay bounds for the entries of f (A) and graph
coloring algorithms and then computes just a few bilinear forms to determine an approxima-
tion of the trace of f (A). The algorithm is compared to a stochastic trace estimator and the
effectiveness of this approach is shown in numerical experiments.
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PREDICTIVE RISK MINIMIZATION FOR THE EXPECTATION MAXIMIZATION

ALGORITHM WITH POISSON DATA

F. Benvenuto and P. Massa
Department of Mathematics, University of Genova

Via Dodecaneso 35, 16146, Italy
benvenuto@dima.unige.it

The Expectation Maximization algorithm is a reliable non-linear iterative method for approx-
imating the solution of inverse problems when the forward model is linear, the emitting source
is non-negative and data are Poisson variables. As the number of iterations plays the role of a
regularization parameter, the main issue is to select it in order to regularize the solution. In this
talk we present an estimator of the predictive risk and we propose to stop the algorithm when
this estimator reaches its minimum value as a function of iterations. From the theoretical point
of view, the estimator relies on a first order approximation of the non-linear iteration and the
predictive risk is computed as the expectation of the Kullback-Leibler divergence. While the
weakness of this method is the computational burden needed at each iteration, the strength
is that it only depends on available data, and therefore it does not need any ‘a priori’ informa-
tion. We also point out that this estimator can be thought of as a Poisson variant of the SURE
(Stein’s Unbiased Predictive Risk Estimator) which is defined for Gaussian noise. Finally, we
show the performance of this method when applied to the count-based image reconstruc-
tion problem of the STIX (Spectrometer/Telescope for Imaging X-rays) instrument mounted
onboard Solar Orbiter.
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TRUNCATION AND RECYCLING FOR ITERATIVE HYBRID PROJECTION METHODS

J. M. Chung, E. de Sturler, and J. Jiang
Department of Mathematics, Virginia Tech

Blacksburg, Virginia, USA
sturler@vt.edu

Hybrid iterative algorithms can solve large linear discrete inverse problems very efficiently,
as the regularization parameter can be determined dynamically during the iteration. This com-
bines the efficiency of Krylov iterative methods with the opportunity of determining the optimal
regularization parameter as the iteration proceeds. In this talk, we focus on methods based
on Golub-Kahan Bidiagonalization (GKB). In contrast to the solution of standard least squares
problems, where only a few vectors need to be stored in each iteration, hybrid algorithms must
store all iteration vectors that span the Krylov space for the solution, since the regularization
parameter is not known in advance. If the problem is very large, and convergence is not rapid,
this may not be possible.

In this talk, we discuss truncation techniques that allow us to store only a modest num-
ber of vectors while using a hybrid projection approach and compute accurate solutions. In
addition, this approach allows us to improve convergence by recycling selected subspaces
for a sequence of linear inverse problems, from one problem to the next. We also provide
convergence theory.

46



INEXACT RESTORATION WITH SUBSAMPLED TRUST-REGION METHODS FOR

FINITE-SUM MINIMIZATION
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Convex and nonconvex finite-sum minimization arises in many scientific computing and
machine learning applications. Recently, first-order and second-order methods where objec-
tive functions, gradients and Hessians are approximated by randomly sampling components
of the sum have received great attention.

We propose a new trust-region method which employs suitable approximations of the ob-
jective function, gradient and Hessian built via random subsampling techniques. The choice
of the sample size is deterministic and ruled by the inexact restoration approach. We discuss
local and global properties for finding approximate first- and second-order optimal points and
function evaluation complexity results. Numerical experience shows that the new procedure
is more efficient, in terms of cost per iteration, than the standard trust-region scheme with
subsampled Hessians.
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EFFICIENT MINIMIZATION OF TIKHONOV FUNCTIONALS WITH A SPARSITY

CONSTRAINT

R. Ramlau
Industrial Mathematics Institute, Kepler University Linz

and
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Linz, Austria
ronny.ramlau@jku.at

In this talk we consider the stable solution of linear inverse problems Ax = y from noisy
measurements yδ with ‖y− yδ‖ ≤ δ. A standard solution approach is Tikhonov regularization,
where a solution is computed as the minimizer of the functional

Jα(x) = ‖yδ − Ax‖2 + αΩ(x),

where Ω(x) denotes a suitable penalty term. We specifically consider sparsity penalties
Ω(x) = ‖x‖p

`p
. The Tikhonov functional is usually minimized iteratively, but in particular if

p < 2, then the methods converge slowly. In our approach, the Tikonov functional is trans-
formed to a quadratic functional that allows the use of fast minimization techniques. The
numerical performance of the method is validated for examples from Tomography as well as
from Single Molecule Microscopy.
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FLEXIBLE GMRES FOR TOTAL VARIATION REGULARIZATION

M. Sabaté Landman
Department of Mathematics, University of Bath

United Kingdom
m.sabate.landman@bath.ac.uk

Krylov subspace methods are powerful iterative regularization tools for large-scale linear
inverse problems, such as those arising in image deblurring and computed tomography. We
exploit a flexible version of some Krylov subspace methods, which uses adaptive precondition-
ing to promote TV-like regularization in the solution. Numerical experiments and comparisons
with other well-known methods for the computation of large-scale solutions are presented.
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THE GLT CLASS AS A GENERALIZED FOURIER ANALYSIS AND APPLICATIONS

S. Serra-Capizzano
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Recently, the class of Generalized Locally Toeplitz (GLT) sequences has been introduced
[1, 2] as a generalization both of classical Toeplitz sequences and of variable coefficient dif-
ferential operators and, for every sequence of the class, it has been demonstrated that it is
possible to give a rigorous description of the asymptotic spectrum in terms of a function (the
symbol) that can be easily identified.

This generalizes the notion of a symbol for differential operators (discrete and continuous)
or for Toeplitz sequences for which it is identified through the Fourier coefficients and is related
to the classical Fourier Analysis.

The GLT class has nice algebraic properties and indeed it has been proven that it is sta-
ble under linear combinations, products, and inversion when the sequence which is inverted
shows a sparsely vanishing symbol (sparsely vanishing symbol = a symbol which vanishes
at most in a set of zero Lebesgue measure). Furthermore, the GLT class virtually includes
any approximation of integro differential equations by local methods (Finite Difference, Finite
Element, Isogeometric Analysis and, based on this, we demonstrate that our results on GLT
sequences can be used in various directions.
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ORTHOGONAL POLYNOMIALS WITH A SKEW-HERMITIAN DIFFERENTIATION

MATRIX

A. Bultheel
Department of Computer Science, KU Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium
adhemar.bultheel@cs.kuleuven.be

We are interested in solving a PDE of the form ∂tu = ∂x(a(x)∂xu), a(x) > 0. Af-
ter discretization in the x-variable one arrives at a system u′(t) = DADu(t), u(t) =
[u(t, x1), u(t, x2), . . .]T ∈ `2, u(0) = u0, D is a finite difference approximation of the partial
derivative ∂x and A = diag(a(x1), a(x2), . . .). Stability requires the system to be dissi-

pative: 1
2

d‖u‖2

dt = uTu′ = uTDADu = (DTu)TA(Du) < 0. If D is skew symmetric,
then DT = −D and stability is satisfied automatically. When using finite differences like
f (x+∆/2)− f (x−∆/2)

2∆ , then D is skew symmetric, but that is a bit of an exception. However if
we want to use spectral methods, then we assume u(t, ·) = ∑n un(t)ϕn with {ϕn}n an or-
thogonal basis for L2(R). If the Fourier basis {cos(nξ), sin(nξ)}n on [−π, π] or the Hermite
polynomials on R are arranged in a column Φ, then they satisfy ξΦ̂(ξ) = J Φ̂(ξ) with a
symmetric Jacobi matrix J . Take the Fourier transform with the proper weight and the result
is Φ′(x) = iJΦ(x), with D = iJ skew Hermitian. A. Iserles and M. Webb recently used this
idea and took the Fourier transforms of the Laguerre basis, which resulted in a rational basis
that is essentially the rational basis found independently by F. Malmquist and S. Takenaka in
1926. A clever transformation to the unit circle allows to use the fast computation of the Fourier
coefficients by FFT. In this lecture we shall explore the effect of free parameters that are still
allowed in this approach.
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GAUSSIAN QUADRATURE RULES – MADE ACCESSIBLE

W. Gautschi
Department of Computer Science, Purdue University

West Lafayette, IN 47907-2107, USA
wgautschi@purdue.edu

A software repository for Gaussian quadrature is currently being prepared. It consists
of a large number of datasets containing Matlab software that allows the user to generate
Gaussian quadrature rules to arbitrary precision, for any number of quadrature points, and for
a large variety of classical and nonclassical weight functions.
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FINITE BLASCHKE PRODUCTS IN NEVANLINNA-PICK INTERPOLATION
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Finite Blaschke products play an important role in many problems of interpolation in the
complex unit disk D, often referred to as Nevanlinna-Pick interpolation. Applications are found
for example in systems theory in model-matching and design of digital filters. We focus on re-
viewing some constructive methods for classical Nevanlinna-Pick interpolation from the Schur
class consisting of bounded analytic functions f in the Hardy space H∞ on D such that
supz∈D | f (z)| ≤ 1, minimal-norm interpolation in H∞, meromorphic interpolation by ratios
of finite Blaschke products in D, and unimodular boundary interpolation by Blaschke products
and ratios of such on the unit circle.
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THE LANCZOS ALGORITHMS, CG, QD, AND A WHOLE CIRCLE OF IDEAS
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In their seminal 1952 paper on the conjugate gradient (CG) method Hestenes and Stiefel
pointed out that their method, which is applicable to linear systems of equations with sym-
metric positive definite matrix only, is closely related to certain orthogonal polynomials, the
corresponding Gauss quadrature formulas, certain continued fractions, and their convergents
(or ‘partial sums’), which are Padé approximants.

Around the same time, in 1950 and 1952, Cornelius Lanczos published two related articles,
of which the second one introduced a precursor of the biconjugate gradient (BiCG) method,
which generalizes CG to the case of a nonsymmetric system. Here, the residual polynomials
are formal orthogonal polynomials only, but the connections to continued fractions and Padé
approximants persist. The latter are diagonal ones of the function

F(ζ) := yH
0 (ζI−A)−1x0 =

∞

∑
k=0

µk

ζk+1 , where µk := yH
0 Akx0 ,

that involves the resolvent of the matrix A and its moments µk with respect to the starting
vectors x0 and y0. Moreover, there is a relation to the qd algorithm of Rutishauser (1954). The
understanding of all these connections became probably the key to Rutishauser’s discovery
of the LR algorithm (1955, 1958), which was later enhanced by John G. F. Francis to the
ubiquitous QR algorithm (1961/62).

But this is not yet the full circle of ideas. E.g., F can be viewed as transfer function of a
single-input-single-output linear time-invariant system. Or the Lanczos process can be viewed
as one operating on polynomials. It is then seen to be equivalent to the Stieltjes process and
delivers an inverse symmetric LDU decomposition of the Hankel moment matrix M := (µk+`).
So, essentially, the Lanczos process gives rise to a fast Hankel solver.
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ANTI-GAUSSIAN QUADRATURE FORMULAE BASED ON THE ZEROS OF

STIELTJES POLYNOMIALS
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It is well known that a practical error estimator for the Gauss quadrature formula is by
means of the corresponding Gauss-Kronrod quadrature formula developed by Kronrod in
1964. However, recent advances show that Gauss-Kronrod formulae fail to exist, with real
and distinct nodes in the interval of integration and positive weights, for several of the clas-
sical measures (cf. [2]). An alternative to the Gauss-Kronrod formula, as error estimator for
the Gauss formula, is the anti-Gaussian and the averaged Gaussian quadrature formulae pre-
sented by Laurie in 1996 (cf. [1]). These formulae always exist and enjoy the nice properties
that, in several cases, Gauss-Kronrod formulae fail to satisfy. Now, it is quite remarkable that
for a certain, fairly broad, class of measures, for which the Gauss-Kronrod formulae exist,
the anti-Gaussian and averaged Gaussian formulae, based on the zeros of the correspond-
ing Stieltjes polynomials, have elevated degree of exactness, and the estimates provided for
the error term of the Gauss formula by either the Gauss-Kronrod or the averaged Gaussian
formulae are exactly the same.
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SIMULTANEOUS GAUSS QUADRATURE

W. Van Assche
Department of Mathematics, KU Leuven,

Celestijnenlaan 200 B box 2400, BE-3001 Leuven, Belgium
walter.vanassche@kuleuven.be

Suppose f : R → R is a given function and µ1, . . . , µr are positive measure on the real
line. The goal is to approximate the r integrals

∫
f (x) dµj(x), 1 ≤ j ≤ r, by sums of the

form ∑N
k=1 f (xk)λ

(j)
k , 1 ≤ j ≤ r, using the same quadrature nodes {xj, 1 ≤ j ≤ N} but with

quadrature weights {λ(j)
k , 1 ≤ k ≤ N} depending on the measure µj. Similar to Gaussian

quadrature, there is an optimal choice for the quadrature nodes that maximizes the degree of
accuracy: one needs to take the zeros of a multiple orthogonal polynomial for the measures
(µ1, . . . , µr). I will give properties of the quadrature nodes and the quadrature weights for
two cases. First I will deal with r = 2 and µ1 and µ2 positive measures with support on two
disjoint intervals [1]; the second case is r = 3 and the measures are normal weights with
means −c, 0, c with c sufficiently large [2]. In these cases the quadrature nodes belong to

r disjoint intervals ∆1, . . . , ∆r and the quadrature weights λ
(j)
k are positive for the nodes on

∆j, but alternate in sign for the other nodes. These nodes with alternating sign, however, are
exponentially small and hence can be ignored in practice.
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ADAPTIVE REGULARIZATION PARAMETER CHOICE RULES FOR LARGE-SCALE

PROBLEMS

S. Gazzola
Department of Mathematical Sciences, University of Bath

Bath BA2 7AY, United Kingdom
S.Gazzola@bath.ac.uk

This talk introduces a new class of adaptive regularization parameter choice strategies
that can be efficiently applied when regularizing large-scale linear inverse problems using a
combination of projection onto Krylov subspaces and Tikhonov regularization, and that can
be regarded as special instances of bilevel optimization methods. The links between Gauss
quadrature and Golub-Kahan bidiagonalization are exploited to prove convergence results for
some of the considered approaches, and numerical tests are shown to give insight.
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FIRST STEPS TOWARDS THE NUMERICAL QUANTIFICATION OF SOURCE

CONDITIONS

D. Gerth,
Faculty of Mathematics, Chemnitz University of Technology

09107 Chemnitz, Germany
daniel.gerth@mathematik.tu-chemnitz.de

We consider linear ill-posed problems of the form Ax = y with possibly noisy data y
and exact solution x†. A classical assumption in the theory of inverse problems are source
conditions of the type x† ∈ range((A∗A)µ) for some µ > 0. This allows to bound the worst-
case error between approximate solutions and x† as the noise goes to zero, and it yields rules
for an appropriate choice of the regularization parameter. In the real-world situation where
a fixed operator A and a datum y are given, a good approximation to µ is only available in
specific cases, while in general µ is unknown, rendering in particular a-priori parameter choice
rules unfeasible. In this talk, we make a first attempt of breaking the disconnection between
theory and practice. Based on the Kurdyka-Łojasiewicz inequality and the Landweber method,
we develop an algorithm that allows to approximate µ as long as the noise in the data is not too
large. We show several numerical examples, including a controlled academical setup where
all parameters are available, examples from the RegularizationTools toolbox, and the realistic
case where no information about noise or smoothness is available at all.

We also show that there is a simple lower bound for the reconstruction error, which can be
computed without any knowledge of a source condition. We again provide numerous numerical
examples and explain how the lower bound allows us to better interpret the results of the
approximation of µ. It is notable that, if a source condition holds, the lower bound is of the
same order as the upper bound.
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ADAPTIVE CROSS APPROXIMATION FOR ILL-POSED PROBLEMS

T. Mach, L. Reichel, M. Van Barel, and R. Vandebril
Department of Mathematical Sciences, Kent State University, Ohio
and Department of Computer Science, Leuven University, Belgium

thomas.mach@gmail.com

Consider integral equations of the first kind with a smooth kernel and perturbed right-hand
side, i.e. based on contaminated data. Discretization leads to linear systems of equations with
singular values clustering near zero. The solution of these systems requires regularization
damping or ignoring the small singular values.

Adaptive cross approximation (ACA) is an efficient way to use Gaussian elimination with
rook pivoting to find low rank approximations to a given matrix. We will use ACA to approximate
a small number of the largest singular values that are sufficient for an approximation of the
solution.

Some of our results have been published in [1].
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BALANCING PRINCIPLE IN SUPERVISED LEARNING FOR A GENERAL

REGULARIZATION SCHEME

S. V. Pereverzyev
RICAM, Austrian Academy of Sciences
Altenberger Strasse 69, Linz, Austria

sergei.pereverzyev@oeaw.ac.at

We discuss the parameter choice in learning algorithms generated by general regulariza-
tion scheme. In contrast to classical deterministic regularization, the performance of regular-
ized learning algorithms is influenced not only by the smoothness of a target function, but also
by the capacity of a regularization space. In supervised learning both the smoothness and the
capacity are intrinsically unknown. Therefore, we are interested in a posteriori regularization
parameter choice rules and propose a new form of the balancing principle. We provide the
analysis of the proposed rule and demonstrate its advantages in simulations.

Joint research with Peter Mathe (WIAS-Berlin) and Shuai Lu (Fudan University, Shanghai).
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PERIODIC AUTOCONVOLUTION: PROPERTIES AND REGULARIZATION

B. Hofmann and R. Plato
Department of Mathematics, University of Siegen

Walter-Flex-Str. 3, 57072 Siegen, Germany
plato@mathematik.uni-siegen.de

In the first part of this presentation, we consider some properties of the periodic autocon-
volution operator. This includes monotonicity as well as mapping properties in Sobolev spaces
of periodic functions. In addition, the optimality of regularization methods is investigated in
a general framework. In a second part, recent results on a variational inequality formulation
of Lavrentiev regularization for solving periodic autoconvolution equations are given. New
convergence rates are presented which in fact is done in an abstract setting. Finally, the reg-
ularizing properties of a Galerkin scheme for solving periodic autoconvolution problems are
considered.
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TIKHONOV AND BREGMAN REGULARIZATION OF OPTIMAL CONTROL

PROBLEMS

D. Wachsmuth
Institut für Mathematik,
Universität Würzburg,

97074 Würzburg, Germany,
daniel.wachsmuth@mathematik.uni-wuerzburg.de

In the talk, we review results on Tikhonov regularization of optimal control problems. A
special feature of these problems are pointwise inequality constraints. Standard source con-
ditions known from inverse problems theory are not applicable in the optimal control setting.
We present conditions that give convergence rates for Tikhonov regularization. In addition,
iterated Bregman regularization is introduced, where the indicator function of the feasible set
enters. It turns out that classical results for iterated Tikhonov methods transfer to this new
method. The talk ends with perspectives of open problems.
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APPROXIMATE INVERSE-FREE RATIONAL KRYLOV METHODS AND THE LINK

WITH FOM AND GMRES

D. Camps, S. Güttel, T. Mach, and R. Vandebril
Department of Computer Science, KU Leuven

Belgium
daan.camps@cs.kuleuven.be

In this presentation we revisit the approximate rational Krylov method [1, 2, 3]. We present
two alternative but mathematically equivalent formulations of the same algorithm. The first
reformulation uses a pole swapping technique and is an implicit method, just like the original
algorithm. The second reformulation explicitly solves shifted linear systems using the Arnoldi
Hessenberg matrix. This reformulation leads us to a connection between the approximate
rational Krylov method and the full orthogonalization method (FOM). Finally, we show how
the approximate rational Krylov method can be modified to obtain a similar connection with
GMRES.
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ON THE EFFICIENT SOLUTION OF T-EVEN POLYNOMIAL EIGENVALUE

PROBLEMS

H. Faßbender, and Ph. Saltenberger
ICM, AG Numerik, TU Braunschweig

Universitätsplatz 2, 38106 Braunschweig, Germany
h.fassbender@tu-braunschweig.de

The polynomial eigenvalue problem A(λ)u = 0 for

A(λ) =
d

∑
k=0

Akλk, Ak ∈ Rn×n

with Ak = AT
k if k is even and Ak = −AT

k otherwise is considered. Such matrix polynomials
have been named alternating or T-even. The eigenvalues of such matrix polynomials A(λ)
have a Hamiltonian eigenstructure; that is, the spectrum is symmetric with respect to both the
real and the imaginary axis.

We discuss the numerical solution of T-even polynomial eigenvalue problems and show
how a small part of the spectrum can be obtained using just O(n3) arithmetic operations.
For that purpose, we apply the EVEN-IRA algorithm proposed in [2] to a special structure-
preserving linearization proposed in [1]. In this particular situation, the Arnolid iteration as a
main part of the EVEN-IRA algorithm can be realized very efficiently.
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SOLVING QUADRATIC MATRIX EQUATIONS WITH INFINITE SIZE COEFFICIENTS

D. A. Bini, B. Meini, J. Meng, and L. Robol
Department of Mathematics, University of Pisa

Pisa, Italy
leonardo.robol@unipi.it

When dealing with quadratic matrix equations A−1 + A0X + A1X2 = 0, arising in the
context of quasi-birth-death stochastic processes, one of the approaches is to rely on the
Newton method; the latter is guaranteed to converge to the solution of interest in this context.

When the coefficients Aj, for j = −1, 0, 1, are infinite quasi-Toeplitz matrices, the same
technique can be used. However, the computation of the Newton correction now requires
the solution of Sylvester equations involving infinite matrices. We show that rational Krylov
methods are applicable in this setting, with some adaptations needed to work in the infinite
dimensional context. This is achieved exploiting the quasi-Toeplitz structure of the matrices
under consideration. The numerical method has been implemented in the MATLAB toolbox
cqt-toolbox [1].
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A GMRES CONVERGENCE ANALYSIS FOR LOCALIZED INVARIANT SUBSPACE

ILL-CONDITIONING

G. Sacchi, and V. Simoncini
Dipartimento di Matematica,

Università di Bologna,
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I-40127 Bologna, Italy
valeria.simoncini@unibo.it

The Generalized Minimal RESidual (GMRES) method is a well established strategy for it-
eratively solving a large linear system Ax = b, where A ∈ Rn×n is a nonsymmetric and
nonsingular coefficient matrix, and b ∈ Rn. In the analysis of its convergence for A diagonal-
izable, a much used upper bound for the relative residual norm involves a min-max polynomial
problem over the set of eigenvalues of A, magnified by the condition number of the eigenvector
matrix of A. This latter factor may cause a huge overestimation of the residual norm, making
the bound non-descriptive in practice. We show that when a large condition number is caused
by the almost linear dependence of few of the eigenvectors, a more descriptive analysis of
the method’s behavior can be performed, irrespective of the location of the corresponding
eigenvalues. The new analysis aims at capturing how the GMRES polynomial deals with the
ill-conditioning; as a byproduct a new upper bound for the GMRES residual norm is obtained.
A variety of numerical experiments illustrates our findings.

References

[1] Giulia Sacchi and Valeria Simoncini. A new GMRES convergence analysis for localized
invariant subspace ill-conditioning. July 2017. To appear in SIAM J. Matrix Analysis and
Appl.

72



BIORTHOGONAL RATIONAL KRYLOV SUBSPACE METHODS

N. Van Buggenhout, M. Van Barel, and R. Vandebril
Department of Computer Science, KU Leuven
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niel.vanbuggenhout@kuleuven.be

Rational Krylov subspace methods use rational functions of a given matrix instead of poly-
nomials to construct a Krylov subspace. The poles of these rational functions can be chosen
and allow us to manipulate the convergence of the methods to an area of interest in the spec-
trum of the matrix.

An overview of known projections of matrices onto various Krylov subspaces is provided.
Most notably orthogonal projection onto rational Krylov subspaces, which can be represented
by an upper-Hessenberg or inverse upper-Hessenberg matrix pencil. Starting from these re-
sults we prove that a tridiagonal matrix pencil suffices to represent the oblique projection of
a given matrix onto rational Krylov subspaces. This is the most sparse of several possible
representations.

The tridiagonal matrix pencil relates to a six-term recurrence to construct a pair of biorthog-
onal bases for rational Krylov subspaces. This is a Lanczos-type iteration which elegantly
generalizes the polynomial case, in which the recurrence consists of 4 terms. Furthermore
this algorithm generalizes, besides Lanczos and biorthogonal Lanczos, several other known
algorithms, e.g., AGR/CMV-factorization and more recent results concerning extended Krylov
subspaces.
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A QUADRATURE METHOD FOR CAUCHY SINGULAR INTEGRAL EQUATIONS WITH

ADDITIONAL FIXED SINGULARITIES OF MELLIN TYPE

M. C. De Bonis and C. Laurita
Department of Mathematics, Computer Science and Economics

University of Basilicata
Via dell’Ateneo Lucano 10, 85100 Potenza, ITALY
mariacarmela.debonis@unibas.it

This talk deals with a quadrature method for approximating the solutions of Cauchy singular
integral equations with additional terms of Mellin convolution type defined as follows

a u(τ) +
b
π

∫ 1

−1

u(t)
t− τ

dt +
∫ 1

−1
k(t, τ)u(t)dt +

∫ 1

−1
h(t, τ)u(t)dt = g(τ), |τ| < 1, (2)

where u(τ) is the unknown, h(t, τ) and g(τ) are sufficiently smooth functions, a and b are
given real constants such that a2 + b2 = 1, and k(t, τ) is a Mellin kernel. The first integral is
understood in the Cauchy principal value sense.

Since several mathematical problems in physics and engineering can be reduced to the
solution of integral equations of the form (2), the development of numerical methods for ap-
proximating their solution has been receiving an increasing interest in recent years. In par-
ticular, discretization schemes based on polynomial approximation have been considered in
[1, 2, 3], mainly in the case where k(t, τ) is a special Mellin kernel.

The unknown function u is approximated by a weighted polynomial that is the solution of a
finite dimensional equation obtained by discretizing the integral operators by a Gauss-Jacobi
quadrature rule. More precisely, in order to achieve stability and convergence results, the
Gaussian formula is applied to the Mellin integral operator with a slight modification. The well
conditioning of the involved linear systems is proved. The efficiency of the proposed method
is shown through some numerical tests.
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Consider the nested sequences of arbitrary complex or infinite poles Ak := {αj}k
j=1, k =

1, 2, . . ., outside the interval I = [−1, 1]. Let ϕn, n > 1 denote the rational function with poles
among An, and orthogonal to the space of rational functions with poles among An−1 with
respect to the Chebyshev weight function w(x) = (1− x)a(1 + x)b, where a, b ∈ {±1/2}.
Whenever αn is real or infinite, the zeros {xn,k}n

k=1 of ϕn are all real, distinct, and inside
the interval I; hence, they are the nodes in an n-point rational Gauss-Chebyshev quadrature
formula that is exact in the space of rational functions L̃2n−1 with poles among Ã2n−1 :=
{αk, αk}n−1

k=1 ∪ {αn}.
In this talk we present (2n + 1)-point rational Gauss-Kronrod quadrature formulae of the

form ∫ 1

−1
f (x)w(x)dx =

n

∑
k=1

λ2n+1,k f (xn,k) +
n+1

∑
j=1

λ2n+1,n+j f (yn+1,j) + R2n+1( f )

with positive weights {λ2n+1,k}2n+1
k=1 and distinct nodes {yn+1,j}n+1

j=1 ⊂ I, interlacing with
the nodes {xn,k}n

k=1, that are exact (i.e., R2n+1( f ) = 0) in a space of rational functions
L̂m ⊃ L̃2n−1 with m as large as possible.
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CONSTRUCTION OF RADAU AND LOBATTO RULES FROM ORTHOGONAL

LAURENT POLYNOMIALS

C. Jagels
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The construction of Gaussian rules can be viewed as a spectral decomposition of the tridi-
agonal Jacobi matrix generated by the Lanczos process. Radau and Lobatto rules follow from
a modification of this matrix. Analogous rules exist for Laurent polynomials, polynomials that
contain reciprocal powers. The analog of the tridiagonal recursion matrix is a pentadiagonal
matrix. This talk discusses augmentations of the pentadiagonal matrix that yield a Radau and
Lobatto rules that integrate exactly one or two more positive powers, negative powers, or a
combination therein.
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CUBATURE FORMULAS FOR GAUSSIAN WEIGHTS. OLD AND NEW
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In the first part of this talk some general features of Cubature formulas are recalled. As it
is well known, despite what happens in the univariate case (Gaussian Quadrature rules), the
problem of getting useful Cubature rules with a prescribed degree of algebraic precision and
a reasonable number of nodes is far from being solved. In this sense, we focus on Cubature
formulae for integrals with the Gaussian weight in Rn, that is,

I( f ) =
∫

Rn
f (x) e−xTx dx .

Then, after reviewing some known rules for this kind of integrals, some new ones are intro-
duced and their accuracy is checked by means of some numerical examples.
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GAUSS QUADRATURE FOR LINEAR FUNCTIONALS AND LANCZOS ALGORITHM

S. Pozza, M. Pranić, and Z. Strakoš
Department of Numerical Mathematics, Charles University
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The Gauss quadrature can be naturally generalized to approximate quasi-definite linear
functionals where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi
matrices and Lanczos algorithm are analogous to those in the positive definite case. In par-
ticular, the existence of the n-weight (complex) Gauss quadrature corresponds to successfully
performing the first n steps of the Lanczos algorithm; see, e.g., [1, 2]. Such connections can
also be extended to the case of (look-ahead) Lanczos algorithm.
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OUR WORK ON REGULARIZATION

S. Seatzu
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In this talk, we give a short overview of the work on Tikhonov regularization done by the
authors in Cagliari. Our main purpose was to present new procedures based on extrapolation
and estimation of the error to find the best (or, at least a good) value of the regularization
parameter(s).
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In electromagnetic inverse scattering, the characterization of an (unknown) scattering ob-
ject inside an investigation domain is based on retrieving the equivalent source from the scat-
tered field outside the source region, due to the illumination by a known electromagnetic in-
cident field. Inverse scattering imaging is very useful in biomedical applications where the
dielectric properties of human tissues have to be restored by means of minimally-invasive
techniques. The mathematical model of this inverse problem leads to the solution of an ill-
posed, nonlinear and implicit 3D integral equation.

After a brief introduction about regularization theory in Banach spaces, in this talk we dis-
cuss a conjugate-gradient-based iterative regularization algorithm developed in Lp spaces,
with 1 < p < +∞, for solving the inverse scattering problem which involves large-scale struc-
tured matrices. The proposed method can be useful for continuous monitoring of hemorrhagic
brain strokes via microwaves. We will show numerical simulations with anatomically-realistic
phantoms, as well as some preliminary experimental results.
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SIX YEARS OF RESEARCH WITH SEBASTIANO
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In the last ten years, Sebastiano Seatzu enjoyed studying nonlinear partial differential
equations of integrable type (among the others [2, 3, 4, 5]). His interest laid in the applica-
tive nature of these equations which are, for instance, used to describe electromagnetic waves
in optical fibers and surface wave dynamics, and his intention was to solve them numerically
following the whole path of the so-called Inverse Scattering Transform.

Such a research saw me as a co-author, along with Cornelis van der Mee, of his last eight
works, of which six were published and two were incomplete.

In this talk we focus on the research which was in progress when he left us on February
13th, 2018, namely, the numerical treatment of the Korteweg-de Vries (KdV) equation which
governs the propagation of surface water waves in long, narrow, shallow canals [1]

qt − 6qqx + qxxx = 0, x ∈ R, t > 0.

References

[1] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a
rectangular channel and on a new type of long stationary waves, Phil. Mag. 39, 422-443
(1895).

[2] A. Aricò, C. van der Mee and S. Seatzu, Structured matrix numerical solution of the
nonlinear Schrödinger equation by the inverse scattering transform, Electronic Journal of
Differential Equations 1-21 (2009).

[3] A. Aricò, G. Rodriguez and S. Seatzu, Numerical solution of the nonlinear Schrödinger
equation, starting from the scattering data, Calcolo 48, 75-88 (2011).

[4] C. van Der Mee, S. Seatzu and D. Theis, Structured matrix algorithms for inverse scatter-
ing on the line, Calcolo 44, 59-87 (2007).

[5] L. Fermo, C. van der Mee, S. Seatzu, Scattering data computation for the Zakharov-
Shabat system, Calcolo 53, 487–520 (2016).

87



NUMERICAL MODELS FOR EARTHQUAKE GROUND MOTION

A. Quarteroni
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Physics-based numerical simulations provide a powerful tool to study the ground motion
induced by earthquakes in regions threatened by seismic hazards. They can be used to better
understand the physics of earthquakes, improve the design of site-specific structures, and en-
hance seismic risk maps. The distinguishing features of a numerical method designed for seis-
mic wave propagation are: accuracy, geometric flexibility and parallel scalability. High-order
methods ensure low dissipation and dispersion errors. Geometric flexibility allows complicated
geometries and sharp discontinuities of the mechanical properties to be addressed. Finally,
since earthquake models are typically posed on domains that are very large compared to the
wavelengths of interest, scalability allows to efficiently solve the resulting algebraic systems
featuring several millions of unknowns. In this talk we present a spectral element discontin-
uous Galerkin method on hybrid (non-conforming) grids for the numerical solution of three-
dimensional wave propagation problems in heterogeneous media.
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ANTI-GAUSS-TYPE QUADRATURE RULES

L. Reichel
Department of Mathematical Sciences, Kent State University

Kent, OH 44242, USA
reichel@math.kent.edu

Pairs of Gauss and anti-Gauss quadrature rules can be used to estimate the error in Gauss
rules. Anti-Gauss rules were proposed by Laurie for nonnegative real measures on the real
line. This talk reviews generalizations and simplifications of these rules, as well as extensions
to matrix-values measures. Also anti-Gauss-type quadrature rules associated with multiple
orthogonal polynomials will be described. Applications to network analysis will be discussed.
This talk presents joint work with H. Alqahtani, C. Fenu, D. Martin, M. Pranić, and G. Rodriguez.
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PARTIAL OBSERVATION IN DISCRETE EVENT SYSTEMS

C. Seatzu
Dept. of Electrical and Electronic Eng., Univ. of Cagliari

Piazza D’Armi, Cagliari, Italy
seatzu@diee.unica.it

This talk focuses on a particular class of dynamic systems, namely discrete event systems
(DESs), which provide the theoretical fundation for the study of dynamic artificial systems,
namely man made systems [1]. A DES (or event-driven system), different from time-driven
systems, is a dynamic system with a discrete state space, whose evolution depends entirely
on the occurrence of asynchronous physical events that determine a state transition. DESs
find application in several areas, such as computer science, telecomunication, manufacturing,
transportation, logistics, etc. Several problems have been studied in this framework in the last
decades, in particular supervisory control, reachability and deadlock analysis, and a series of
problems related to the partial observation of the system evolution. In this talk we focus on
the last class of problems: we introduce the fundamental problem of state state estimation
under partial observation and a series of other problems that can be formulated in the same
framework, such us fault diagnosis [2] and opacity analysis [3], two problems that are gaining
a growing attention in the framework of cyber-physical systems.
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NON-BACKTRACKING PAGERANK

F. Arrigo, Desmond J. Higham, and V. Noferini
Department of Mathematics and Statistics, University of Strathclyde

Glasgow, Scotland
francesca.arrigo@strath.ac.uk

The PageRank algorithm, which has been “bringing order to the web" for more than twenty
years, computes the steady state of a classical random walk plus teleporting [3, 4]. Here we
consider a variation of PageRank that uses a non-backtracking random walk. To do this, we
first reformulate PageRank in terms of the associated line graph. A non-backtracking analog
then emerges naturally [2, 5]. Comparing the resulting steady states, we find that, even for
undirected graphs, non-backtracking generally leads to a different ranking of the nodes [6].
We then focus on computational issues, deriving an explicit representation of the new algo-
rithm that can exploit structure and sparsity in the underlying network. Finally, we assess
effectiveness and efficiency of this approach on some real-world networks.
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INTERPRETATION OF TRANSFORMED QUANTITIES OF POTENTIAL FIELDS: THE

CASE OF LINEAR/NONLINEAR INVERSION

V. Paoletti∗, H. B. Bingham, M. A. Abbas†, and M. Fedi∗

Department of Mechanical Engineering
Technical University of Denmark

Lyngby, Denmark
hbb@mek.dtu.dk.

We propose an approach for the nonlinear constrained inversion of quantities derived from
nonlinear transformations of potential field data. Among these quantities, the Normalized
Source Strength (NSS, e.g., [1]) and the Total Gradient (TG, [2]) are always non-negative
and minimally affected by the direction of the source’s remanent magnetization. Our Gener-
alized Singular Value Decomposition analysis on the NSS and TG problems shows that the
inversion of quantities deriving from nonlinear transformations of potential field data by a lin-
ear algorithm introduces non-negligible errors, which make regularization necessary. Despite
that, the linear inversion approach of NSS and TG is often used in the literature without in-
vestigating its theoretical and practical limits. We here employ a nonlinear iterative approach
for constrained inversion of TG which leads to more reliable reconstructions of the subsurface
density/magnetization distribution. The method has some similarities to the one developed by
[3]. The linearization of the problem at each iteration allows monitoring the depth resolution
of the inversion models and the influence of errors through monitoring tools normally used for
linear problems, such as the Picard Plot.

References

[1] M. Pilkington and M. Beiki. Mitigating remanent magnetization effects in magnetic data
using the normalized source strength, Geophysics, 78(3) (2013), pp. J25–J32.

[2] W. R. Roest, J. Verhoef and M. Pilkington. Magnetic interpretation using the 3D analytic
signal, Geophysics, 57 (1992), pp. 116–125.

[3] Z. Li, C. Yao, Y. Zheng and X. Meng. 3D data-space inversion of magnetic amplitude
data, International Workshop on Gravity, Electrical and Magnetic Methods and their Ap-
plications, Chengdu, China. April 19-22 (2015), pp. 77–80.

∗Department of Earth, Environment and Resources Science, University of Naples Federico II, Complesso di
Monte S. Angelo, Naples, Italy, email: {fedi,paoletti}@unina.it
†Geology Department, South Valley University, Qena, Egypt, e-mail:

mahmoud.ahmed1@sci.svu.edu.eg

94



PARAMETER SELECTION RULES FOR `p − `q REGULARIZATION

A. Buccini and L.Reichel
Department of Mathematical Sciences, Kent State University

Kent, OH 44242, USA
abuccini@kent.edu

Discrete ill-posed problems arise in many areas of science and engineering. Their solu-
tions are very sensitive to perturbations. Regularization aims to reduce this sensitivity. Many
regularization methods replace the original problem with a minimization one with a fidelity
term and a regularization term. The use of a p-norm for the fidelity term and a q-norm for the
regularization term, where 0 < p, q ≤ 2, has received considerable attention. The relative
importance of these terms is determined by a regularization parameter.

The choice of a suitable regularization parameter is crucial. In this talk we discuss the
various approaches for determining the regularization parameter automatically proposed in [1,
2, 3]. Computed examples of restoration of impulse noise and Gaussian noise contaminated
images are presented.
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GENERATION OF REPRESENTATIVE FIBROTIC PATTERNINGS IN THE ATRIA

USING PERLIN NOISE

D. Jakes, K. Burrage, C. Drovandi, P. Burrage, A. Bueno-Orovio∗, and B. Lawson
School of Mathematical Sciences, Queensland University of Technology

Brisbane, Australia
kevin.burrage@qut.edu.au

The extent of fibrotic burden in the atria consistently correlates with the occurrence, and
reoccurrence after ablation, of atrial fibrillation. Given the complex and unique patterning of
fibrotic regions for any afflicted atria, attention has grown towards recent imaging techniques
that allow non-invasive mapping of these regions, and subsequently, to techniques that might
allow for the identification of arrhythmic risk or targets for ablation. Specifically, computer
simulation combined with late gadolinium-enhanced magnetic resonance imaging (LGE-MRI)
data allows for patient-specific determination of if and where arrhythmia-sustaining rotors are
predicted to form.

These approaches are limited by the spatial resolution and subjective interpretation of
LGE-MRI data, and sample sizes are inherently small. In order to enable a mechanistic un-
derstanding of how different types of fibrotic patterning can promote arrhythmia, we instead
propose an approach using Perlin noise that naturally generates such patterns, quantified by
easily understood parameters that are estimated by Approximate Bayesian Computation.

Our method matches directly to the imaging data in terms of a set of metrics we propose,
and thus generates patterns that are known to have a realistic distribution of fibrosis. We
demonstrate the use of our generated patterns to explore the impacts of different micro-fibrotic
structures on cardiac excitation, and discuss how our methods also apply to macroscopic
patterns of fibrosis, or indeed to problems outside of cardiac electrophysiology altogether.

∗Department of Computer Science, University of Oxford, Oxford, United Kingdom
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ON BIPARTIZATION OF NETWORKS
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Department of Mathematics and Computer Science,
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Network analysis aims to identify important nodes in a network and to uncover structural
properties of a network such as bipartivity. A network is said to be bipartite if its nodes can be
subdivided into two nonempty sets such that there are no edges between nodes in the same
set. It is a computationally difficult task to determine the closest bipartite network to a given
network. The aim of this work is to describe how a given network can be approximated by
a bipartite one by solving a sequence of simple optimization problems. Computed examples
illustrate the performance of the described spectral bipartization method. We also show how
this procedure can be applied to detect the presence of a large anti-community in a network
and to identify it.
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COMPACT MANIFOLD REGRESSION WITH SOBOLEV REGULARIZATION
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Manifold regression generalizes the ideas of linear regression to include non-linear struc-
tures. Given n observations (points) in Rm, the goal is to construct a parameterized manifold
embedded in Rm that “fits the data,” in some sense. Here we consider problems in which
the topology of the manifold is known, and corresponds to some low dimensional compact
manifold, like a closed loop, a torus, or a sphere. Sobolev regularization is used to control
the overall curvature of the fitted manifold. We discuss some of the difficulties that arise, and
some strategies to overcome them. For the simplest case, in which the manifold is a closed
curve, we describe applications in single cell genomics and classification.
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A NUMERICAL METHOD TO SOLVE INTEGRAL EQUATIONS BY GAUSS AND

ANTI-GAUSS QUADRATURE FORMULAE

P. Díaz de Alba, L. Fermo, and G. Rodriguez
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The aim of this talk is to present a global approximation method based on the Gauss and
anti-Gauss quadrature rules [1, 2, 3] for the following integral equation

f (y)−
∫ 1

−1
k(x, y) f (x)w(x)dx = g(y), y ∈ [−1, 1],

where f is the unknown function, k and g are two given functions and w(x) = (1− x)α(1 +
x)β is a Jacobi weight with parameters α, β > −1.

The convergence and the stability of the proposed method will be discussed in suitable
weighted spaces and numerical tests will show the accuracy of the approach.
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SUBSPACE ACCELERATED SPLIT BREGMAN METHODS FOR CONSTRAINED

FUSED LASSO PROBLEMS WITH APPLICATIONS IN PORTFOLIO OPTIMIZATION

V. De Simone, D. di Serafino, and M. Viola∗

Department of Mathematics and Physics,
University of Campania “L. Vanvitelli”, Caserta, Italy
daniela.diserafino@unicampania.it

Regularization by fused lasso has been successfully applied in minimization problems
modelling a variety of applications, to promote sparsity and smoothness in the solution. In
this talk, we focus on constrained fused lasso problems of the following form, which arise, e.g.,
in multi-period portfolio optimization:

minimize 1
2 wTCw + τ1‖w‖1 + τ2 ∑m−1

i=1 ‖wi+1 −wi‖1,
s.t. Aw = b,

where wi ∈ Rn for i = 1, . . . , m, w = (wT
1 , . . . , wT

m)
T ∈ Rnm, C ∈ Rnm×nm is symmetric

positive definite, A ∈ Rs×nm with s < nm, b ∈ Rs, τ1 > 0 and τ2 > 0. We propose an accel-
eration technique for split Bergman methods, based on second-order subspace minimization
steps, where the subspaces are orthant faces identified by the zero entries of the current
iterate. A condition based on suitable measures of optimality is used to decide when the accel-
eration is needed. Numerical experiments on multi-period portfolio selection problems using
real data sets show the effectiveness of the proposed method.

∗Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
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OPTIMIZATION PROBLEMS IN GEOCHEMISTRY
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Geochemistry involves aqueous reactions and mineral precipitation or dissolution. Quan-
tities of solute species are assumed to be strictly positive, whereas those of minerals can
vanish. The mathematical model is expressed as the minimization of Gibbs energy subject
to positivity of mineral quantities and conservation of mass. Optimality conditions lead to a
complementarity problem.

We show that, in the case of a dilute solution, this problem can also be considered as
optimality conditions of another minimization problem, subject to inequality constraints. This
new problem is easier to handle, both from a theoretical and a practical point of view.

Then we define a partition of the total quantities in the mass conservation equation. This
partition builds a precipitation diagram such that a mineral is either precipitated or dissolved in
each subset. We propose a symbolic algorithm to compute this diagram.

Simple numerical examples illustrate our methodology.
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ERGODICITY COEFFICIENTS FOR SECOND-ORDER MARKOV CHAINS
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We extend a class of ergodicity coefficients [1] from the matrix case to the higher-order
setting of nonnegative stochastic tensors of order three, denoted hereafter with a bold let-
ter P. Similarly to the matrix case, the new higher-order ergodicity coefficients provide novel
conditions that guarantee the existence and uniqueness of a positive Z-eigenvector of P cor-
responding to the eigenvalue one, i.e., a vector x such that Pxx = x. Moreover, they allow us
to prove new conditions for the global convergence of the so-called higher-order and alternate
higher-order power methods, defined by xk+1 = Pxkxk and xk+1 = Pxkxk−1, respectively.
Example applications include the analysis of the behaviour of second-order Markov chains,
such as the multilinear PageRank [2], and the convergence of the shifted higher-order power
method [3].
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We are concerned with the solution of discrete ill-posed problems of the form

min
x∈Rn

‖Ax− b‖, (3)

where A ∈ Rm×n is a large matrix whose singular values decay gradually to zero without a
significant gap.

A good approximation of the solution can often be computed by first replacing the least-
squares problem (3) by a nearby problem, that is regularizing. Here we will discuss two of
the most popular regularization methods, namely the Tikhonov regularization method and the
Truncated Singular Value Decomposition (TSVD).

When an accurate bound for the norm of the error ‖e‖ is available, a suitable value of
the regularization parameter can often be determined with the aid of the discrepancy princi-
ple. However, for many discrete ill-posed problems (3), such a bound is not known. Here we
discuss the use of the Generalized Cross Validation (GCV) in the case of Tikhonov regular-
ization. This method requires the minimization of the GCV function. We will present two fairly
inexpensive ways to determine bounds for the GCV function for large matrices A [1, 2].

TSVD method allows one to replace the ill-conditioned matrix A by a well-conditioned low-
rank matrix obtained by keeping the first k singular triplets of its Singular Value Decomposition.
We will present a method to identify the regularization parameter k when the TSVD is used as
a regularization method based on an extrapolation procedure.
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In this talk article, the authors proposed a numerical algorithm for approximation and analy-
sis of Burgers’-Fisher equation ∂u

∂t −
∂2u
∂x2 + au ∂u

∂x + bu(1− u) = 0 . Existence and uniqueness
of weak solution, a priori error estimates of semi-discrete solution in L∞(0, T; L2(Ω)) norm
are proved. Nonlinearity of the problem is handled by lagging it to previous known level. The
scheme is found to be convergent. Finally, numerical experiments are performed on some
examples to demonstrate the effectiveness of the scheme. The proposed scheme found to be
fast, easy and accurate.
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OPTIMALLY CONDITIONED VANDERMONDE-LIKE MATRICES
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Vandermonde matrices arise frequently in computational mathematics in problems that
require polynomial approximation, differentiation, or integration. These matrices are defined
by a set of n distinct nodes x1, x2, . . . , xn and a monomial basis. A difficulty with Vander-
monde matrices is that they typically are quite ill-conditioned when the nodes are real and
n is not very small. The ill-conditioning often can be reduced significantly by using a basis
of orthonormal polynomials p0, p1, . . . , pn−1, with deg(pj) = j. This was first observed by
Gautschi. The matrices so obtained are commonly referred to as Vandermonde-like and are
of the form Vn,n = [pi−1(xj)]

n
i,j=1 ∈ Rn×n. Gautschi analyzed optimally conditioned and

optimally scaled square Vandermonde and Vandermonde-like matrices with real nodes. We
extend Gautschi’s analysis to rectangular Vandermonde-like matrices with real nodes, as well
as to Vandermonde-like matrices with nodes on the unit circle in the complex plane. Addi-
tionally, we investigate existence and uniqueness of optimally conditioned Vandermonde-like
matrices. Finally, we discuss properties of rectangular Vandermonde and Vandermonde-like
matrices VN,n of order N × n, N 6= n, with Chebyshev nodes or with equidistant nodes on
the unit circle in the complex plane, and show that the condition number of these matrices can
be bounded independently of the number of nodes.

∗Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA, e-mail: sshiyano@kent.edu
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In this paper, the global optimization problem: miny∈S F(y) with S being a hyperinterval
in RN and F(y) satisfying the Lipschitz condition with an unknown Lipschitz constant is con-
sidered. It is supposed that the function F(y) can be multiextremal, non-differentiable, and
given as a “black-box”. To attack the problem we consider the following two ideas. First, an ap-
proach that uses numerical approximations of space-filling curves to reduce the original Lips-
chitz multi-dimensional problem to a univariate one satisfying the Hölder condition [1]. Second,
we propose different techniques for acquiring the Hölder information that can be distinguished
with respect to the way the Hölder constant is estimated during the process of optimization.
In particular, we consider techniques that use either a global estimate of the Hölder constant
valid for the whole search region, or local estimates Hi valid only for some subregions of the
domain [2, 3].
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THE COMPUTATION OF THE JORDAN STRUCTURE OF TOTALLY NONNEGATIVE

MATRICES TO HIGH RELATIVE ACCURACY
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Given the the factorization of a singular totally nonnegative matrix [2, 3, 1] A of order n into
the product

A = B1B2 · · · Bn−2Bn−1DCn−1Cn−2 · · ·C2C1,

with Bi, CT
i lower bidiagonal totally nonnegative matrices and D diagonal one, an algorithm

for computing the size of the Jordan block associated to the zero eigenvalue was proposed in
[3] with high relative accuracy in floating point arithmetic and O(n4) computational complexity.

In this talk we propose a modification of the latter algorithm that computes the Jordan
structure [4] of A with high relative accuracy in O(n3) computational complexity.
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In the regularized linear regression models the appropriate choice of the tuning parameter
plays a dominant role in the selection of the correct model. Most statistical methods employ
the tool of the generalized cross-validation (GCV) for the selection of values of this parameter.
In this work, we are concerned with the estimation of this parameter rather than its direct
computation. We study numerical methods based on extrapolation for estimating the GCV
function. Error estimates developed from the solution of linear systems are also employed and
tested. We apply simulations for different statistical designs and we report the Type I and Type
II error rates in order to compare the behaviour of the proposed method with the corresponding
estimates of the tuning parameter which are obtained by minimizing the exact GCV function.
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Let us assume that F(x) is a nonlinear Fréchet differentiable function, with value in Rm for
any x ∈ Rn. For a given b ∈ Rm, we solve the least squares problem min

x
‖r(x)‖2, where

r(x) = F(x)−b is the residual vector function, by applying both Newton’s and Gauss–Newton
methods [1].

The nonlinear function F(x) is considered ill-conditioned in a domainD, when the condition
number κ(J) of the Jacobian J = J(x) of F(x) is large for any x ∈ D. It may also happen that,
during the iteration of Gauss–Newton method, the matrix J becomes rank-deficient. Under this
assumption, it is common to apply a regularization method to each step of the Gauss–Newton
method. We compare this situation to applying the same regularization method to the initial
nonlinear least squares problem. We apply these two approaches to a geophysical model
used for electromagnetic data inversion [2, 3].
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Department of Mathematics and Computer Science, University of Cagliari

Viale Merello 92, Cagliari, Italy
rodriguez@unica.it

The shape from shading problem in Computer Vision consists of reconstructing the 3D
shape of an object, starting from a set of images. This kind of procedures have important
applications in many fields, among which rock art documentation in Archaeology [2]. The
photometric stereo technique extracts shape and color information from pictures of an object,
taken from the same point of view, but under different lighting conditions. While the classical
shape restoration approach assumes the knowledge of the lights position, we will explore the
situation where the position of the light sources is unknown. We will show that when at least 6
pictures of the observed object are available, the lights position can be estimated directly from
the data [1]. Numerical experiments will illustrate the perfomance of the algorithm developed,
on both computer generated and real-world data sets.
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BREAKDOWNS AND NEAR BREAKDOWNS IN SYMPLECTIC REDUCTIONS OF A

MATRIX TO UPPER J-HESSENBERG FORM

A. Salam, and H. Ben Kahla
LMPA, University Lille Nord de France

BP 699, C.U. de la Mi-Voix, 62228 Calais,France
salam@univ-littoral.fr

The algorithm JHESS, or the recent JHMSH algorithm and its variants, are based on
symplectic similarity transformations for reducing a matrix to an upper J-Hessenberg form.
This reduction is a crucial step in the SR-algorithm (which is a QR-like algorithm), structure-
preserving, for computing eigenvalues and vectors, of a class of structured matrices.

Unlike its equivalent in the Euclidean case, these algorithms may meet fatal breakdowns,
causing brutal stops of the computations or encounter near-breakdowns, which are source of
serious numerical instability.

In this talk, we point out where such breakdowns or near-breakdowns occur and present
efficient strategies for curing them. The effectiveness of such strategies are illustrated by
numerical experiments.
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CORE-CHASING ALGORITHMS FOR THE EIGENVALUE PROBLEM

D. S. Watkins
Department of Mathematics, Washington State University

Pullman, WA, USA
watkins@math.wsu.edu

Sixty years ago John Francis invented the winning general-purpose algorithm for comput-
ing eigenvalues of a matrix, the implicitly-shifted QR algorithm. This can also be applied to
related problems, including the generalized eigenvalue problem. One might well think that
after so many years everything that can be said about this algorithm has already been said,
but this turns out not to be the case. Interesting variants and insights have been produced
just in the past few years. Francis’s algorithm is normally implemented as a bulge-chasing
algorithm. Recently we have shown that there are some advantages to implementing it as a
core-chasing algorithm instead. (Another interesting variant is the pole-swapping algorithm of
Camps, Meerbergen, and Vandebril.)

This talk will focus on the core-chasing approach. We will explain what it is and show that
it is particularly advantageous in certain structured cases, e.g. unitary and unitary-plus-rank-
one, including the problem of computing the roots of a polynomial.

This is joint work with Jared Aurentz, Thomas Mach, Leonardo Robol, and Raf Vandebril.
We have written a book [1] that summarizes our work.
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BLIND IMAGE DECONVOLUTION USING A NON-SEPARABLE POINT SPREAD

FUNCTION

J. R. Winkler
Department of Computer Science, The University of Sheffield,

Sheffield, United Kingdom
j.r.winkler@sheffield.ac.uk

This paper considers the problem of the removal of blur from an image that is degraded by
a non-separable point spread function (PSF), when information on the PSF is not known. The
non-separable nature of the PSF implies that two blurred images, taken by the same system
such that the PSF can be assumed to be the same for both images, are required to determine
the PSF. The most difficult part of the computation is the determination of the size of the PSF
because this problem reduces to the determination of the rank of two matrices (one matrix for
the horizontal component of the PSF and one matrix for the vertical component of the PSF).
It is shown that this computation requires the determination of the greatest common divisor of
two polynomials, after they have been transformed to the Fourier domain. The Sylvester resul-
tant matrix and its subresultant matrices are used for this computation. A structure-preserving
matrix method is used to perform each deconvolution, and thereby compute deblurred forms of
the given blurred images because this method preserves the Tœplitz structure of the coefficient
matrix in the linear algebraic equation.

The presentation includes examples that demonstrate the method.
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