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In this lecture we will investigate the intimite connection between Krylov subspaces, struc-
tured matrices, and the QR algorithm.

We start by revisiting how Krylov subspaces are lurking behind the convergence and the
implicit Q theorem in the classical QR algorithm. Both are essential in understanding Francis’s
implicitly shifted QR algorithm. From the QR algorithm, operating on a Hessenberg matrix, it
is straightforward to deduce the QZ algorithm, operating on a Hessenberg – upper triangular
pair. The implicit QZ algorithm is, like the QR algorithm, a bulge chasing algorithm, with the
bulge hopping from one matrix to the other.

Next, we examine extended Krylov subspaces and see that the theory carries over neatly.
Instead of a Hessenberg – upper triangular pair we end up with an extended Hessenberg –
Hessenberg pair. The extended Hessenberg pair is highly structured: the i-th subdiagonal
element must be zero in exactly one of the two Hessenbergs. The associated extended QZ
algorithm is still a bulge chasing/hopping algorithm.

Finally, we discuss rational Krylov subspaces. Now we will have to deal with a Hessenberg
– Hessenberg pair, where the poles determining the rational Krylov subspace are encoded in
the subdiagonal elements of these Hessenberg matrices. Again we can deduce an implicit Q
theorem and develop a rational QZ algorithm. We will, however, not be able to chase bulges
anymore, instead we will have to manipulate the poles and end up with a pole swapping al-
gorithm. The convergence will be governed by subspace iteration driven by rational functions.
Some numerical experiments will reveal the advantages of using this rational QZ algorithm.
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