Chapter 7

RESIDUES
Let f(z) be single-valued and analytic inside and on a circle C except at the point
z=a chosen as the center of C. Then, as we have seen in Chapter 6, f(z) has a Laurent

series about 2z = a given by

o

flz) = ﬂ;_m an(z — o)
= @ + w(z—0) + oalz—a) + oo+ za__la+(zj£__f7)2+ e (1)
where = 2r"»§(z—a)n+1 z. n = 0,¢1,»+_~.2,'... (2)
In the special case » = —1, we have from (2)
£ f(z)dz = 2xta—x (2

Formally we can obtain (3) from (1) by integrating term by term and using the results
(Problems 21 and 22, Chapter 4) :
dz . {2#’1‘: p=1 )
e (z—a)? 0 p = integer = 1
Becausge of the fact that (8) involves only the coefficient a—, in (1), we call a—: the residue
of f(z) at z=uqa. :

CALCULATION OF RESIDUES

‘To obtain the residue of a function f(z) at z=e, it may appear from (1) that the
Laurent expansion of 7(z) about z=a must be obtained. However, in the case where z=a
is a pole of order k there is a simple formula for ¢—; given by :

1 dEt '
gt = lim gy g (e - ) @) (5)
If k=1 (simple pole) the result is especially simple and is given by
a-1 = il}:ri (z—a)f(z) . (6)
which is a special case of (5) with k=1 if we define 0!=1.
fExample 1:  If fz) = (7:1_)&_1%? then #=1 and z:—i are poles of orders one and two re-

spectively. We have, using (6) and (5) with k=2,
1
i ; i 1i J/ L ==
Residue at 2 =1 1s zl->m1 (= — )\Uz Tz 1)2} )

. . .1 z - _1
Residue at z = —1 is. hm T {(z+1)2 <m>} = Tz

If z=a is an essential singularity, the residue can sometimes he found by using
known series expansions.
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Example 2: If f(z) = e~1/%, then z =0 ig an essential singularity and from the known expansion

for e* with u = —1/2 we find

eTlE .= 1 -1 +
: z

1 1

I

from which we see that the residue at z = 0 is the coefficient of 1/z and equals —1.

% THE RESIDUE THEOREM

’ Let f(z) be single-valued and analytic inside
and on a simple closed curve € except at the
singularities a, b, ¢, ... inside € which have resi-
dues given by a-1, b1, ¢y, ... [see Fig. 7-1].
Then the residue theorem states that

§f(z)dz = 2.1'.((1.-1+b—1+6—1+"') (7)

ie. the integral of f(z) around C is 27 times the
sum of the residues of f(z) at the singularities
enclosed by €. Note that (7) is a generalization
of (3). Cauchy’s theorem and integral formulas
are special cases of this theorem (see Problem 75).

EVALUATION OF DEFINITE INTEGRALS

Fig. 7-1

The evaluation of definite integrals is often achieved by using the residue theorem
together with a suitable function f(z) and a suitable closed path or contour C, the choice
of which may require great ingenuity. The following types are most commeon in practice.

1. j‘ F(x)dz, F{x) is a rational function.

Consider § F(z)dz along a contour C consisting of the line along the
<

x axis from —K to +E and the semicirele T above the z axis having this line as

diameter [Fig. 7-2]. Then let K.~ .

If F(x) is an even function this can be

used to evaluate j‘ F(x)dz. See Problems 7-10.
6] : .

Fig. 7-2

Fig. 7-3

2%
2. j‘ G(sin 4, cos ) df, G{(sin¥g, cosd) is a rational function of sinf and cosé.
9

. a1
Iet z=¢% Then singd = FTEL

2i 7

_ - .
cosfd = ijrzz— and dz = ie®dd or

dd = dz/iz. The given integral is equivalent to § F(z)dz where C is the unit
’ c

circle with center at the origin [Fig. 7-3]. See Problems 11-14.




174 THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES [CHAP.7

3. f F(x) {C.OS mx} dx, F(z) is a rational function.
e gin mx
Here we consider § F(zye'™=dz where C is the same.contour as that in
[

Type 1. See Problems 15-17, and 37.

4., Miscellaneous integrals involving particular contours. See Problems 18-23.

SPECIAL THEOREMS USED IN EVALUATING INTEGRALS
In evaluating integrals such as those of Types 1 and 3 above, it is often necessary

to show that f F(z)dz and f ez F(z)dz approach zero as R— . The following
T r

theorems are fundamental.

Theorem 1. If |F(2)| = %ﬁ-; for z = Re®, where k>1 and M are constants, then

if T is the semicirele of Fig. 7-2,

lim | F(jaz = o
r

R=tw

See Problem 7.

Theorem 2. If |F(z)] = gﬂ

if T is the semicircle of Fig. 7-2,

for z= Re®, where % >0 and M are constants, then

lim § e F(z)dz = 0
Rerm r

See Problem 15.

THE CAUCHY PRINCIPAL VALUE OF INTEGRALS

. If F(g) is continuous in ¢ =2 =b except at a point xe such that ¢ <z <b, then if
an& are pqsrmve we define

: b g€y b
et f Fleyde = lim {f Flx)dx + F{x) dm}
} ot € =0 a T+ €

ey B TS a0
In some cases the above limit does not exist for ¢ ¢, but does exist if we take ¢ =¢, =«
In such case we call

b

be(a;)dm - 13.’.%{f F@)de + HEF()dx}

o

the Couchy principal value of the integral on the left.

L e . T dy J"1 da . 11
E H — = sty e —
xample f, e 5111-1310{_]:1 s T . 11...0{2@ 23 .

2 ep— 0
does not exist. However, the Cauchy pr1nc1pa1 value with ¢ = Sep e does exist and
equals zero.

DIFFERENTIATION UNDER THE INTEGRAL SIGN. LEIBNITZS RULE

A useful method for evaluating integrals employs Leibnitz’s rule for differentiation
under the integral sign. This rule states that

]
3 f Flz, o) de = ﬁdx

a
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The rule is valid if @ and b are constants, « is a real parameter such that o =aZa,
where «, and «, are constants, and F{z,«) is continuous and has a continuous partial
derivative with respect to o for e E2 =0, o, =« =a, It can be extended to cases where

the limits a and b are infinite or dependent on .

' SUMMATION OF SERIES

The residue theorem can often be used to sum various types of series, The following
"yesults are valid under very mild restrictions on f(z) which are generally satisfied when-
ever the series converge. See Problems 24-32, and 38.

1. Y f(n) = —{sum of residues of = cot~zf(2} at all the poles of f(2)}
2. i (—1) f(n) = —{sum of residues of =csenz f(z) at all the poles of f(2)}
3. S f<2n2+ 1) = {sum of residues of = tanwzf(z) at all the poles of f(z)}

4.

{sum of residues of = secwz f(2) at all the poles of f(2)}

e

wei2n+1
> - f( - )
MITTAG-LEFFLER’S EXPANSION THEOREM

1. Suppose that the only singularities of f(z) in the finite 2z plane are the simple poles
- @1, G2, 03, . . . arranged in order of increasing absclute value.

Let the residues of f(z) at a1, as, @s, . .. be by, bs, bs, ..

Let Cx be circles of radius Ry which do not pass through any poles and on which
fl=)| < M, where M is independent of N and Ry— = as N = e,

Then Mittag-Leffler’s expansion theorem states that

) = H0) + % b"{'z"—l—% - Rl_}

CORNEL]S VANDERMEE
55&%&75%&?3%
SOME SPECIAL EXPANSIONS URTV,CAGL)AR |
SR T2 T U (39)70-2000459
) F 22— 22—4s2 22—t
_ 1 3 5 o
2. secz = ”((f/zy—zz‘ B2F—2 | B2 -2 )
| 1 1
3. tanz = 27 ((qr/:z)z—zer By =2 Bri2r— 2 * )
1 1 1 1
4. cotz = — + 2z(z2ﬂ~7.—2+z2—47;2+z2—97;2 + )
1 1 1 1 :
5. cschz = — — 22 <z2+w2_ st )
_ 1 3 5 o
6. sechz = ”((ﬁ/2)2+z2“‘ CRE T2 BrleP+ )
_ 1 1 1
7. tanhz = 22 (z2 TEE T FEERE T BTG )
. 1 1 1- 1
8. eothz = 27 2z<z2+'w2+z2+4w2+z2+9w2 - )
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Solved Problems-

RESIDUES AND THE RESIDUE THEOREM
1. Let flz) be analytic inside and on a simple closed curve C except at point a inside C.

(@) Prove that :
flz) = n;_@ tnfz —a)” where an = 51;{ ﬁg_ﬂgg—nﬁdz, n=0,+1,%2, ...
i.e. f(z) can be expanded into a converging Laurent series about z = a.

(b) Prove that
| S '§f(z)dz = 2miao
c

(¢) This follows from Problem 25 of Chapter 6.
(b) If welet n=—1 in the result of (e), we find

o, = _1—§f(z)dz, ie. Hde = 2ria—q
C

e

i c

We call @, the residue of f(z) at 2= a

9. Prove the residue theorem. If f(z) is analytic
inside and on a simple closed curve C except at
s finite number of points a,b,¢, ... inside C at
which the residues are @y, by, €-1, ... Yespec-
tively, then

§ iz = eitan b b boat

j.e. 2xi times the sum of the residues at all singu-
larities enclosed by C.

With centers at «,b,¢, ... respectively construet cir-
cles Cy, Cy, Cy, ... which lie entirely inside C as shown
in Fig. 7-4. This can be done since @, b, €, ... are interior - : Fig. 7-4
points. By Theorem 5, Page 97, we have .

if(z)dé - ilf(z)dz + £2f(z)dz + i fla)de + oo o

3

But by Problem 1,

_(fcf(z)dz = Zrig_y, fﬁf(z)dz = rib_y, £
1 E

2

fleyde = 2mic_y v ()

. 3
Then from {1) and (2) we have, as required,
§ f(z) de = Zmilg_qFbogte_r T -) = 2 (sum of residues)
C .

The proof given here establishes the residue theorem for simply-connected regions eontaining a
It can be extended to regions with infinitely many isolated

finite number of singularities of fiz).
gingularities and to multiply-connected regions {(see Problems 96 and a7y

3. Let 7(z) be analytic inside and on a simple closed curve ¢ except at a pole a of order Mm
inside C. Prove that the residue of f(z) at a is given by ' '

. dm—l
a1 = hm(—m—i“l)—!w{(Z—a)mf(z)}

=

Method 1. If f(z) has a pole a of order m, then the Laurent series of f(z) is

. %m G—m+ 1 41 — )t 4 e
flzy = "—_J(z—a)m + G + + o + ey + ag{z—a) + axz a)? + (1)




E THEOREM. EVALUATION OF INTEGRALS AND SERIES 177,

CHAP.7] THE RESIDU

Then multiplying both sides by (z— )™, we have

o fR) = Gt Gemeama) F G @A @

2=a of the analytic funection on the left. Differentiating

This represents the Taylor series about
poth sides m—1 times with respeet to z, we have

;:n'_ll (e—amf@) = (m—Dloy + mm—1)2sl—a +
Thug on letting z > &,
N,
, lin I = @) = - Dien

from which the required result follows.

Method 2. The required result also follows directly from Taylor’s theorem on noting that the

coefficient of (z— aym~! in the expansion (2) is

ws = gy (R,

Method 3. See Problem 28, Chapter 5, Page 132.

. . _ 7t — 2z et -
4. Fmd the ??es,ldues of (&) f(z) = (———‘———z e D and (b) f(z) = e7cse’z at all its poles
in the finite plane. _

{a) f(z) has & double pole at z =—1 and simple poles at = = *24,

Method 1.
Residue at z = —1 is
N 1 4d 2. 22— 22 _ (2 + (22— 2) — (22— 22)(22) _ 14
LM T E‘z'{(”l) IR ED] T e @ Fay 25
Residue at z = 2i is .
T < (z— 2i) * 22— 2z _ —4 —4i T4
Y ) TP -2GE ey QDAY = 725
Residue at z = —2i is
22 — 2z —4 44 T—4
j N o — P ———— — ——
L, {(z +2) " - 20+ 2) s+ 12(—4) . 25
Method 2.
Residue at z = 21 is
, (2 — 28){z% — 27) _ . 22—2z0 . oz—2i
im T TR@r | ek Jim a4
—4—4i 1 —4—4i 1 _ THi
(Zi+ 12 2222 @i F12 di 25

using L'Tospital’s rule. In a similar manner, or by replacing i by —i in the result, we can obtain

the residue at 2 = —2i.

e #'=ms where m =0,

(b floy = e esez = sif;z has double poles at =z = 0,%m, 27, ...
+1,:%2, ...
Method 1.

Residue at z = mrw is

.1 d €=
P T e | A
zlin;_r 1! dz {(Z i ) Gk z}
e?[(z — mw)2sing + 2(

= m in3
pamr . sinfz

i—ma)sinz — 2z — )2 cos 2]




178 THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES [CHAP. 7

Letting z—mr = % 0OF 2= -+ mr, this limit can be written

lim e+ mT u? gin w0 + oy sinu — 2ufcosu
-0 sindu

- . uZsinuw + 2usinu — 2u? cos U
= emT< lim =5
w0 SN i

The limit in braces can be obtained using I'Hospital’s rule. However, it is easier to first note
i 3

3 . : :
that lim——— = Hm ( —— — 1 and thus write the limit as
wer ) SIN° W w0\ 510 %
) . w2 sinwu - Zusinu — ZuPcosu u3
g™ lim 3 C——
oy} 7 sin® w
—  gm7 lim wfginu + 2usinu — 2ufcoBd  _—  mw
w0 %3

using L Hospital’s rule several times. In evaluating this limit we ean instead use the series
expansions sinu = w— /814 -oe, cosu = 1L—wd/2l4 o

Method 2 {using Laurent’s series). .

In this method we expand f(z) = € cscz in a Laurent series about z = mw and obtain the
coefficient of 1/(z — mz) as the required residue. To make the ealculation easier let z = o -+ .
Then the function to be expanded in a Laurent series about w=0 iz emTt¥ cse? (mr +u) =
emmov esc2y.  Using the Maclaurin expansions for e* and sin w, we find using long division

2 8 2
emW(1+u+%‘T+§7+---> emfr<1+u+“_+--->
em‘rreucsc‘.l.u = : : — 2
' u3+u5_ N e al  ut 3
O S G e
mr<1+ +E 4 >
e wt ok
= _Z = emw(—§+i+—g—+§+--->
u? 1_&+gi+...
_ 5 45
and so the residue is e™f.
. . cot z cothz
5. Find the residue of F(z) = —— at z=0.
We have as in Methed 2 of Problem 4(b),
BES N S o )
Fl) = cosz cosh z _ (1 2!+4[ 1+2!+4!+
S sinzsinhz B 25 B8 25
z(z—§?+f5—!—---><z+é—!+—5—!+-">

24
571 % 1+ ...
. (1 Z+ )
and go the residue (coefficient of 1/2) is —7/45.

Another method. The result can also be obtained by finding
.1 df cosz cosh ?
Hm — =5 48°% ——————
P 4_! dzt 3 sinz ginh =
but this method is much more laborious than that given above.
2t

1
6. Evaluate 5 £ ,zuz_(_zz_fm dz around the circle C with equation [?[ = 3.

=t

. e o .  _y+g
The integrand —f———‘—zz(zz T2+ 9 .l.las a double pole at z=0 and two simple poles at =2 14
[voots of 22 +2z+2 = 0]. All these poles are inside C.




St
o
ey
CHAP.7] THE RESIDUE THEOREM. EVALUATION OF INTEGRALS AND SERIES 179
Residue at 2 =0 is
14 ot TR s 2)(terty — {e"}224+2) _ t—1
,l?fépdz{z FETnTn] @+ 22+ 22 T2
Residue at # = —1-+1 i8 .
. , Lo _ . ertl 4. v j2z+1l—4d
z_,hl’}ﬂ-{[z 19 it +2)} - z..ll“i‘u{ﬂ} z.}l_“l‘u{zz toz+ 2}
; __. pl-1+dE 1 glmivik
=TT m 4
Residue at z = —1—1 is
. (= — i ont _ pl—1— D
L m {[ ( A P 2)} 4
Then by the residue theorem
=t
§ m dz = 2ai (sum of residues)
o T

lE—1 gl—1+ i gl—1—i)
= 27%{ 2 + & + 4

_ . t—1 l-t )
= 2.‘2{ 5 +ze cost}

i _1_§__ﬁ__4_62t — t—1 1 —t
ne e = 5 T !

DEFINITE INTEGRALS OF THE TYPE J‘ F(z)dx

7. If |F(z)] = M/R* for z= Ret® where k>1 and M are con-
stants, prove that lim f F(z)dz = 0 whereT is the semi-
Re—

circular arc of radius E shown in Fig. 7-5.

By Property 5, Page 98, we have

| fr F(z) dz

since the length of arc L = kK. Then

=M
RE—1

M
= —*“"g'ﬂ'.R_

Fig. 7-5

lim 'f F(z)dzl = 0 and so hm Flzyde = 0
r

Re=o R=w r.

. M 1
8, Show that for z = Reé¥, A =5, k>1 if flz) = .
- 1 2 .
= 8, = | —— = = = i i '
If z= Re If(z)| lRﬁeﬁ“’+l‘ T —1 . Be—1 = 7% if R is large enough (say
E > 2, for example) so that M =2, k=6. :
Note that we have made use of the inequality |#z;+ 22! lzy| — |al With 2 = Rte8i? and zp = 1.

©  dx
9. Evaluate j; g B

Consider § 6d+ g where ¢ is the ¢losed contour of Fig. 7-B consisting of the line from —R

to B and the semlmrcle T, traversed in the positive (counterclockwise) sense.
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Since 26+1 = 0 when 2= gmil6 g3wil6 STi/E, g7i8, | gImii8, gl1T/6, these are simple poles of
1/(z6 +1). Onuly the poles gmif8, 37/6 and o578 He within . Then using L'Hospital’s rule,
Residue at gmi/é = zlir%jﬂ {z — 7% E—}?—l = zhl’i;:rlm %% = %e—fﬂﬂ'/ﬁ
Resédue at 378 = z._,ljg}i/s (z — &276) ;&—1 = ) ll:;}r %ég = % —5wi/2
Residue at 576 = z_Eé‘.Ei/& (z — €5/%) -5 i_ ir = z_’leismﬂjs ?3% = %e-%ff”ﬁ
Thus Czﬁdﬂz-l = 2w {Jé.g—swi/ﬁ + Le B2 + %3—251.-:'/6} — _2_37_7
[ e 2

Taking the limit of both sides of (1) as R = and using Problems 7 and 8, we have

R oo
. da - dx _ 2z
A ) W1 T wa6+1 T3 _ ®
Since J.m _de - Z‘I‘m—di— the required integral has the value /8
6 - 1 7/
_, @1 o ¥F1
” 2 dx T
10. Show that ad = 2.
L @rif@+2e+2) 50
The poles of Fie (::+22+2) enclosed by the contour C of Fig. 7-5 are z =1{ of order 2
and z = —1+1 of order L
d 22 9i—12
. — 3 L —_n2 = —
Residue at # =14 is ];IE e (z — 1} PR Y P Y PR T00 "
. B . . . 22 B34
Residue at z = —1+¢ I8 z_}gl{sﬂ(z—%—l 1) ETIRGF1-Dti+d 25
2 dz ,j9i—12 3—4i Tz
h d = gpd 2 p S =
Then i ETIRGE+ 22+ 2) *\" 100 T 26 50
or J’R 22 dy 1 f 2dz _ Iz
@2+ 122+ 22+ 2) P (2212 (=2 + 22+ 2) 50

Taking the limit as R~ = and noting that the second integral approaches zero by Problem 7, we
obtain the reguired result.

' 27
DEFINITE INTEGRALS OF THE TYPE f G{sin 8, cos 6) d6
G

i do
11. Evaluate f ——
h 3 — 2cosf + sind
o ' 0 — g — i —if —1
Let z — ¢, Then ssirusiieG d B:z % 1, 0056:694-3 :z+2 , dz =iz d¢ sothat
27 2i 2 2
j” ds — § dz/iz _ § 2 dz
o 83— 2cosé + sin @ C3——2(z+z—1)/2+(z—z*1)/2i C(1—2i)z2+6iz—1—2i

where € is the cirele of unit radius with center at the origin (Fig. 7-8).
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2

The poles of
e poles O R T iz —1— 2

are the simple poles

, —6i = V(60?2 — 41— 28)(—1 - 23) z
2(1 — 24)
—f1 = 44 . .
= 2= = 2—4 (2—1/b
21— 23) i &= .
Only (2 —i)/5 lies inside C. Fig.7-6
. . . . 2
s Resid t(2—0/b = 1 — _ i 3
esidue at ( )/ z_.(érili)/;, {z — (2 — )/5} {(1_21)22 T 22}
— . 2 1 .
= 1 S E—— - by L'H I le.
z»(%]zli)lﬁ 2(1 — 29z + 64 21 v ospitals rule
" 2dz _ 1 - :
Then §C A-sjZcem—1-% = 2 <22> = @ the required value.
. 27
2% .
12. Show that f W _ET if a> bl
s -+ bsing a2 — b2
; . el —eg7i0 z—z!1 .
Let z =¢%® Then sing = — = * ., dp = ie¥de = izde so that
2 21
f’f _de § o de § __2dz
o, o+ bsine o+ blz— 2 1)/2 o be? + Zaiz — b
where C is the cirele of unit radius with eenter at the origin, as shown in Fig. 7-6.
The poles of _—?——— are obtained by solving bef+2¢iz—b = 0 and are given by
bz2+ 20tz — b

—9qi + V—Aa2+ 4b2  _  —aix Ya?—b%i
- b

2b

{—a =+ ,b/mg — 52} i -t — \bf a2 — b2 } ;

Only ij"_bﬂ’tzfi lies inside C, since-

’—a-l—\/zﬁ—ﬂb?i Vai—b2-a Vai-b+ o
b

b <1 if a> b

b wi—b +a (Va2 — b + a)
. ~a + Va2 — b2 . ; 2

= = 1 — —— e —

Residue at 2 A 4 213;1 (z—zy) TR Bam = b
— : — 1 -1
= lime/——— = — =

zrz; 2Bz + 2ai " - by + ui Vaz—b2i
by L'Hospital’s rule.
Then 2 dz = 2m 1 = &y the required value.
. b2 4 20iz — b VaE— b2 VaE—b2

2T
13. Show that f _cosB9 4o = T
0

5 — 4 cosd 12°
-1 210 —aif 3 -3 )
If z =¢¥®, then cosé = i +; , cosde — i;-;f—l = z—-{:zi—, dz = izde so that
27 o536 ds = § (28 +2=8)/2 gig _ 1 § 2841 dz
o D—dcoss Jo b — 4zt D)2 i 2t J, 2822 —1)(z—2)

‘where € is the contour of Fig. 7-6.
The integrand has a pole of order 3 at =0 and a simple pole z=1} inside C.
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. e 1 dr 2£+1 _ 2t
Residue at z =0 is 5%2!‘-{2—2 2 —~———423(22_1)(2_2) = 5
. g e 14 1N A1 _ _*8b
Residue at 2 =L is 31_1311'1/2 <z 2) ——_23(22_ =2 = 21"
1 f B4l g Lgn)2 8L 7 ;
Then = ff A =D = 2) = 2 (2rd) S 5 1 as required.

i dg _ 5=
5 —3sing?2 32

Letting z = ¢, we have sine = (z—2~1)/24, dz = ie¥dp = dzds and so

I‘z"_ de — § dzfiz _ _4 5; _zdz
Jg (65— 3sin 8)2 o 15— 8(z—=2~ /24y (322 — 104z — 3)2

where € is the contour of Fig. 7-6.

2
14. Show that f
]

The integrand has poles of order 2 at =z = =

T o
104 = —100+36 103;“ 8 _ 3, /3. Only the

pole /3 lies inside C. 6
) Residue at z =43 = lim L (g —i/3)% » —
o T misadz (822 — 101z — 3)2
d z 5
= i == — 32— - ———

Jim 5 G e — e 256"

4 _ zd2 _4 -5 = 5=z

Then § Ga—loiz—3¢ 4 (2“3(256> = 32

Another method.
From Problem 12, we have for a > |b|,

fZ‘T ds . A
o @+ bsing a2 — b2

Then by differentiating both sides with respect to ¢ (considering b as constant) using Leibnitz’s
rule, we have

_‘i 27 de _ IZT_Q_ 1 s _ _ 27 e
da J, e+ bsing o o8 a-+ bsine s (¢ + bsineg)?

i 2 — —27a
dao \ /a2 — B2 {a? — b2)3/2

: 2 de _ 2ra
e fg @+ bsingE  (2— 0372
Letting ¢ =5 and b = —8, we have
f” do _ 27(5) _ B¢
s (5—3sme? - (52—3%¥r — 82
DEFINITE INTEGRALS OF THE TYPE f Fla) ‘;f; z’z da
15. If |[F(2)] = gc for z = Re® where k>0 and M are constants, prove that
Hm § em*Fz)dz = 0
R T

where T’ is the semicircular arc of Fig. 75 and m is a positive constant.

If z = Re®, f omi F(z) dx = f " gimRei® p(Rei6) (Rei® dg. Then
r 0
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CHAP. T
i X it )
f gimRe®® F(Rei®) iRe® do| = f | gimRe™® F(Rei0) iRet | do
¢ 0
T
— f | gimR cosé — mE siné F(Rei®) iRel® | do
0
= f e#mRsinB EF(RGWH B de
0
M I 72
= F , g—mRslnB de = __;KI g—mE sin® (g
Now sing = 28/r for 0 =03 /2, ag can be seen sin 0
geometrlcally from Fig. 7-7 or analytically from Prob. 99. sin @
Then the last integral is less than or equal to //’ ”
oM /2 ) M A - gatr #
g—2mRA/T (g = ‘ (1 — e—mR) ' )
RE1 mRk /2 x
Ag R— = thls approaches zero, since M and I are positive,
Fig. 7-7

and the required result is proved.

* o8 m¥
. de =
£ 16. Show that j; T

Consider § 2.+ ldz where

z= =i, but only z=1 les inside C.

-l

Residue at z = ¢ is lim {(z— i

eimz . e m _
izﬂﬂdz - 2”%<2i> -

R
or ‘j'
R
. ® COs MY
i.e-, f -—2—-— dfﬂ
R % +1

. R
and so0 Zj‘
0

Taking the limit as

m
Ze ™ m>0.
2

C is the contour of Fig. 7-5. The integrand has simple poles at

) gimz 3 g Th
G—derd| 2 e

Il
5

etm:r gime
dx f dz
af:2 +1 v r 2241
. s MME gimz _ _
+e£ 2+1dx+fz2+l = ge ™

COo8 X gimz —
womz g, 1 [ € g = e
x2+1 o+ rz2+1 # e

R — « and using Problem 15 to show that the integral around T approaches

zero, we obtain the required result.

o0

x sin
17. Evaluate ‘f_m mdw.

Consider § _ %€ 4z where C is the contour of

2+22+5
at 2 = —1=2i, but only z=—1

Fig. 7-5. The integrand has simple poles

+2i lies inside C.

. . X . zeim? _ g—im— 2«
Residue at # = —1-+2¢ i 2'_'11171(1+ N (z+1—20) 52518l — (—1+29 Then
zaime —&w T _
IV — = = Z(1— 27
§c ST o7 dz 2ri{—1 + 24) ( yE ) o) (1-—20e
R i iy - ) T
%6 z¢ = I —99e-2
or f_Rm2+_2xf5dm +f1‘z2+2z+5dz gt =297
. B meosnx . 4 4 R gsinTe g, 4 J' 2™ g = I(1—2he?m
1 R @+ 22+ B S EN TR r2+22+5 2
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-
ig Tgking the limit as B> « and using Problem 15 to show that the integral around T° approaches zero,
‘g this becomes
Z *  xeoswa AT zsinre T .
£ m_dw+zf WEENTY  dy = —e T2 — eI
! fﬁm Bi2+5 L%t 2w +5 2° e
: Equating real and imaginary parts, '
®  xcosrx " ® psingw
_WEETE dy = —eT2W, f L L / = —mg—2r
wa2+2x+5 , 2 e St e

Thus we have obtained the value of another integral in addition to the required one.

MISCELLANEOUS DEFINITE INTEGRALS S "

sin .’E ”

® 18. Show that f do = 3.
i :
. The method of Problem 16 leads us to consider
the integral of e*/z around the contour of Fig. 7-b.
However, since z = lies on this path of integration
and since we cannot integrate through a singularity,
we modify that contour by indenting the path at 2 =10,
as shown in Fig. 7-8, which we call contour C' or
ABDEFGHJA,

. . . .
Since 2z =0 is outside C’, we have Fig. 7-8

§'ﬁdz = 0
, 2
or f -dx-l—f—-dz +fR-—~dm+ je—wdz = 0

HIA BDEFC
Replacing # by —= in the first integral and combining with the third integral, we find

R . . .
ir — p—izw 12 iz
€ e 54 [
f = dx + —dz + ——dz = 0
P 2 k4 ®

- HIA BDEFG

E . Rk . . -
- , ina kel i

; ' or 21 BT gy = - —dz — — dz
E i € % 2 2

N  HIA BDEFG

Let ¢=~ 0 and B «. By Problem 15, the second integral on the right approaches zero. Lettmg
2 = cei¥ in the first integral on the right, we see that it approaches

0 ieelf . . 0 .
—1lim e jeeifds = —1lim ieee dg = i
: ex+0 e"" €=+0
i i since the limit can be taken under the integral sign.
Then we have =
lim Zi‘jﬁ ST gy = i or j‘ ST gy = Z
{ Rew e @ B Jo. % 2
s e=r0
: 19. Prove that
c o, “ N 1 [z
sine?de = cosxlde = —Alc
0 o 2 N2
: : Let C be the contour indicated in Fig. 7-9, where AB is-
the arc of a circle with center at O and radius B, By )
Cauchy’s theorem, %

E o §eiz2dz = 0

C




B

90. Show that f
0
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or ;

fefzz dz -+ feizz de + jeizz de = 0 5}
AB BO

0A

Now on 04, z=x (from z=10 to x=R), on AB, =z = Rei® (from 0 =0 to ¢ = »/4); on BO,
2 = remt (from r =R to r=0). Hence from (1),

R /4 . 0 ) .
J\ o de + ‘[ AR it gy o Jﬁ e guitd gy = 0 (2)
0 o R
ie., ' ' '

R R Tfd
J‘ (cosa? 4+ isinx?des = eﬁf‘if e~ dr — f giR? cos 20 — REs5in 20 {Reif g &)
0 0 0

We consider the limit of (3} as R— o, The first integral on the right becomes [gee Problem 14,

Chapter 10]
. ® Vo . 1 r i T
if4 2 - M Eowid = o h — =z
€ J(; e " dr ) e 54/ 2 + 3\ 2 [£4]

The absolute value of the second integral on the right of (3) is

/4 2 o T f4
f (iR? cos 26 — B sin20 ;P if de‘ = ‘J- e—R2sn20 B do
Q o
/2
R J‘ B 2
- el g—R*sind d¢
2 Y
/2
= g j e—2RM /i dg
2

- T 4y _ ,.RY
= qgd=e®

where we have used the transformation 26 =¢ and the inequality sing = 2pfm, 0 = ¢ = =12 (see
Problem 15). This shows that as R— = the second integral on the right of {3) approaches zero.

Then (3) becomes
= 1 T i T
2 ;ain o2 S R A (il
J; (cos x2 + 1sina?) do 5 2+2 3

and so equating real and imaginary paris we have, as required,

= w0 1
J‘ cogaxdx = f ginx?da — 54 ‘ z
¥ . 13 . 2 2

-1
2 de = —.—Tr'_, 0<p< 1.
1+ sin pw

o

Congider § 2271 dz. Since z=0 is a branch
Cl+z

point, choose C as the contour of Fig. 7-10 where the
positive real axis is the branch line and where AB
and GH are actually coincident with the z axis but
are shown separated for visual purposes.

The integrand has the simple pole z = —1 inside C.

Residue at 2z = —1 = ¢ is
—1 :
1i z+1 il = gmp—1l = glo— 1w
Jm 4D e =
Then § 2271 40— gpiel»-Dm or, omitting
cltz

the integrand, ) Fig. 7-10
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f + + f Zriete— 0w
AB BDEFG HIA
We thus have
j‘ Rap=t o0 o f“ (Rei®)p=1iReto dp f‘ (wezryp—1
e 1t+w o 1+ Re# g 1+ we®™
+ ¢ (Eeie)p—liegiﬂ di g jetp—tomi
o 1 + et
where we have used z — xe?®t for the integral along GIH, since the argument of z is increased by
27 in going around the circle BDEFG.
Taking the Himit as e~ 0 and B~ « and noting that the second and fourth integrals approach
zero, we find
° T i4w
or
p—1 . .
(1 — e2mits—13) f % =  2piglp—1dmi
go that
f"" @t g 2mie@-Dm 2 r
o 1+ 1— g2miltp—1d gpml— g—pm sin pr
21. Prove that fw coshaz — " where |z|<1.
, coshx 2 cos (na/2)
Y
R eﬂ.z R P
Consider § —2__dz where C is a rec- 3¢
© cosh z —R+ i R+
tangle having vertices at —R, R, R+ =i, —E + =i :
(see Fig. 7-11). .
The poles of ¢**/cosh z are simple and occur
where coshz =0, ie. 2= (n+ =i, n=0,%1,
- S
=2, .... The only pole enclosed by C is #i/2. Fig. 7-11
. e® . .
Residue of woshz at z =7i/2 is
az ami/2 atif2
1i — 7i/2 = e - e = —ipami/2
&= R O sinh (z1/2) Tsin @72) e
Then by the residue theorem,
¢az L .
———dz =  2pi(—ienm2) = Zgewwi/2
o cosh 2
This can be written
g (R +iw) R atztaid
g + f e idy + f L e
f; cosh & o cosh BFap 0 T Jp  cosh(m+i)
9 a{—R +iy)
o+ € - D reamif2 1
L cosh (—R + zy) i (1)
As B~ = the second and fourth integrals on the left approach zero. To show this let us consider
the second integral.” Since
R 411 —R— N N
lcosh (R +1iy)] = |4 4‘23 Rz g{jert] —|emR-u|} = L(R—e R) = Lok
we have -
! ealR +iy) i - gaR _
= =  4rela—DR
.I; cosh (R + iy) i R i
and the result follows on noting that the right side approaches zero as B~ = since le| <1. In a similar
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manner we can show that the fourth integral on the left of (7) approaches zero as K — «,

becomes
) R R .
lim dx + eoni dx = Qrpumi/2
Rew Vg cosh”c _g coshx
since cosh (x + 1) = —coshx. Thus
I R fw i d Dottt/ 2 27
im = x = = — - ’ —
R—wo/_p coshz o cosh @ 1 + eavl gonil2 | g—awi/2 cos (za/2)

o w
ea.’l: e!II T
0 o d: = —_—
Now J:‘w cosh & @+ J(; cosha " cos (7a/2)
Then replacing x vy —x in the first integral, we have
I“’“ oo L J”” e 2]‘“’ coshaw . _ ar
Jy coshw s cosha o coshz cos (ra/2)

from which the required result foliows.

Prove that ln_zxLl) de = a1n2.
+1

Consider § In ( ,,zj_ll) dz around the contour C con-

sisting of the real axis from —R to K and the semicircle
I" of radius R (see Fig. 7-12).

The only pole of In(z+4)/(22+ 1) inside C is the

simple pole z =14, and the residue is

. S In{z+ 4 _ In(2g
1 — = .
I G T 20 Fig. 7-12
Hence by the residue theorem,
In{z+14 . In (29) _ w .
§ z2+1 dz = { 21 = n'ln(z‘b} = 7#ln2 + Elffrz?.
on writing In(2) = In2 4+ Ini = In2 + Ilne™2 = In2 + #i/2 using principal values of the
logarithm. The result can be written )
In {2 +4) J’ In(z+9) _ 12
f_R Bt + | @ = ama e
or
0
In(z + ) f In{z + 9 f In (2 + %) _ 1 9
f{{ x”-l-ld + o dx + zz-i-ld = 7rln2+§1:r’t

Replacing @ by —x in the first integral, this can be written

In{i—a) f In(i+ f In(z+4) _ L 1ns
J; m2+1 d + 1 dz + 22+1 de = aln2 + Is%
or, since In(f—x) + In(i+z} = m(EB—2?) = In@2+1) +
In(x2+1) f In(z44) . Y
f{; 1 de + dx + F_—~—Z2+1 dz = 7ln2 -+ 4=%

As E— = we can show that the integral around T approaches zero (see Problem 101}
taking real parts we find, as required,

. In (2 + 1} _ f In (22 + 1) _
hmf i1 dx = o._—$2+1 de = »In2

R=
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w/2

w/2
23. Prove that j Insinz dz = f lmcoszde = —4rIn2
4] 9

Letting « = tané in the result of Problem 22, we find

w2 w/2
f Msec%da = -2f Mmcosedse = =in2
o tanZze + 1 a
from which 2
f Ineosegds = —4min2 ()
o
which establishes part of the required result. Letting ¢ = #/2—¢ in (1), we find
w2
f Insineg do = —éwinE
0 .
SUMMATION OF SERIES
. . Y
24. Let Cy be a square with vertices at (N1 Cy N PATD
(N +$){(L+17), (N+H)(—1 ~+ ), y
(N+D(-1—1%), N+H1-19) ' \
as shown in Fig. 7-13. Prove that on Cx,
cot=z| < A where A is a constant. z
: C e s —N-1 N+1
We consider the parts of Cy which lie in the
regions ¥ > L, —3 =¥ =4 and ¥ <~
Case 1: ¥ > 1_1,: In this case if z = x+ 1,
1 _ emiz & e—.—.iz : - BN
leotwal = | o - N+ 31— N+ D)
. emiz—wy + e#ﬂ'w‘z—#wy
- 67ri;c—1.—y — G-"rrix+77y
|griz—myl + le—ﬁix+wl Fig.7-13
LA L A
Lefﬁi.ri.-'lru] — !ewiz*'ﬁﬂ
_ et em Lpet o 1Ee" oo,
emy — g~ 7Y 1—€ 27y 1—e 7
Case 2: ¥ < —% Here ag in Case 1,
TIL— T — iz -+ Ty —% X L g2 -
!cotﬁzl = Lw = _G_Tiifj 1_1_6_—‘3 tte’” = Al
Iemx*‘ﬁy! _ 16—7;1.7:+7ryE e~ Y — @7y 1 — g27¥ 1—e 7
Case 3: -4 2y = 1. Consider z = N+ 1+ Then _
leotwe| = Icotrr(N-’r%%-iy)i = |eot(n/2+ =) = |tanhmy| = tanh (#/2) = As
If 2=-N—}+iy, we have similarly
|eotzz] = |eotw (—N—%+a| = |[tanh7y! = tanh /2y = 4»

Thus if we choose A as a number greater than the larger of A,
on Cy where 4 is independent of N. It is of interest to note that we
coth (v/2) since A, < Ay

25. Let f(z) be such that along the path Cy of Fig. 7-18, |f(z)!
are constants independent of N. Prove that

S fm) = - {sumof residues of - cot=z f(2) at

Case 1: Ff(z) has a finite number of poles.

In this case we can choose N so large that the path Cy of Fig.
The poles of cot7z are simple and occur at z = 0,=1,*+2,....

and A,, we have |cotwz| < A

actually have |eot7z] = Ay =

M
z[*

WA

where k>1 and M

the poles of f(z)}

7.13 encloses all poles of f(z).
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26.

27,

. Residue of wcotwz f(z) at z=m=n, » = 0,*1, X2, ..., is

lim (z —n)r cotmz f(zg) = lim~» <z.— n) coswz flz) = f(n)
Z=n 2= sSln 72

using I’Hospital’s rule. We have assumed here that f(z) has no poles at # ==, since otherwise the

given series diverges.

By the residue theorem,

N
§ reobrz fleyde — > fm + 8 (1)
Cx n=—N

where § is the sum of the residues of = cotmz f(z) at the poles of f{z). By Problem 24 and our
assumption on f{z), we have

- TAM
= Wi

§ 7 cotmz f(z) dz (8N +4)
C

N

since the length of path Cy is 8N + 4. Then taking the limit as N— « we see that

lim reotzz flz)de = 0 (2}
Noew Cu

Thus froem (1) we have as required,

S = -8 )

Case 2: f(2) has infinitely many poles.

If fiz} has an infinite number of poles, we can obtain the required result by an appropriate
limiting procedure. See Problem 103.

Prove that 2 = Teothre  where a > 0.
n=—uw 'nz -+ aZ @
Let f(z) = ;2—_?_—(12 which has simple poles at z — Zai.
Residue of fz—zc—f—(";z at = ai is
i _ 7 eot 72 _ meotwai T ahoa
Jim e =l e 2ai 2 0T
Similarly the residue at z = —ad is %E cot.h wa, and the sum of the residues is —% coth 7¢. Then
by Problem 25, & .
) :—2130 p; i = = - {sum of residues) = %coth e
) . 1 .
Prove that e = —cothme — =  where ¢ > 0.
ﬂzi n + a2 2a i 202
The result of Problem 26 can be written in the form .
—1 o0
1 3 1 T othe
- P +amt Tzl il acoth.,a

- 1 i

T
or ZEm-i—-—; = Ecothrra

n=1 as

which gives the required result.
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1 1 1 -2
98. Provethat St Tat 0 T g -
ey 6 |
. : 2222 piat
7 cob w2 7 COS 7R (1_ 21 +T_”'>
We have F(z) = —5— = FLoiTr =
z2 2? sin 7z 2 7222 it
2 <1———+——— )
3! B!
1 7222 7222 _ rgyo_owE
= 23<1~— 31 + -)(1+ a1 + ) = z3<1 ——3 + >
so that the residue at z =0 is —r2/3.
Then as in Problems 26 and 27,
7 cot w2 g 1 Y1 72
A£N 22 ? HEN n? ,2'1 n* 3
_ g1 e
- 2n§1 %2 3
Taking the limit as N = = we have, since the left side approaches zero,
5 1 72 _ 2 1 _ ==
zﬂgl 'ﬂz - 3 - 0 or ngl %2 - 6
Another method. Take the limit as a-> 0 in the result of Problem 27. Then using L'Hospital’s Tule,
- 1 IR | . gacothwe — 1 w2
= — = e - = —
}E%ﬂ:l n2 + a2 n§1 17 &T}J 2q2 6

ons given in Problem 25, prove that
at the poles of f(2)}

29, If f(z) satisfles the same conditi
e ang occur at

— {sum of residues of = cscwZ f(2)
oblem 25. The poles of ese nz are simpl

3 (1) =

We proceed in a manner gimilar to that in Pr

z=0,*1,*2,....
Residue of = esewz f(z) at 2 =mn, » = 0,x1,*2,..., 18
iﬂl}b (z—n)r escaz f2) = lﬂw <§m;;%> flzy = (CLmf)
{1)

By the residue theorem,
N .
ff resenz flzYdz = S (—nrfm) + 8
Cn n=—N
where S is the sum of the residues of = escw? fz) at the poles of f{z).
Letting N —» =, the integral on the left of (1) approaches zero (Problem 108) s0 that, as required,
(2)

3 (-yrf) = —S

—

(1) becomes

< _ w2 cognd . - .
where ¢ is real and different from 0, =1, =2, ...

. __1 n
30, Prove that nzwﬁ =z 5T
which has a double pole at #

}
i
8

Let f(z) = (7—_:—‘1)—2

Residue of TSC72 at z = —a is
(z+ )
. d T eSC TR
lim =<(z+al ——3 = —g2 csewa cotra
2 —a U2 (Z + (Ir)
Then by Problem 29,
2
= sesemacobre = onrt
gin® 7a

1" =  — (sum of residues)

" o (n+a)?

n=
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31. Prove that if a = 0,=1,=2, ..., then

+1  of+d L @+ _ ., _ 1 _ ~tcoswa
(¢ — 1)2 (a®— 4)? (a®— 9)? 2¢> 2 sin®wa
The result of Problem 80 can be written in the form
1 _ 1 1 1 1 ... .. T>coswa
a {(a T F - 1)2} * {(a For T - zw} * proEy
or 1 2et1) 22+4) _ 202+9 . ... = 72 cos 7e
a? (@ —1)2 (aa —4)2 (a2 — 9)2 3in? ra

191

from which the required result follows. Note that the grouping of terms in the infinite series is

permissible since the series is absolutely convergent.

1 1 1 1 =
82, Provethat -3+t~ mt " = 29°
1@ 3 B 73 32
We I F - T sec 7z — Kl — T .
¢ nave (=) z3 28 cos T2 23(1 — #222/21 + - )
_ T 11'22:2 . T 7:'_3 ..
= A (1 = + ) = 3 + o +
so that the residue at z =10 is #%/2.
The residue of F(z) at 2z = n+ %, n = 0,%1,*2, ... [which are the simple poles of seewz], Is
z-hlm = e+ Peosrz (3P cmtly  COSTE T o mt3e

If Cy is a square with vertices at N{1+9, N1 -, N(-1+4), N{—1—14), then

rsecTz o _ . (—1)n -
iv s = - 2argpty T 7F EN(an)a* 2

and since the integral on the left approaches zero as N — =, we have

- 3 101 1 B
2(2n+1)3 = 2{13_554”53 } T

from which the reguired result follows.

MITTAG-LEFFLER’S EXPANSION THEOREM
33. Prove Mittag-Leffler’s expansion theorem (see Page 175).

Let f(z) have poles at 2z = a,, » = 1,2,..., and suppose that 2= is not a pole of f(2).
the function zf_z§ has poles at z=a,, n=1,2,8, ... and {. .
; f(z) _ , . : = _ba
Residue of o at 2=, » = 1,2,3,..., 18 ZIEH:'” (z an)z_§ = o=t

Residue of 20L at z=¢ is  lim -2 = .
z—{ zm L z—1{
Then by the residue theorem,

i §, e = s+ 3

naf_f

)

Then

where the last summation is taken over all poles inside circle Cy
of radius By (Fig. 7-14}. i

Suppose that f(2) is analytic at 2 =0. Then putting { =10
in {1), we have

@, by
P § dz = fO + 2o @ Fig.7-14
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192

Subtraction of (2) from () yields
1 1y _ 1 J1
o - 70+ So(r k) = 5 iNf(Z) Ll
ot &,
= B £N e
= M’

M - ZIT'RN

Now since lze—¢| = |2| — [§] = By — lt| for z on Cy, we have, 1 EHOT
f2)
& g 2
}-ﬁN By(Ry — 1)

2z — 1)
As N- = and therefore Ry~ =, it follows that the integral on the left approaches zero, ie.,
lim ——f—(f)—dz = 0 ) '
Az=1)
N

Nesr o
Hence from (3), letting N — =, we have as required
' _ 1 1
= O+ gbﬂ(g_% +&;>

the result on Page 175 being obtained on replacing { by 2.

1 m—

1
cotz = — + ;(-—2—%w+ﬂﬂ

1) where the summation extends over

34. Prove that
Then f(z) has simple poles at

n==x1,=2 ....
R . 1 — ai
Consgider the function f(z) = cotz—_ = 2COSZ CILES
z Z 8inz
2= mr, n==1,%2 3, ..., and the residue at these poles is
’ (z cosz — smz) 1

zecosz — sinz . z i
. — = 11m _—
zZ8Iinz Z T sin 2 2

2N

lim (2 — nw)
B=-nT
At z =0, f(z) has a removable singularity since

lim (cotz - 1) = i
20 7 z=+0
Hence we can define f(0) = 0.

by L’Hospital’s rule.
By Problem 110 it follows that f{(z) is bounded on cireles 'y having ecenter at the origin and
Hence by Problem 33,
(_lf + L)

zcosz — sinz - 0
z ginz

1 _
- =S -

cotz
4 n 2 —hw

radius By = (N + 7.

from which the required result follows.

cotz = ?z:-i_ 22 zin2+z2_147r§+ RN

We can write the result of Problem 34 in the form s N
= 7T gm <Zi,r+z,];7‘_>+(z+12ﬂ+z_12ﬁ_>-§- +<z—+l_N:+z_—1NT,>
wodim Rt g P+ s

N=w

3

35. Prove that

cotz =
z N o=

wt

SR

1
+ 2=z P

R |
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MISCELLANEOUS PROBLEMS

1 a+im ezt ' . .
: 36. Evaluate — f ———dz where ¢ and t are any positive constants.
217?’ a—i% \,’ 4 + 1
The integrand has a branch point at z= —1. ¥
We shall take as branch line that part of the real
axis to the left of # = —1. Since we cannot cross

this branch line, let us consider

¢
§ e dz
cvVa+1
where € is the contour ABDEFGHJKA shown in
Fig. 7-15. In this figure FF and HJ aectually lie on
the real axis but have been shown separated for visual

purpeses. Also, FGH is a circle of radius ¢ while
BDE and JKA represent ares of a circle of radius B.

Since e#*/V/z+ 1 is analytic inside and on C, we
have by Cauchy’s theorem

0 (1)

§ et d
z =
cVe+1

Omitting the integrand, this can be written

Jof

BDE EF FGH HJ JKA

Fig. 7-15

(2)

+
Sy
+
f
[

Now on BDE and JKA, 2 = Rei® where ¢ goes from ¢y to v and = to 2z —9, respectively.

On EF, z+1 = uwe™, yz+1 = Vuertiz = v whereas on HJ, z+1 — we ™, Vz+1 =
Vue w2 = —ivu. In both cases 2z = —u — 1, dz = —du, where u varies from E — 1 to ¢ along
EF and e to B — 1 along HJ.

On FGH, z+1 = ei® where ¢ goes from —7 to 7,

Thus (2) can be written

a+iR gt T gRet ) € —(u+ 1 (g
f S dz + j —————1iReif dg + f g——(—u)
w-ik Vz+1 o,V Feif 1 R-1 Vu
f—rr gleetd—1¢ R—1 g—(u+ 13t (—d)
A coit 1 ¢ iy

-

+ — ——— iReitds = O (3)

T.et us now take the limit as B — « and ¢ > 0. We can show (see Problem 111) that the second, fourth
and sixth integrals approach zerc. Hence we have

atio gt R—1 ,—(u+1t w g—(u+1)t
dz = lim 2¢f Y dn = 21'! L
J;ﬂtm Vz+1 €0 € Vi o Y

Rz

or letting u = v2,

a + o

L e L, e g o
2ri Jyte z i1 7 Jo Ve T s

2 3
() g, - =
w+1 8
Let C be the closed curve of- Fig. 7-16 below where T; and Ty are semicircles of radii « and R
respectively and center at the origin. Consider
(In z)?
22 +1

37. Prove that f
1]

dz
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Since the integrand has a simple pole z =1 ingide C
and since the residue at this pole is
R . In 2)2 _ {Ind)?
lim (z— . —R 22 = o
lim 2 =) g 9 2
- (wif2)2 2
2{
- ==
8i Fig. 7-16
we have by the residue theorem
(In z)2 " . <j_-j> _
‘ﬁ -*"——zz F1 dz = 2 85 — 4 (1)
Now '
R
(In 2)2 _ f—e (In 2)? I f (In 2)2 f (In 2)? f {(in 2)*
§C ArTd T ) eri e T Pl e+ ) pry®t ) wil® @)
Let z = —u in the first integral on the right so that Imz = In(—u) = Inu-+ In(=1) = Inut+at
= du and Inz=Inu) in the third integral on the right.

and dz = —du. Also let z=wu (so that d

Then using (1), we have
.8

R ;: 2 R 2 -
(nw+ =92 5 4 f {ln 2 ; +J‘ (Inw? 4. + J‘ ne®, - T
f PR ! £ ) wrl “ b, A1 1
Now let e— 0 and B~ «. Since the integrals around Ty and 1y approach zero, we have
f‘" (nut =i g 4 § Gow? g, = il
g w1 g w2l 4
o -] =
(nw? g, + 2_,-]‘ Inw g, — _gf du _ —rt
or prpr AN M- S AR 4
Using the fact that f dw__ — ggn-iu] = =,
o w2+ 1 o 2
* {in w)? AT 7°
g § nw gy + 2 f nw g4 = =
J;n2+1“ ™)y @E1 4
Equating real and imaginary parts, we find
o0 S0
nw? . 7o f Inwu g. —
P 8’ e

the second integral being a by-product of the evaluation.

38. Prove that ¥
(N+3{—1+9 N+ L8 (N+H+1)
cothar+coth2w+coth37.-+n_ _ A T &
13 23 32 180
Consider Cn -
§ = cob rrzscoth T2 da
Cn z > e x
taken around the square Cy shown in Fig. 7-17. —N-t N+1
The poles of the integrand are located at: 2=190
(pole of order 5); z = =1, =2, ... (simple poles); Y
z = =i, =2, ... (simple poles).
By Problem B (replacing 2 by 7z) we see that: N+ 31— .‘_(IIQJF’D,; .(N+~.})(l-'i)
: 73
Residue at 2 =0 is T .
45
Residue at z=#n (n = =1,%2,...) I8 Fig. 1-17
e .
e v
- -
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lim {z—mn) , = cos =2 coth 7z _. coth nx
2—n | SID 72 28 n3
3 Residue at z=mni {n = *1,%2,...) is
lim 4 F—n1) 7 cotmz cosh r,—zl _. coth nw
z—+ni | ginh =z 28 J n3
Hence by the residue theorem,
7 cotwz coth 7z — T N coth nr
FREEY T T ds = + 4 —_—
’ i %5 45 ﬂgg n3

-
Taking the limit as N— =, we find as in Problem 25 that the integral on the left approaches zero
and the required result follows.

Supplementary Problems

RESIDUES AND THE RESIDUE THEOREM
39, For each of the following functions determine the poles and the residues at the poles:

2 )
@ =2+l <z+1> . (@ FEF, (d) sechz, (e) cotz

2—g—2’ z—1 22
Ans. (@) 2 = —1,8; 1/3,5/3
by 2 =1, 4 {d) z = L2k + 1)=i; (—1)k+1i where £ = 0,*1,+2, ...
{6y z=10;1 {e) 2 = krt; 1 where kb = 0,%1,%2, ...
40, Prove that § gQus’—};—zdz: = i if ¢ is the square with vertices at =2 =24,

c

41, Show that the residue of (escz eschz)/z8 at 2=10 is —1/60.

42. Evaluate § cizsizz around the circle C defined by |z| = b. Ans. 8xi
(s

2+ 4
234 822+ 2z
Ans. Zeros: 2 = *27 Res; atz=01is 2 Res; at @ = —1+4 is —3(1 -39 Res:at z = —1—1

is —4(1+39)

43. Find the zeros and poles of f{z) = and determine the residues at the poles.

44, Evaluate § e~ 1/% gin {1/2) dz where C is the circle |zi = 1. Ans. 2yt
fog
45. Let C be a square bounded by =z = %2, y = *2. Evaluate § (E’E’—}’i/s:ﬁdz. Ans. —972/2
c z

2224+ 5 - N . .
46, Evaluate £(2+2)3 Y dz where C is (@) [z—2¢ = 6, (b} the square with vertices at

1414, 2+4, 2+ 24, 1+ 2

2 + 3singz

47, Evaluate PP dz where € is a square having vertices at 3434, 83— 3¢, —8+34, —3 — 3.
Ans. —6x1
1 il o . . . . .
48, BEvaluate S— —— = dz, t>0 around the square with vertices at 1+4, —1+14, —1—4, 1—4d
2rt J, z(z2 1 1) )

Ans. 1 —cost
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DEFINITE INTEGRALS
: B -
48, Prove that f e 2\/@_.
” da
. e . bw 8
50. Evaluate J; GEF DR+ 42 Ans. bx/28
3 gin 36
51. Evaluate J‘ Smof g Ang, 0
o D — Scosf
o 27
cos 3¢ cos 3¢ 3z
—=27  dg. . h .
52, Ewvalnate 5T Zcosd & 53. Prove that , 5= dcos?s g 3
. * cos ma _ ze ™ {l+m)
5. P t] > s — me¢ “ALTW
4 rove that if m s J{; WL 1P dx i
. . iz . ¥ cosxm
55. (@) Find the residue of RS at z =1 - (b} Evaluate f —_r_(o;2+1)5 dw .
i
6. If o > b2+ c?, prove that f de IS —
g @+ bcosg + csné faf — b2 — ¢2
2T
57. Prove that f cos 36 ¢ = 1857 .
o (5 — dcos gyt 16,384
“ da
58. Evaluate f i Ans, =V 38/6
b dax
59. Evaluate J:_w EFas e Ans..m’2r
“ sin? T
60. Prove that J‘ — g dx —.
1] & 2
6l. Discuss the validity of the following solution to Problem 19. Let uw =

(1 +9sf/2  in the

@ <0 =
result f e~ dy = %\/; to obtain f o4 dy = 11 —iV=/2 from which f cos a2 do =
0 o

j- sinx?de = % =/2 on equating real and imaginary parts.
0

o
cos 27w =T V3
62. Show that ‘f Aril X — g/ VS,

= o3
SUMMATION OF SERIES

o

1 7 w2
—s = 7 - 2y = -
63. Prove that n§1 IR 7 cothm g -csch
& 1 _ 7t = 1 78
64. Prove that (a) ;1 — = o5 {b) nél %= o c
6. Prove that $§ (ZL/Slumsinme _ zSiel

— TERLAE g <
n=t 72+ o? 3 @inhas’ T

1
66. Prove that L ! 1

-2
EprEtETaEt T T
< 1 # |sginh 27a¢ -+ sin 270
. P h = 3
67. Prove that ﬂgm nt + dat 4a? | cosh 2ra cos 2wa
. o 2] 1 772
68, Prove that H:E_m mz,_w R T B = Egcoth e coth =D,
R
e -
R i T ﬁ 2 e
e o . -
w%g_? g %@« o = - .
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MITTAG-LEFFLER’S EXPANSION THEOREM

69.

70,

71,

72.
73.

74,

1 1 1 1
Prove that escz = - — 2z (zg_ﬁz_ gy Sy B S > :
_ 1 3 5
h _ _ — Y
Prove that  sechz i <(1.-/2)2 TR G R | Bt 2 )
1 1 1
P that ¢ = 2 e
(a) FProve tha an z “ ((7/2)2 —=t Brl2)E — 22 + (5/2)2 - 22 + )
. 1,1 1 1 .
(b) Use the result in {«) to show that §+§§+ g§+'7—2+ toE g

Prove the expansions {(a) 2, {b) 4, (¢} 5, (d) 7, (e) 8 on Page 175,

z 1 o111 1
Prove that Rgl 22 + 4k2‘.72 - i IE E + er — 1}'

Prove that l+l+517+7—+"' = T,

MISCELLANEOUS PROBLEMS

75,

76.

7.

78.

79,

80.

81.

82.

83.

84.

85.

Prove that Cauchy’s theorem and integral formulas can be gbtained as special cases of the residue
theorem.

— 42
Prove that the sum of the residues of the function 280422+ 5 ot a1) the poles is 2/3.
328 —8z2+ 10

2r

2iny
If n is a positive integer, prove that f gensl cog (neg — singlds = o
0 mn.

Evaluate § Selfzdz around the cirele C with eguation [z—1] = 4. Ans, 1/24
fos
Prove that under suitably stated eonditions on the function:

@ [Trenas = i, @ f Aemeseds = —of0.
1]

9
27

Show that (a} f cos {cos @) cosh {ging) d¢ = 2=
0

AT
() f eco88 cog (sin @) cosoa dg = 7.
1]

= S CO o

0
Prove that J; Esz;_i xr = 1
[Flint. Integrate ez/(e27= —1) around z rectangle with vertices at 0, B, B+4, ¢ and let K- @]

sin ax_ 1 th%A 1

L)
sin ax 1 T
Prove that j‘; P de = 5o S sinhoa
: . atin o sin pt
If a,p and ¢ are positive constants, prove that - o dz = ~p
* I _ #win2
Prove that j; Ao de = 5q
‘ * sinh ax sin ¢
— < 7, £ eihr B2 2 4 = B e,
It —r<a prove that Jn_w sinh 7z v cosa + ecoshi
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- de n 2
6. T 1 j. e = .
86. Provethat |} %) coshu %
“ Inax =2 f“ (Ina? , _ 352
87. Prove that (a)J; m4+1dx =5 * ) A m4+1da§ = %1 -
2
Hint. Consider il.—n-ﬂ-dz around a semicircle properly indented at 2=20.
(o] 24 + 1
§3. Evaluate _fo ?ﬁ‘#dm. Ans. 1z In2
i hat if <1 b >0, f sinh ax brde = = sin ar )
89, Prove that if |af and X b % cos by dx 5 5omas + cosh or
0. that if —1<p<1, J'segﬂd N S
90. Prove that 3 P , coshz 2 cosh (pr/2)

"In(i+w) g, = T2
; -~ 9L Prove that J; T+ de = 2

92, If ¢>0 and —w/2 <8< /2, prove that

{a) fw g—uzteosB cog (aw? sin Bl do = }Vala cos (B/2).

[t}

il

() J‘w e—@xtcosf gin (ae? sin 8) do IVr/a sin (B/2).

0

03. Prove that csciz = 3 ~(z—_—1‘n—_)—2

n=—a

o4, If « and p are real and such that 0<|pl<1 and 0< la] < =, prove that

J'm P d _ ( ™ ) (sin pa)
g 2 4+ 2ocose T 1 sin pr sin &

1 -
95, Prove that f 3 ds = &'_ [Hint. Consider the con- ¥
0 Ve?—a? YE '

tour of Fig. 7-18.]
96, Prove the residue theorem for multiply-connected regions.

97. ¥Find sufficient conditiong under which the residue theorem
(Problem 2} is valid if € encloses infinitely many isolated
gingularities. :

98. Let C be a circle with equation |z} = 4. Determine the

value of the integral
§ 22 cscl dz
(] K4

if it exists. Fig. 7-18

99, Give an analytical proof that sine = 94/r for 0=08=w/2 ¢
[Hint. Consider the derivative of (sin#)/d, showing that it is a decreasing function.]

-]
100. Prove that j' ¥ gy ==
o sinh 7%

101. Verify that the integral around T' in equation (2) of Problem 22 goes to zero as R— e,

it
rine2 i |7l

A
-

T
102. (¢) If r is real, prove that J" In(l — 2rcosé + 72} de
0

/%
(b} Use the result in (@) to evaluate J; Insing de (see Problem 23).

# i e e o

i a1 & ""/"'“%“&?ﬁ“v'z» L e

- . -
- - o -
= . . -
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103. Complete the proof of Case 2 in Problem 25,

L] p—
104. If 0 < p <1, prove that f :_Pl dr = = cotpr in the Cauchy principal value sense.
0
o 1 . fr\/§ (r\/ﬁ)
105. Show that ugwm = 3~ tanh 5

- 166. Verify that as N - = the integral on the left of (1) in Problem 29 goes to zero,

i 1.1 1 _ Byb
13 35+55 75+ T 15367

107. Prove that

108. Prove the results given on Page 175 for (0) f<2n2+ 1> and {(b) = (—1f (%’%&)

< 1\t S
109, If = = ¢ = 7, prove that > %M = &%ﬂ.

’ n=1

110. Prove that the funetion cotz — 1/z of Problem 34 is bounded on the circles Cy.

111. Show that the second, fourth and sixth integrals in equation (3} of Problem 36 approach zero as ¢ 0

and B - =,
1 1 1 T
112, P that — — e = =,
rove that  — o To/9) B cosh(8772) | B cosh (57/2) 8
1 g+ oot 1 .
113. Prove that 5— f & dz = —— where o and t are any positive constants.
2ri g \/E Vvt
- th 19=7
114, Prove that LEATT = .
rove that 3 7 56,700
115, Prove that _de = 4;7.

o (®*+1) coshra

1 _ 1 + 1 — . o= I
13 sinh 7 23 ginh 2 33 sinhi 3« 360

116. Prove that

117. Prove that if a and t are any positive constants,

a+iw .
sin ¢
L eteot Tz dz =

2 a—iw




