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Chapter 1

The material contained in the following pages is based on of the lectures given by Prof.
T. Aktosun during the period 01/02/2010-17/02/2010 at the University of Cagliari in the
context of the project “Program Visiting Professor,” supported by Regione Autonoma
della Sardegna.

Lecture 1: Introduction
In this lecture my main goal is the introduction of the Inverse Scattering Method

(IST), i.e. a powerful method which allows us to solve some integrable nonlinear partial
differential equation (NPDEs). In order to make clear this method, I start recalling the
basic terminology and the history related to the integrability . The following items are
analyzed:

• Nonlinear PDEs arising in description of water waves starting from 1850s;

• Some of these equations are integrable and some are not. We are only interested in
the integrable ones;

• Scaling in DE, for mathematical analysis.
For example, let us consider the Schrödinger equation
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2m
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where ~ = h
2π = 1.05 × 10−27 erg-sec is the reduced Planck constant and m =
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we get the “usual” Schrödinger equation: −∇2
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.

Another illustrative example is the Korteweg de-Vries (KdV) equation. In regard to
physical applications this equation is written as:
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Usually the mathematicians rescaling this equation in such a way that it is appear
in the simplified form

ut − 6uux + ux + uxxx = 0,

where u(x, t) = −η(x, t).
The previous examples show the advantage of the rescaling: the coefficients in the

3



rescaled equation will be simple. Normally scaling involves multiplying those variable
by “positive” constants, but the multiplication by “negative” constants is accepted
as well;

• No general theory to solve NPDEs exists, each must be studied separately;

• Interest in solving NPDEs, due to their phisical importance;

• Finding “exact solutions” in terms of elementary functions: such solutions may be
used as test functions to test numerical methods being developed;

• Certain NPDEs (the initial value problem (IVP) for certain NPDEs) seem to be
solvable by the so-called IST (proposed for the first time in 1967 by Gardner, Greene,
Kruskal, and Miura) and such equations are known as integrable;

• There are two types of NPDEs: the integrable NPDE and non integrable NPDE. It
is natural to ask what determines the integrability. The answer is not yet known, but
we emphasize various common properties of “integrable” NPDEs help us to better
understand integrability criteria;

• Conservation law: some integrable NPDE, can be written in the form

( )t +∇ · ( ) = 0.

The term “conservation law” is appropriate because integrating the last equation

y [
(ξ)t +∇ · (~F )

]
=

d

dt

y
(ξ) +

{
~F · d~a = 0

and taking into account that as the surface goes to infinity the second term in the

last equation may vanish, we get
d

dt

t
(ξ) = 0, implying the conserved quantities.

Many integrable NPDE have many conserved quantities.

History related to integrability
1834, Russell’s observation of a solitary water wave at Union Canal;
1844, Russell’s report to the British for AS;
1877, Boussinesq’s book includes the NPDE, later called the KdV equation;
1895, de-Vries PhD thesis, Korteweg de-Vries paper which contains the KdV equation and

its special solution in the form
1

cosh2 ;

1954, Fermi-Pasta-Ulam puzzle (the object studied in this paper was related 64 masses
interconnected with nonlinear springs and the analysis of the equipartition to the energy);
1965, Zabusky and Kruskal in your publication coined the phrase “soliton”, i.e. solutions
to the KdV equation with nonlinear interactions, and explaining the solution to the Fermi-
Pasta-Ulam puzzle based on a numerical solution to KdV equation;
1967, Gardner, Green, Kruskal, Miura solved the initial value problem for KdV by Inverse
Scattering transform (IST);
1968, Lax’s method to derive integrable NPDE;
1972, Zakharov-Shabat used IST to solve nonlinear Schrödinger equation (NLS);
1972, Wadati used IST to solve the modified KdV equation (mKdV) via IST (Wadati’s
work was one-page long);
1973 Ablowitz, Kaupp, Newell, Segur (AKNS) used the IST to solve the sine-Gordon
equation (SG).



Example of integrable NPDEs
There are two types of integrable NPDEs:

1. KdV-like equation: contain the KdV equation and higher order hierarchies;

2. NLS-like equation: contain the NLS equation, the mKdV equation, the SG equation
and higher order hierarchies.

This classification is related to the corresponding linear ODE. For example the NLS, mKdV
and SG equation are all related to the first order linear system{

ξ
′

= −iλξ + qη

η
′

= vξ + iλη

for various choices of v in relation to u (e.g. q = u, v = −u∗ give us the focusing NLS,

choosing q = u, v = u∗ we have the defocusing NLS, instead taking q = −ux
2
, v =

ux
2

we

get the SG equation). In the Table 1 -at the end of this section- the named integrable
equation and their ODE associated are displayed.

The name NLS arises because the linear part of this equation coincide with the
Schrödinger equation. It is also important to explain the difference between “focusing”
and “defocusing” NLS equation. In the focusing case the nonlinearity tries to focus the
solution, the dispersion tries to broaden the solution. Then these two effects work against
each other, and, in case of exact balance, we get a soliton solution. In the defocusing
case nonlinearity and dispersion both work to broaden the solutions, hence in general we
cannot expect soliton solutions in this case.

Basic idea behind IST
To solve the initial value problem for an integrable NPDE do the following

given u(x, 0)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−−−→ S(λ, 0)yIST

time evolution of
scattering data

y
u(x, t) ←−−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

S(λ, t)

More precisely, we have to do the following step:

1. Associate the NPDE with a LODE;

2. Associate the initial value u(x, 0) for NPDE with the potential (i.e. a coefficient
term) in the LODE;

3. Exploit the 1-1 correspondence between the potential u(x, 0) in the LODE and the
scattering data S(λ, 0), which is related to the spatial asymptotics (as x → +∞
or x → −∞) of a special “scattering solution” Ψ(λ, x, 0). Let us remark the basic
idea: there should be 1-1 correspondence between u(x, 0) and S(λ, 0). Usually the
parameter count is a good guide to guess the 1-1 association. For example, one single
variable x in u(x, 0) correspond to one single parameter λ in S(λ, 0);

4. “Time evolution” of the scattering data from S(λ, 0) to S(λ, t), usually by multi-
plying a single phase factor, e.g. e8ik

3t for KdV equation, e−4iλ
2t for NLS equation.

This will be studied in more detail for each specific integrable NPDE;



5. Exploit the 1-1 correspondence for eaach fixed t between u(x, t) and S(λ, t). The
determination S(λ, t) 7→ u(x, t) is known as solving the inverse problem for the
corresponding LODE at time t. (The determination u(λ, t) 7→ S(λ, t) correspond to
solving the direct problem for the LODE).

6. It is amazing and surprising that u(x, t) solves the NPDE and lim
t→0

u(x, t) corresponds

to the initial value u(x, 0).



A common attack to look for special solutions to NPDE
Consider a “wave” solution in the form u = f(x− ct) and try to determine the wavespeed
c and the profile function f . One advantage of this is that f satisfies a (nonlinear) ODE
even though u must satisfy a NPDE. This simplification at times works, e.g. for the KdV

equation where f ∼ 1

cosh2 . One can try, e.g. u(x, t) = α
1

cosh2(βx+ γt+ ε)
for some

constant parameters α, β, γ, ε. Now one can try to determine the relationships among
such parameters to get a solution to KdV equation.

Lecture 2 and 3
We can see the IST as a method which associate an integrable NPDE for u(x, t) to

a linear ODE LΨ = λΨ with a spectral parameter λ where u(x, t) appear as a coeffi-
cient in the linear differential operator. It is necessary to analyze the spectrum of L and
determine a scattering-spectral data set for L that uniquely determines L. Various mathe-
matical problems should be investigated. For example, what is the domain of L (i.e. what
function space does L act on?). Depending on u(x, t), L may have continuous spectrum,
discrete spectrum, singular spectrum, etc. By putting restrictions on the function class
to which u(x, t) belongs to, the spectrum of L can be made more manageable (e.g. the
“spectral singularities” or discrete eigenvalues imbedded in the continuous spectrum can
be avoided by using “nicer” u(x, t)). Now we can reformulate the basic idea of the IST as
follows: In order to solve the initial value problem for the integrable NPDE starting from
u(x, 0), analyze the spectral scattering properties of the linear operator L at t = 0. Or
equivalently, analyze the “standard” and “generalized” eigenvectors (By standard eigen-
values and standard eigenvectors we mean eigenvectors of “finite length”, e.g. ‖Ψ‖L2 is
finite or ‖Ψ‖L1 is finite). Such standard eigenvectors correspond to bound-states of the lin-
ear operator L. Generalized eigenvectors correspond to “bounded” solutions to LΨ = λΨ
and in the physics literature they are usually known as the scattering states. If u(x, t) for
each fixed “t” belongs to a “nice” class (such as u(·, t) ∈ L1(R) for the 1-D Schrödinger

generator L = − d2

dx2
+ u(x, t)) then it can be shown that the spectrum of L consists of all

λ > 0 and at most a finite number of dicrete (negative) λ values. The case λ = 0 must be
analyzed separately because in that case it may or may not be possible to have a bounded
solution; for example in the so-called exceptional case there is a bounded solution but in
the generic case the two linearly indepedent solutions at λ = 0 are both unbounded in x.
So the scheme of IST is represented in the following diagram:

given u(x, 0)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−−−→ L|t=0yIST

time evolution of
scattering data

y
u(x, t) ←−−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

L(t)

Let us discuss this example:
Let us consider L = −D2+u(x, t) where L : L2(R) 7→ L2(R). The generalized eigenvectors
(two linearly independent Jost solutions) occurring for λ > 0 (λ = k2) and their asymptotic
behaviour is as below

fl(k, x, t) ∼ eikx, x→ +∞
fr(k, x, t) ∼ e−ikx, x→ −∞.

If u(·, t) ∈ L1
1(R), i.e.

∫∞
−∞ dx (1 + |x|) |u(x, t)| is finite, then fl(·, x, t) and fr(·, x, t) have

analytic extensions for k ∈ R to k ∈ C+ with asymptotics in k as fl(·, x, t) ∼ eikx and
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fr(·, x, t) ∼ e−ikx as k →∞ in C+
, where C+

:= C+∪R. At most a finite number of bound
states occurs when λ ∈ {λ1, . . . , λn} for λj < 0. It is convenient to use kj =

√
λj = iκj and

use fl(iκj , x, t) or fr(iκj , x, t) as eigenvectors. It is important to remark that fl(iκj , x, t)
and fr(iκj , x, t) are linearly dependent as functions of x, i.e. there is a “dependency
constant γj(t)” that depends on t but not on x such that fl(iκj , x, t) = γj(t)fr(iκj , x, t).
How to solve u(x, 0) −→ S(λ, 0). Simply solve the linear ODE LΨ = λΨ and obtain
standard and generalized eigenvalues and eigenvectors. Then, from the spatial asymptotics
of those eigenvectors construct the spatial-scattering data that uniquely correspond to
u(x, 0).
How to solve S(λ, 0) −→ S(λ, t). This time evolution is expected to be rather simple.
Once the standard and generalized eigenvectors are known as function of t, then we can
analyze for Ψ(λ, x, 0) −→ Ψ(λ, x, t) with the help of the Lax method or the AKNS method.
In general the time evolution of each Jost function is fairly complicated.
How to solve S(λ, t) −→ u(λ, t). This is the final step in the IST and it is known
as inverse scattering problem. Such an inverse scattering problem can be solved by the
Marchenko method or by the Gel’fand-Levitan method or by some others methods. The
Marchenko method consists of the solution to a suitable integral equation which involves
an integration on the semi-infinite interval (x,∞) and whose kernel is related to the Fourier
transform of the scattering data. The solution of the Marchenko integral equation is related
to the potential u(x, t). The Gel’fand-Levitan method presents some little differences. In
order to obtain the potential it is necessary to solve the so-called Gel’fand-Levitan integral
equation which involves an integration on the finite interval (0, x) and its kernel is related
to the Fourier trasform of the spectral measure associated with the LODE.

Many authors try to solve the inverse scattering problem using the so-called Riemann-
Hilbert problem. Let us see in which consists this problem. For the sake of convenience I
introduce this problem in relation to the Schrödinger equation. Then we consider

(− d2

dx2
+ u(x))Ψ = k2Ψ,

and recall that the behavior of the Jost is as follows

fl(k, x) ∼ eikx, asx→ +∞, fl(k, x) ∼ 1

T
eikx +

L

T
e−ikx, asx→ −∞

fr(k, x) ∼ e−ikx, asx→ −∞, fr(k, x) ∼ 1

T
e−ikx +

R

T
eikx, asx→ +∞

It is well known in literature that fl(·, x) has an analytic extension to Imk > 0 and it is
continuous to Imk ≥ 0. Now it is possible to define functions gl(k, x) and gr(k, x) as below(

gl(k, x)
gr(k, x)

)
:=

(
fl(−k, x)
fr(−k, x)

)
and the domain of gl(·, x) and gr(·, x) is Imk ≤ 0. In the common k-domain of fl(k, x),
fr(k, x), gl(k, x), gr(k, x) the following equation hold

gl(k, x) = a(k)fl(k, x) + b(k)fr(k, x), k ∈ R,
gr(k, x) = c(k)fl(k, x) + d(k)fr(k, x), k ∈ R.

Exploiting the asymptotic behavior of fl/r(k, x) it is possible to determine the coefficients
a(k), b(k), c(k), and d(k) in terms of the so-called scattering coefficients T (transmission
coefficient), L and R (reflection coefficients from the left and right, respectively):

gl(k, x) = T (k)fl(k, x)−R(k)fr(k, x)

gr(k, x) = −L(k)fl(k, x) + T (k)fr(k, x).



The above equations relating functions analytic in k ∈ C+ and analytic in C− form a
Riemann-Hilbert problem. More generally, a Riemann-Hilbert problem can be introduced
as follows: Let us consider two functions f+(k) and f−(k) being f+(k) (f−(k)) analytic for
|z| > 1 (|z| < 1) and continuous for |z| ≥ 1 (|z| ≤ 1) and suppose we specify the behavior
of f+(k) as k →∞. In the common domain of f+(k), f−(k), i.e, |z| = 1, we may have, e.g.

f+(k) = S(k)f−(k).

Solving the Riemann-Hilbert problem for fl(k) and fr(k) is equivalent to finding S(k) −→
fl/r(k, x) and hence once fl(k) or fr(k) is determined, we can recover the potential u(x)
as

u(x) =
k2fl(k, x) + f

′′
l (k, x)

fl(k, x)
.

Now let us discuss the following simple example: Suppose that S(k) =
k + i

k − i
. The

Riemann-Hilbert problem reduces to the equation f+(k) =
k + i

k − i
f−(k) where f+(k) (re-

spectively, f−(k)) is analytic in Imk > 0 (Imk < 0) and f+(k)→ 1 as k →∞ in Imk > 0.
We can write

(k − i)f+(k) = (k + i)f−(k) = F (k).

Since the common domain of f+(k) and f−(k) is the real axis, the function f+(k) is defined
for k ∈ R, but admit an analytic extension on the upper plane C+. Then (k − i)f+(k)
has an analytic extension in C+. To the other hand, using similar arguments, we can
conclude that (k+ i)f−(k) has an analytic extension on C−. As a result the function F (k)
is an entire function in the form F (k) = c1k + c0(k). Taking into account the condition
f+(k)→ 1 as k →∞ we get

f+(k) =
k + c0(k)

k − i

f−(k) =
1 + c0(k)

k + i
.



Lectures 4, 5, 6
In these lectures I introduce the three main methods, i.e, Lax method, AKNS method and
the alternative Lax method, actually used in order to establish the integrability of a given
NPDE. These methods allow help to determine an integrable NPDE corresponding to a
given LODE.

It is a very difficult task to determine if a NPDE is integrable or not (in the sense that
the IST method is applicable or not). On the other hand, if we know that a LODE is
associated with a NPDE, we can state its integrability and use one of these three methods
to determine the corresponding NPDE.

Lax method
The first method that I will discuss is known as the Lax method (proposed the first time
by P. Lax in 1968). This method consists of the introduction of two linear operators L
and A such that {

LΨ = λΨ, spatial evolution of Ψ,

Ψt = AΨ, time evolution of Ψ,

where Ψ depends on λ, x, t. We can reformulate the Lax method as follows: Given L with
LΨ = λΨ, find a linear operator A such that Ψt −AΨ satisfies

L(Ψt −AΨ) = λ(Ψt −AΨ).

The last equation is equivalent to LΨt − LAΨ = λΨt − AλΨ, which can be written as
(LΨ)t − LtΨ − LAΨ = λΨt − AλΨ and taking into account that LΨt = λΨt and λt = 0
we get (Lt + LA − AL)Ψ = 0, which implies Lt + LA − AL = 0. Even though L and
A are differential operators, we require that Lt + LA − AL should not be a differential
operator but it should be a multiplication operator. Note that Lt + LA − AL does not
contain λ (this is a consequence of the fact that L and A are linear differential operators
not containing λ). Then, the Lax method can be described as follows: Given L, find A
such that

Lt + LA−AL = 0, (1.0.1)

which will yield the NPDE.

Examples. Let us illustrate this method in several important cases.

• Let us consider the KdV equation ut − 6uux + uxxx = 0. We will prove that this
equation is integrable. In order to obtain this result, we consider the linear ODE,
which is the Schrödinger equation

− d2

dx2
Ψ + u(x, t)Ψ = λΨ.

This equation can be written as LΨ = λΨ where

L = − d2

dx2
+ u(x, t). (1.0.2)

Let us try to determine the associated operator A by assuming that it has the form

A = α3∂
3
x + α2∂

2
x + α1∂x + α0, (1.0.3)



where the coefficients αj with j = 0, 1, 2, 3 may depend on x and t, but no on the
spectral parameter λ. Using (1.0.2) and (1.0.3) in (1.0.1), we obtain

( )∂5x + ( )∂4x + ( )∂3x + ( )∂2x + ( )∂x + ( ) = 0. (1.0.4)

Because of the operator Lt + LA−AL is a multiplication operator, each coefficient
denoted by ( ) must vanish. The coefficient of ∂5x vanishes automatically. Setting the
coefficients of ∂jx to zero for j = 4, 3, 2, 1, we get

α3 = c1, α2 = c2, α1 = c3 −
3

2
c1u, α0 = c4 −

3

4
c1ux − c2u,

with c1, c2, c3, and c4 denoting arbitrary constants. Making the above choices and
putting c1 = −4 and c3 = 0, (1.0.4) becomes ut − 6uux + uxxx = 0, i.e. the KdV
equation. Then we can state that the KdV equation arises from the compatibility

condition (1.0.1), choosing L = − d2

dx2
+ u(x, t) and A = −4∂3x + 6u∂x + 3ux.

• Let us consider the first-order system

d

dx

[
ξ
η

]
=

[
−iλ 1

2ux
−1

2ux iλ

] [
ξ
η

]
.

This system suggests to choose L and A in the following form

L =

 i∂x
i

2
ux

i

2
ux −i∂x

 ,
A =

1

8

[
C∂−1x C − S∂−1x S −S∂−1x C − C∂−1x S
S∂−1x C + C∂−1x S C∂−1x C − S∂−1x S

]
,

where

Cf = cos
(u

2

)
· f, Sf = cos

(u
2

)
· f,

and

∂−1x =
1

2

(∫ x

−∞
−
∫ +∞

x

)
, ∂−1x f(x, t) =

1

2

(∫ x

−∞
−
∫ +∞

x

)
ds f(s, t).

If one imposes the condition (1.0.1), then one obtains the corresponding NPDE as
uxt = sin(u), i.e. the sine-Gordon equation.

• Let us consider the Dym equation:

ut = u3uxxx.

This equation is integrable because arises from (1.0.1) when the Lax pair L and A
are chosen as

L = u2
d2

dx2
, A = 4u3∂3x + 6u2ux∂

2
x.

• Let us introduce the Degasperis-Procesi equation:

ut − uxxt + 2κux + 4uux = 3uxuxx + uuxxx,



where κ is a constant. Putting m := u− uxx and taking L and A as

L =
1

m+ 2
3k

(∂3x − ∂x), A = ∂2x(∂3x − ∂x)−1(m+
2

3
k)− u∂x + ux,

it is straightforward to see that the Degasperis-Procesi equation is integrable because
it derived as in from (1.0.1) with the above specified choices for L and A.

• Let us now establish the integrability for another important equation, i.e. the
Kadomtsev-Petviashvili (KPI) equation:

(ut − 6uux + uxxx)x = −3uyy,

where u is a function depending on x, y, t. It can be seen that the KPI equation
can be written as

ut − 6uux + uxxx = −3∂−1x uyy,

with ∂−1x :=
1

2

(∫ x
−∞+

∫ x
+∞

)
, i.e.

(∂−1x f)(x, y, t) :=
1

2

(∫ x

−∞
+

∫ x

+∞

)
ds f(s, y, t).

Choosing L and A, respectively, as

L = −∂x − i∂y + u(x, y, t), A = −4∂3x + 6u∂x + 3ux − 3i∂−1x uy,

and imposing (1.0.1), we find

( )∂5x + ( )∂4x + ( )∂3x + ( )∂2x + ( )∂x + (ut − 6uux + uxxx + 3∂−1x uyy) = 0.

Now we observe that each coefficient denoted by ( ) automatically vanishes, and as
a result the last equation give us

ut − 6uux + uxxx + 3∂−1x uyy = 0,

i.e. the KPI equation.

• All the equations considered until now have only one potential function u(x, t). Now
let us introduce an example in which two potentials u and v are involved:{

iqt + qxx − 2q2r = 0,

irt + rxx − 2qr2 = 0.

Choosing the relationship between q and r we obtain various integrable equations

from the previous system. For example putting q = −1

2
ux, r =

1

2
ux we obtain

the sine-Gordon equation, choosing q = − ∓ r∗ = u we obtain the NLS equation
iut + uxx ± 2|u|2u = 0. Another interesting choice is q = ∓r which leads us to the
modified KdV equation ut ± 6u2ux + uxxx = 0. Let us develope the Lax method for
the NLS equation. It is well known, as shown by Zakharov and Shabat in 1972 that
this equation is related to the following linear system of differential equation

d

dx

[
ξ
η

]
=

[
−iλ u
−u∗ iλ

] [
ξ
η

]
.



The LODE associated with the NLS suggests to choose L as

L =

[
i ddx −iu
−iu∗ −i ddx

]
,

where the dependence on t of L is confined only to the potential u in such a way
that

Lt =

[
0 −iut
−iu∗t 0

]
.

Now we look for an operator A in the following form:

A =

[
a2

d2

dx2
+ a1

d
dx + a0 b2

d2

dx2
+ b1

d
dx + b0

c2
d2

dx2
+ c1

d
dx + c0 d2

d2

dx2
+ d1

d
dx + d0

]
,

where the coefficients ai, bi, ci, di for i = 0, 1, 2 do not depend on λ but they may

depend on x and t. Now, putting D :=
d

dx
and recalling that the operator Df can

be written as Df = f ′ + fD, we impose the condition

Lt + LA−AL =

[
0 0
0 0

]
,

after some straightforward calculations, and with the choices

a2 = −d2 = 2i, a1 = d1 = 0, a0 = −d0 = i|u|2, b2 = c2 = 0,

b1 = −2iu, b0 = −iux, c1 = −2iu∗, b0 = −iu∗x,

we obtain

Lt + LA−AL =

[
0 iut + uxx + 2|u|2u

iu∗t + u∗xx + 2|u|2u∗ 0

]
.

As a result the (1.0.1) is satisfied if one chooses

L =

[
iD −iu
−iu∗ −iD

]
, A =

[
2iD2 + i|u|2 −2iuD − iux
−2iu∗D − iu∗x −2iD2 − i|u|2

]
,

and requires that

iut + uxx + 2|u|2u = 0, iu∗t + u∗xx + 2|u|2u∗ = 0,

i.e. the NLS equation holds.

• The final NPDE whose integrability I will demonstrate by the Lax method is the
so-called Jaulent equation:

−Ψxx + uΨ + kvΨ = k2Ψ,

where k is the spectral parameter. Putting

Φ :=

[
Ψ
kΨ

]
,



we can introduce the linear operator L as

L =

[
0 1

∂2x + u v

]
,

in such a way that we rewrite the Jaulent equation in the form LΦ = kΦ as[
0 1

∂2x + u v

] [
Ψ
kΨ

]
= k

[
Ψ
kΨ

]
.

Now we have to determine the operator A in such a way that (1.0.1), i.e. Lt +LA−
AL = 0 holds. It is possible to prove that A must be taken as[
−4∂3x + (6u+ 3

2v
2)∂x + 3ux − 3

2vvx 6v∂x + 3vx
−6v∂3x − 3vx∂

2
x + 6uxv + 3uvx −4∂3x + (6u+ 15

2 v
2)∂x + 3ux − 15

2 vvx

]
.

For the sake of brevity we have specified the operator A, which yields the NPDE
integrable associated with the Jaulent equation as

ut − 6uux + uxxx +
3

2
vvxxx −

9

2
vxvxx − 6uvvx −

3

2
uxv

2 = 0,

vt + vxxx − 6uvx − 6uxv −
15

2
v2vx = 0.

AKNS method
Another powerful method which permits to determine an integrable NPDE corresponding
to a given LODE is the AKNS method. This method was used the first time by Ablowitz,
Kaup, Newell, and Segur in 1973 in order to establish the integrability to the sine-Gordon
equation. The basic idea behind this method is the following: write LΨ = λΨ as a
first-order system in the form θx = Xθ and find an operator T such that θt − Tθ satisfies

(θt − Tθ)x = X (θt − Tθ) ,

(the operators X and T are said to form an AKNS pair). From the last equation we get

θtx − Txθ − Tθx = Xθt −XTθ. (1.0.5)

Taking into account that θtx = (θx)t = (Xθ)t = Xtθ + Xθt, the equation (1.0.6) can be
written as

Xtθ +Xθt − Txθ − TXθ = Xθt −XTθ,
then after suitable simplications we arrive at the equation

(Xt − Tx +XT − TX) θ = 0.

Since we choose X and T as multiplication operators (not differential operator), the op-
erator Xt − Tx +XT − TX is a multiplication operator, i.e. is not a differential operator.
This implies

Xt − Tx +XT − TX = 0, (1.0.6)

where the operator X contains the spectral parameter λ, and hence T also depend on
λ as well. Summarizing the AKNS method can be illustrated as follows: Given X with
θx = Xθ, find T such that (1.0.6) is satisfied. The NPDE equation coming from to (1.0.6)
is integrable; i.e., this equation is solvable with the help of the solutions to the direct and
inverse scattering problems for the linear systems θx = Xθ. Now I will discuss several
examples in order to illustrate this method.

Examples.



• Let us consider the KdV equation: ut − 6uux + uxxx = 0. It is well-known that the
LODE corresponding to this equation is the Schrödinger equation, i.e. −Ψxx+uΨ =
k2Ψ. Putting

θ =

[
Ψx

Ψ

]
,

we can express the Schrödinger equation as θx = Xθ, where

X =

[
0 u− λ
1 0

]
,

with λ := k2. Now we are interested in finding an operator T such that Xt − Tx +
XT − TX = 0 yields the KdV equation. We look for T in the following form:

T =

[
a2λ

2 + a1λ+ a0 b2λ
2 + b1λ+ b0

c2λ
2 + c1λ+ c0 d2λ

2 + d1λ+ d0

]
,

where the coefficients ai, bi, ci, di for i = 0, 1, 2 depend on x, t but do not depend on
λ. Imposing (1.0.6)and using a prime to denote the x-derivative, we get[

0 ut
0 0

]
−
[
a
′
2λ

2 + a′1λ+ a′0 b′2λ
2 + b′1λ+ b′0

c′2λ
2 + c′1λ+ c′0 d′2λ

2 + d′1λ+ d′0

]
+

[
0 u− λ
1 0

] [
a2λ

2 + a1λ+ a0 b2λ
2 + b1λ+ b0

c2λ
2 + c1λ+ c0 d2λ

2 + d1λ+ d0

]
−
[
a2λ

2 + a1λ+ a0 b2λ
2 + b1λ+ b0

c2λ
2 + c1λ+ c0 d2λ

2 + d1λ+ d0

] [
0 u− λ
1 0

]
=

[
0 0
0 0

]
.

Choosing the coefficients ai, bi, ci, di for i = 0, 1, 2 in such a way that

T =

[
ux −4λ2 + 2λu+ 2u2 − uxx

4λ+ 2u −ux

]
,

we can write the compatibility condition (1.0.6) as[
0 ut
0 0

]
−
[
−uxx 2λux + 4uux − uxxx
2ux −uxx

]
+

[
0 u− λ
1 0

] [
ux −4λ2 + 2λu+ 2u2 − uxx

4λ+ 2u −ux

]
−
[

ux −4λ2 + 2λu+ 2u2 − uxx
4λ+ 2u −ux

] [
0 u− λ
1 0

]
=

[
0 0
0 0

]
.

Finally, after straigtforward calculations and displaying the (1, 1), (1, 2), and (2, 2)
entries in the previous matrix equation, we get

−uxx + (u− λ)(4λ+ 2u) ut − 2λux
+4λ2 − 2λu− 2u2 + uxx −4uux + uxxx − 2(u− λ)ux

2ux + ux + ux uxx − (u− λ)(4λ+ 2u)
−4λ2 + 2λu+ 2u2 − uxx


=

 0 0

0 0

 ,



or equivalently [
0 ut − 6uux + uxxx
0 0

]
=

[
0 0
0 0

]
.

Then the compatibility condition (1.0.6) holds if the KdV equation is satisfied.

• Let us consider the first-order system in the following form, i.e.

d

dx

[
ξ
η

]
=

[
−iλ 1

2ux
−1

2ux iλ

] [
ξ
η

]
.

Let us choose X and T as

X =

[
−iλ −1

2ux
1

2
ux iλ

]
, T =

i

4λ

[
cosu sinu
sinu − cosu

]
,

in such a way that the spatial evolution is given by θx = Xθ and the temporal
evolution is described by θt = Tθ, with

θ =

[
ξ
η

]
.

It is possible to prove that the compatibility condition (1.0.6) holds if the sine-Gordon
equation, uxt = sinu is satisfied.

• The integrability of the Dym equation ut = u3uxxx can be established also with the
AKNS method. It is sufficient make the following choices for the AKNS pair:

X =

[
0 λ

u2

1 0

]
, T =

[
2λux 4λ

2

u − 2λuxx
4λu −2λux

]
,

in such a way that the spatial and temporal evolutions are described, respectively,
by θx = Xθ and θt = Tθ, where

θ =

[
Ψx

Ψ

]
.

If one tries to impose the compatibility condition Xt− Tx +Xt− TX = 0, one finds
the Dym equation and this proves its integrability.

• Let us consider the Degasperis-Procesi equation

ut − uxxt + 2κux + 4uux = 3uxuxx + uuxxx,

where κ is a constant. Putting

m := u− uxx, θ =

 Ψxx

Ψx

Ψ

 ,
and

X =

 0 1 (m+ 2
3k)λ

1 0 0
0 1 0

 , T =

 1
λ − ux

2
3k ux − λu(m+ 2

3k)
−u 1

λ u+ 2
3k

1
λ −u ux

 ,
we know the spatial and temporal evolutions θx = Xθ and θt = Tθ. Direct calcula-
tions show that if one imposes the compatibility condition Xt − Tx +Xt− TX = 0,
the Degasperis-Procesi equation is obtained, which implies its integrability.



• Let us now establish the integrability to the KPI equation:

(ut − 6uux + uxxx)x = −3uyy,

where u is a function depending on x, y, t. We have already observed that this
equation can be written as

ut − 6uux + uxxx = −3∂−1x uyy.

In order to verify its integrability by using the AKNS method we use the AKNS pair
X and T as

X = −1

i
∂2x +

u− λ
i

, T = −4∂3x + 6u∂x + ∂x − 3i∂−1x uy.

If we impose the compatibility condition (1.0.6) we get the KPI equation.

• Let us analyze the NLS equation iut + uxx + 2|u|2u = 0. It is well known that the
LODE corresponding to this NPDE is the Zakharov-Shabat system

d

dx

[
ξ
η

]
=

[
−iλ u
−u∗ iλ

] [
ξ
η

]
.

Writing this system in the form θx = Xθ where we have defined

X =

[
−iλ u(x, t)

−u∗(x, t) iλ

]
,

we obtain the matrix operator T as

T =

[
−2iλ2 + i|u|2 2λu+ iux
−2λu∗ + iu∗x 2iλ2 − i|u|2

]
,

and the compatibility condition (1.0.6) yields the NLS equation.

Alternative Lax method method
Finally, I describe an Alternative Lax method which allows to derive an integrable NPDE
corresponding to a given LODE. We can illustrate this method as follows: Suppose we
write the LODE as

LΨ = λΨ,

where the linear differential operator contains the highest x-derivative ∂nx for some n, and
suppose we know the time evolution of the solution of the previous equation is described
by

Ψt = BΨ,

where B is usually a linear differential operator in the spatial coordinate x. The integrable
NPDE corresponding to the LODE is obtained by imposing the compatibility condition

∂t∂
n
xΨ = ∂nx∂tΨ, (1.0.7)

where the left side is obtained by taking the time derivative of LΨ = λΨ and right side
is obtained by taking the n-th derivative in x of Ψt = BΨ. I explain the method by
considering several examples.

Examples.



• The KdV equation is obtained from

(− d2

dx2
+ u(x, t))Ψ = λΨ, Ψt = (4λ+ 2u)Ψx − uxΨ

by imposing the compatibility condition ∂t∂
2
xΨ = ∂2x∂tΨ.

In fact, writing the spatial and temporal evolutions given above in the form

Ψxx = (u− λ)Ψ,

Ψt = (4λ+ 2u)Ψx − uxΨ,

we get

Ψxxt = utΨ + (u− λ)Ψt,

Ψtxx = uxxΨx + uxΨxx + (4uxu− 2λux)Ψ + (2u2 − 2λu− 4λ2)Ψx

− uxxxΨ− uxxΨx,

where we need to express the right hand sides in terms of Ψ and Ψx alone. The
compatibility condition Ψtxx = Ψxxt implies that

[ut − ux(u− λ)] Ψ + (2λu+ 2u2 − 4λ2)Ψx =

[ux(u− λ) + 4uxu− 2λux − uxxx] Ψ + (uxx + 2λu+ 2u2 − 4λ2 − uxx)Ψx.

The coefficients of Ψ and Ψx, respectively, on both sides should match, yielding

ut − 6uux + uxxx = 0,

i.e. the Kdv equation holds.

• The sine-Gordon equation
uxt = sinu,

can be obtained as the compatibility condition[
ξ
η

]
xt

=

[
ξ
η

]
tx

,

from the system [
ξ
η

]
x

=

[
−iλ −ux

2
ux
2 iλ

] [
ξ
η

]
,[

ξ
η

]
t

=
i

4λ

[
cosu sinu
sinu cosu

] [
ξ
η

]
.

• The NLS equation
iut + uxx ± 2|u|2u = 0,

can be obtained as the compatibility condition[
ξ
η

]
xt

=

[
ξ
η

]
tx

,

from the system [
ξ
η

]
x

=

[
−iλ u
∓u∗ iλ

] [
ξ
η

]
,[

ξ
η

]
t

=

[
−2iλ2 ± i|u|2 2λu+ iux
∓2λu∗ ± iu∗x 2iλ2 ∓ i|u|2

] [
ξ
η

]
.



• The Dym equation
ut = u3uxxx,

can be obtained as the compatibility condition Ψxxt = Ψtxx from the system{
Ψxx = λ

u(x,t)2
Ψ

Ψt = 4λu(x, t)Ψx − 2λux(x, t)Ψ.

• The Degasperis-Procesi equation

ut − uxxt + 2κux + 4uux = 3uxuxx + uuxxx,

where κ is a constant, can be obtained as the compatibility condition Ψxxxt = Ψtxxx

from the system {
Ψxxx = Ψx + λ(m(x, t) + 2

3κ)Ψ

Ψt = 1
λΨxx − u(x, t)Ψx + ux(x, t)Ψ,

where we have defined m(x, t) := u(x, t)− uxx(x, t).



Lecture 7 and 8
Now I would like to describe the Hamiltonian formulation of IST. In order to do that, let
us consider the diagram which shows how the IST works:

given u(x, 0)

direct scattering problem
with potential u(x,0)−−−−−−−−−−−−−−−−→ S(λ, 0)yIST

time evolution of
scattering data

y
u(x, t) ←−−−−−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

S(λ, t)

In classical mechanics is well-known that the problem of motion can be attached using
either the Lagrangian or the Hamiltonian formalism. Let us recall the basic facts about
the Hamiltonian language. If qh (h = 1, . . . , N) denotes the Lagrangian variable which
characterize the observed system, it is possible to define the so-called momentum ph in
terms of the Lagrangian function L(qh, q̇h, t) as

ph =
∂L
∂q̇h

.

Then we can introduce the Hamiltonian function H(p, q, t) of the variables ph, qh, t in such
a way that

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

Let us consider some illustrative examples:

• Suppose that H = p2

2m + V (q). We easily get

q̇ =
∂H

∂p
=

p

m

ṗ = −∂H
∂q

= −∂V
∂q

,

where −∂V
∂q = F represents the force. As a result we find the equation of motion

mq̈ = ṗ = F ;

• Suppose that H =
p21
2m1

+
p22
2m2

+ V (q1, q2). We obtain

q̇1 = −∂H
∂p1

=
p1
m1

q̇2 = −∂H
∂p2

=
p1
m1

ṗ1 = −∂H
∂q1

= −∂V
∂q1

ṗ2 = −∂H
∂q2

= −∂V
∂q2

.

The above equations form a coupled first order in t equations describing the time
evolution of (p, q) := (p1, p2, q1, q2) .



It is interesting to observe that the Hamilton’s principle of lenght actions is valid. The
Hamilton principle of lenght actions requires

∫ t2
t1
H dt must be smallest. The path q(t)

that gives you the smallest action is the path to use. Then find the evolution from t1 to
t2 of the Hamiltonian system is equivalent to determine q(t) and p(t).
Now we can approach the problem connected with the IST: Given an integrable NPDE
we can identify the variable q as the unknown function u(x, t) which appear in the NPDE.
Furthermore, we have some freedom in the choice of the momentum variables: one possi-
bility is to take p = ux(x, t). Since the Hamilton’s equation qt = ∂H

∂P holds, the derivative
with respect to time t ( of the variable q) allows us to identify the Hamiltonian H in terms
of the NPDE. In particular, we find that the Hamiltonian function can be expressed in
terms of a density function h in the following way:

H(p, q, t) =

∫ +∞

−∞
dxh(q, qx, qxx, . . .) .

Then we have

δH =

∫ ∞
−∞

dx

(
∂h

∂q
δq +

∂h

∂qx
δqx +

∂h

∂qxx
δqxx + . . .

)
,

taking into account that

∂h

∂qx
δqx =

∂

∂x

(
∂h

∂qx
δq

)
−
(
∂

∂x

∂h

∂qx

)
δq

∂h

∂qxx
δqxx =

∂

∂x

(
∂h

∂qxx
δqx

)
−
[
∂

∂x

(
∂

∂x

∂h

∂qxx
δq

)
−
(
∂

∂x

∂h

∂qxx

)
δq

]
and integrating by parts, we get

δH

δq
= −

[
∂h

∂q
− ∂

∂x

(
∂h

∂qx

)
+

∂2

∂x2
∂h

∂qxx
+ . . .

]
,

δH

δp
=
∂h

∂p
− ∂

∂x

(
∂h

∂px

)
+

∂2

∂x2
∂h

∂pxx
+ . . . ,

which show as the Hamiltonian equations can be expressed in terms of the density function
h(p, q, t).
In 1971 Faddeev and Zakharov proposed the Hamiltonian formulation of the KdV equation
ut − 6uux + uxxx = 0. They chosen the variable q as q = u(x, t) ( where u is the unknown
function appearing in the KdV equation) and they wrote this equation in the following
form

q̇ =
∂

∂x

(
3u2 − uxx

)
.

Then they defined the Hamilton function H =
∫∞
−∞ dxh(u, ux, . . .) depending only on

qh, and did not mention the momentum variable p. Successively, Ablowitz and Clarkson
revisited the same equation introducing the momentum variable p = ux and writing the
H =

∫ +∞
−∞ dxh(p, q, px, qx, pxx, qxx · · · ). Consequently, they got the Hamilton equations as

follows:

ṗ = −
[
∂h

∂q
− ∂

∂x

(
∂h

∂qx

)
+

∂2

∂x2
∂h

∂qxx
+ . . .

]
,

q̇ =
∂h

∂p
− ∂

∂x

(
∂h

∂px

)
+

∂2

∂x2
∂h

∂pxx
+ . . . .



On the other hand, in the same period, Faddeev-Takhtajan developed the Hamiltonian
formalism for the NLS equation in the scalar case, i.e. for the equation

iut + uxx ± 2|u|2u = 0,

where i represents the imaginary unit, the sign + in the third terms on the right side
corresponds to the defocussing case while the sign − corresponds to the focussing case.
Indicating by u∗ the complex conjugate of u, they considered the equation −iu∗t + u∗xx ±
2|u|2u = 0, the variables p and q and the Hamiltonian function H as

q = u, p = u∗, H =

∫ +∞

−∞
dx
(
qxpx ∓ q2(p)2

)
. (1.0.8)

As a consequence the density function h can be defined as

h(p, q, px, qx) = qxpx ∓ q2(p)2, (1.0.9)

and the Hamilton’s equations become

qt =
∂h

∂p
− ∂

∂x

(
∂h

∂px

)
pt = −

[
∂h

∂q
− ∂

∂x

(
∂h

∂qx

)]
.

In fact, starting from the first of the previous equations and computing the derivative of
the density function given by (1.0.9), we easily get

qt = −i
[
∓2pq2 − ∂

∂x
(qx)

]
,

can be written in the equivalent form iut + uxx ± 2|u|2u = 0 via the definitions (1.0.8).
In a general context we can approach at the Hamilton formulation as follows: Given an
integrable NPDE we have to identify the Hamilton function H and the density function h
in terms of u, ux, uxx, . . . so that if one is able to solve the Hamilton equation

qt =
δH

δp
(1.0.10)

pt = −δH
δq
,

obtain the solution of NPDE because q = u(x, t) and p = ux(x, t). Here we remark the
arbitrary in the choice of the momentum variables, although the second of the previ-
ous equation represents the more common choices. In order determine the solutions of
(1.0.10), it can be convenient change the coordinate and pass from (p, q) to (P,Q) in such
a way that the Hamilton’s function H can be expressed in terms of the new variables
H(p(P,Q), q(P,Q)) = H(P,Q) and the Hamilton’s equation becomes

Qt =
δH

δP
= c (1.0.11)

Pt = −δH
δQ

= 0,



where c is a constant. The variables (P,Q) which allow to write the Hamilton’s equation
in the particular form (1.0.12) are called canonical coordinate. In particular, the variable
P is called action and the variable Q angle. From equations (1.0.12) we immediately get

Q = ct+ a (1.0.12)

P = b,

where a, b are constants. The canonical coordinates satisfies the following equations

{pn, qm} = δn,m, {pn, pm} = 0, {qn, qm} = 0,

where the brackets denotes the Poisson brackets {f, g} =
∑∞

i=1

(
∂f
∂pn

∂g
∂qn
− ∂f

∂qn
∂g
∂pn

)
and

δn,m represents the Kronecher’s delta.
Now using the inverse of the transformation which permits to pass from (p, q) to (P,Q),
we obtain the variables (p, q) and knowing q(t) we succeed in reconstructing the solution
to the integrable NPDE.
The relationship between the Hamiltonian formalism and the Inverse Scattering Transform
can be made clear in the following sense: the variables P and Q are related to the scattering
data S(λ, t) (usually Q correspond to the argR(λ, t) and P to |T (λ, t)|2) instead p, q are
connected to the unknown function u(x, t). In other words, the passage from (P,Q) to (p, q)
is equivalent to handle the Inverse Scattering Problem with time evolved scattering data.
Obviously, the mathematical difficulties consists of the discovery of the transformation
which allows us to pass from the variable (p, q) to the canonical variables (P,Q).
Let us illustrate the passage to canonical variable in an important case: the KdV equation.
As we have already mentioned the LODE corresponding to the KdV is the Schrödinger
equation. The Jost solution of this equation are defined in the following way:

fl(k, x, t) ∼ eikx, as x→ +∞
fr(k, x, t) ∼ e−ikx, as x→ −∞,

where fl(k, x, t) is the so-called left Jost solution and fr(k, x, t) is the right Jost solution.
It is possible to prove that the expression of fl is given by

fl(k, x, t) = eikx +

∫ +∞

x
dy

sin k(y − x)

k
u(y, t)fl(k, y, t),

and similar expression can be obtained for fr(k, x, t). Now, we can compute the reflection
coefficient on the left L(k, t) and the transmission coefficient T (k, t) from the asymptotic
expansion

eikx

T (k, t)
+
e−ikxL(k, t)

T (k, t)
= fl(k,−∞, t) = eikx +

∫ +∞

−∞
dy

sin k(y − x)

k
u(y, t)fl(k, y, t) .

In fact, from the last equation we get

1

T (k, t)
= 1 +

∫ +∞

−∞
dy

e−iky

2ik
u(y, t)fl(k, y, t)

L(k, t)

T (k, t)
= −

∫ +∞

−∞
dy

eiky

2ik
u(y, t)fl(k, y, t),



which allow to write

T (λ, t) = 1 +

∫ +∞

−∞
dy u(y, t)

L(k, t)

T (k, t)
= −

∫ +∞

−∞
dy u(y, t).

If now one expand T (λ, t) in powers of 1
λ obtain

ln
1

|T (λ, t)|
=

1

λ
(. . .) +

1

λ2
(. . .) +

1

λ3
(. . .),

where the terms into the (. . .) are, respectively,
∫ +∞
−∞ dyu(y, t),

∫ +∞
−∞ dyuy(y, t),

∫ +∞
−∞ dyuyy(y, t),

etc.

Toda Lattice Equation. In order to understand better the Toda lattice equation, let us
recall the model analyzed by Fermi, Pasta and Ulam. This one dimensional model consists
of 64 particles of mass m joint through springs each one having the same elastic constant
k. Furthermore, in this model the requirement is that the elastic force does not obey at
the Hook’s law but acts in a nonlinear way in such a way that

F = −kx+ ε2x2, V =
1

2
kx2 − ε

3
x3,

where V represents the potential. Now, let us suppose that the number of particles are
infinite and the potential of the system is given by

V (r) = e−r + r − 1 =
+∞∑
i=2

(−1)i
ri

i!
.

Under these assumptions we can introduce the variables qn- representing the displacement
of the particle sitting at the n-th lattice point- and the momentum variable pn = q̇n, where
n ∈ Z. We also define the Hamilton’s function

H =

∞∑
n=−∞

(
p2n
2

+ V (qn+1 − qn)

)
,

so that the Hamilton’s equations give us

q̇n =
∂H

∂pn
= pn

ṗn = −∂H
∂qn

= V ′(qn+1 − qn)− V ′(qn − qn−1) = e−(qn−qn−1) − e−(qn+1−qn),

where we have taken into account that V ′(r) = −e−r + 1. Then we immediately obtain

q̈n = ṗn = e−(qn−qn−1) − e−(qn+1−qn) (1.0.13)

which is called discrete, nonlinear Toda lattice equation. We can easily verify that the
coordinates (pn, qn) satisfies the following equations

{pn, qm} = δn,m, {pn, pm} = 0, {qn, qm} = 0 . (1.0.14)



In fact, recalling the definition of the Poisson brackets {f, g} =
∑∞

i=1

(
∂f
∂pn

∂g
∂qn
− ∂f

∂qn
∂g
∂pn

)
we calculate

{pn, pm} =
∞∑

j=−∞

[
∂pn
∂qj

∂pm
∂pj
− ∂pn
∂pj

∂pm
∂qj

]
= 0 (1.0.15)

{pn, qm} =
∞∑

j=−∞

[
∂pn
∂qj

∂qm
∂pj
− ∂pn
∂pj

∂qm
∂qj

]
=

∞∑
j=−∞

[δn,jδm,j ] = δn,m

{qn, qm} =

∞∑
j=−∞

[
∂qn
∂qj

∂qm
∂pj
− ∂qn
∂pj

∂qm
∂qj

]
= 0 .

where we have used ∂pn
∂qj

= d
dt

(
∂q̇n
∂qj

)
= d

dtδm,j = 0 and, analogously, we can prove the

following identities (also used in order to establish the validity of (1.0.15)) ∂pm
∂qj

= 0, ∂qn∂pj
=

0, ∂qm∂pj = 0. Then, for solving (1.0.13) we have to determine the canonical coordinates

Jn, θn (called, respectively, action and angle) such that the equations (1.0.14) hold and
the following ones have to be satisfied

J̇n = 0

θ̇n = c,

where c is a constant.
Finally, we prove that the Toda lattice equation is integrable and then can be solved via
IST. To prove the integrability we build the Lax pair of the equation (1.0.13), i.e. we are
looking for two operators Ln and An satisfying

LnΨn = λΨn

Ψ̇n = AnΨn

and such that
L̇n = LnAn −AnLn. (1.0.16)

In order to develop the calculations, we introduce the operators S+ and S− as(
S+f

)
(n) = f(n+ 1),

(
S−f

)
(n) = f(n− 1),

the coefficients an = 1
2e
− 1

2
(qn+1−qn) and bn = −1

2 q̇n , and the operators Ln = anS
+ +

ãn−1S
−+ bn, and An = cnS

+− c̃n−1S−. Since we want impose equation (1.0.16), we start
computing L̇n, LnAn and AnLn

L̇n = ȧnS
+ + ˙̃an−1S

− + ḃn ,

LnAn =
(
anS

+ + ãn−1S
− + bn

) (
cnS

+ − c̃n−1S−
)

=

ancn+1S
++ − ãn−1c̃n−2S−− + bncnS

+ − bnc̃n−1S− − anc̃n + ãn−1cn−1 ,

AnLn =
(
cnS

+ − c̃n−1S−
) (
anS

+ + ãn−1S
− + bn

)
=

cnan+1S
++ − c̃n−1ãn−2S−− + cnbn+1S

+ − c̃n−1bn−1S− + cnãn − c̃n−1an−1 ,

which imply that equation (1.0.16), choosing ãn−1 = an−1, cn = an and c̃n−1 = cn−1, can
be written as

(anan+1 − anan+1)S
++ + (an−2an−1 − an−1an−2)S−− + (ȧn + bnan − anbn+1)S

+

+ (ȧn−1 + bn−1an−1 − bnan−1)S− + ḃn − anan + an−1an−1 − anan + an−1an−1 = 0.



The coefficients of S++ and S−− vanish automatically, while the the non-homogeneous
coefficient equated to zero is equivalent to the Toda lattice equation ḃn−2a2n+ 2a2n−1 = 0.
In this way we have established the integrability (via the IST) of the discrete version to
the KdV equation.


