Lax Pairs and AKNS Pairs for Integrable PDEs

III. Inverse Scattering Transform

Certain NPDEs are classified as integrable in the sense that their corresponding IVPs can be solved with the
help of an IST. The idea behind the IST method is as follows: Each integrable NPDE is associated with a
LODE (or a system of LODESs) containing a parameter A (usually known as the spectral parameter), and the
solution u(z,t) to the NPDE appears as a coefficient (usually known as the potential) in the corresponding
LODE. In the NPDE the quantities  and ¢ appear as independent variables (usually known as the spatial
and temporal coordinates, respectively), and in the LODE z is an independent variable and A and ¢ appear
as parameters. It is usually the case that w(z,t) vanishes at each fixed ¢ as x becomes infinite so that a
scattering scenario can be created for the related LODE, in which the potential w(z,t) can uniquely be
associated with some scattering data S(A,t). The problem of determining S(A, ) for all A values from u(x,t)
given for all = values is known as the direct scattering problem for the LODE. On the other hand, the
problem of determining w(z,t) from S(A,t) is known as the inverse scattering problem for that LODE.

The IST method for an integrable NPDE can be explained with the help of the diagram

direct scattering for LODE at t=0

u(zx,0) S(A,0)
solution to NPDEl ltime evolution of scattering data
u(zx,t) S(A\t)

inverse scattering for LODE at time ¢
In order to solve the IVP for the NPDE, i.e. in order to determine u(zx,t) from u(z,0), one needs to perform
the following three steps:

(i) Solve the corresponding direct scattering problem for the associated LODE at ¢t = 0, i.e. determine the
initial scattering data S(A,0) from the initial potential u(z,0).

(ii) Time evolve the scattering data from its initial value S(),0) to its value S(\ ¢) at time ¢t. Such an
evolution is usually a simple one and is particular to each integrable NPDE.

(iii) Solve the corresponding inverse scattering problem for the associated LODE at fixed ¢, i.e. determine
the potential u(z,t) from the scattering data S(A,1).

It is amazing that the resulting u(z,t) satisfies the integrable NPDE and that the limiting value of w(z, )
as t — 0 agrees with the initial profile u(x, 0).

IV. The Lax Method

In 1968 Peter Lax introduced [15] a method yielding an integrable NPDE corresponding to a given
LODE. The basic idea behind the Lax method is the following. Given a linear differential operator £
appearing in the spectral problem £y = A\, find an operator A (the operators A and £ are said to form a
Lax pair) such that:

(i) The spectral parameter A does not change in time, i.e. Ay = 0.
(ii) The quantity 1y — A remains a solution to the same linear problem Ly = A.

(iii) The quantity £; + LA — AL is a multiplication operator, i.e. it is not a differential operator.



From condition (ii) we get
L (e — AY) = A (Y — AY), (4.1)
and with the help of £¢ = Ay and A\; = 0, from (4.1) we obtain
Lapy = LAY = My — A(M)) = 0y (M) — ALY = 0y (L)) — ALy = Lot + Lapy — ALY, (4.2)

where 0; denotes the partial differential operator with respect to t. After canceling the term L; on the left
and right hand sides of (4.2), we get
(Li+LA—-AL)Y =0,

which, because of (iii), yields

Lo+ LA— AL =0. (4.3)

Note that (4.3) is an evolution equation containing a first-order time derivative, and it is the desired integrable
NPDE. The equation (4.3) is often called a compatibility condition.

Having outlined the Lax method, let us now list the Lax pairs (£,.A4) corresponding to some known
integrable NPDEs and their associated LODEs.

1. The integrable NPDE known as the Korteweg-de Vries (KdV) equation
up — Uty + Ugyy = 0, (4.4)

is associated with the LODE known as the 1-D Schrodinger equation

a2

) +u(z, t)p = M, (4.5)

and the corresponding Lax pair (£,.A) is given by

L=-07+u, A= —403 + 6ud, + 3u,. (4.6)

2. The integrable NPDE known as the focusing nonlinear Schrédinger (NLS) equation
iU+ Ugg + 2|ul?u =0, (4.7)

is associated with the system of first-order LODEs known as the Zakharov-Shabat system

® — et o,
X
(4.8)
dn _ . .
Ir =iAn —u(z,t)" ¢,

where the asterisk denotes complex cojugation. The corresponding Lax pair (£, .A) is given by

i0,  —iu ]

—iu*  —i0,

2i02 +ilul?  —2iud, — iu,

—2iu* 0y — iut  —2i0% — ilul?

E:

3. The integrable NPDE known as the defocusing NLS equation
iUy + Uge — 2|ul?u =0, (4.10)
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is associated with the first-order system of LODEs

d
% _ e tule ),
dx
(4.11)
d
=i+ u(a ),
and the corresponding Lax pair (£,.A) is given by
10, —iu 2002 —ilul*  —2iudy — iu,
L= ; A= . (4.12)
u*  —i0y 2iu* 0, +iul  —2i02 + ilul?
4. The integrable system of NPDEs
g 4 gy — 2020 =0,
(4.13)
iUy — Vgy + 2uv? =0,
is associated with the first-order system of LODEs known as the AKNS system
d
% — et o,
(4.14)

dn )
= i+ (1) €

and the corresponding Lax pair (£,.A) is given by

10y —iu 2002 —iuv  —2iud, — ity
L= , A= . (4.15)
W —10, 2000, + v,  —2i02 + iuv

Note that the case v = —u* in (4.13) yields the focusing NLS equation (4.7) and the case v = u* yields
the defocusing NLS equation (4.10).

5. The integrable NPDE known as the focusing modified Korteweg-de Vries (mKdV) equation
g + 6uuy + gy = 0, (4.16)

is associated with the first-order linear system given by

d
% =i +ule ),
4 (4.17)
ﬁ =i\ —u(z,t) &
and the corresponding Lax pair (£,.A) is given by
10y  —iu —403 — 6u?0, — 6buu, 61y 0r + SUgy
L= , A= (4.18)
—iu  —i0, —6u,0; — 3Ugpy —403 — 6u%9, — 6uu,
6. The integrable NPDE known as the defocusing modified Korteweg-de Vries (mKdV) equation
up — 6uluy + Uggy = 0, (4.19)
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is associated with the first-order linear system given by

® — et o,
% =i\ +u(z,t) €

The corresponding Lax pair (£,.A) is given by

i0, —iu —403 + 6u%0, + 6uu, 61y 0y + gy
L= , A=

o —1i0y 6uz0y + 3Ugy —403 + 6u%0,, + 6uuy,

. The integrable NPDE known as the Dym equation
Ut = uguwx;ﬂ;
is associated with the LODE

EY_ A
de?  wu(r,t)?

¥,

and the corresponding Lax pair (£,.A) is given by

L =u?02, A = 44?03 + 6uPu,02.
. The integrable system of NPDEs

3 3
U — OUUL + Ugpz + 3 Vpga + 3VzpVpz — OUVV, — 3 uzvz =0,

1
V¢ + Vppe — OUVE — BUzV — ?5 U2UI =0,
is associated with the Jaulent equation
d? 9
e +u(z,t) Y+ kvo(x, t) v = k.

Writing the above LODE in the form L¢ = k¢ with

AP | R W i
~02 +u(z,t) vwt)| [kv| k|’ Tk |

the corresponding Lax pair (£,.A) is given by

3 3
—403 + <6u + 3 v2> Oy + <3uz ~3 vvz> 6v0; + 3,
A =

15 15
—6v93 — 30,02 + 6uvd, + (6uzv + 3uv,) —493 + <6u + 5 UQ) Oy + (3um + 5 va)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



9. The integrable NPDE known as the sine-Gordon equation

Uy = Sinu,

is associated with the linear system

dg
P
dn . 1
el A

The corresponding Lax pair (£,.A) is given by

el

10. The integrable NPDE known as the sinh-Gordon equation

Uz = sinh u,

is associated with the linear system

dg

&=
dn . i
il A

The corresponding Lax pair (£,.A) is given by

é(/ /’>@{mm<( ) + uly, U[;?

(4.30)
1uﬂc(an t)n,
(4.31)
ug(x,t) €.
2 , (4.32)
—i0y
u(z,t) +uly,t)) |0 —1
+Sln< > ) L 0 1}
(4.33)
(4.34)
fug;(x t)n,
(4.35)
ug(x,t) .
_37, (4.36)
—i0,
u(z,t) + u(y,t) 0 -1
—|—Z§1nh(2 ) L 0
(4.37)

11. The integrable NPDE in two-spatial dimensions known as the Kadomtsev-Petviashvili (KP) equation

(ug — 6uty + Uggs)w + 362uyy =0,

(4.38)

where € = ¢ for the KP I equation and € = 1 for the KP II equation, is related to the linear PDE

Ve + 677[}3/ + ()\ -

w)h = 0. (4.39)



The corresponding Lax pair (£,.A) is given by

L=-0— €y +u, A= —402 + 6ud, + 3u, — % </ —/ ds> Uy(s,y,t). (4.40)

12. The coupled system of integrable NPDEs

U = 10Ugey + Buu, — 24v,,
(4.41)
Uy = 3uxrr'rr + 3uurxx + Suzurr - 6U’U£ - SUmfcra
contains two potentials u(z,t) and v(x,t) and is associated with the LODE
@+u(xt)@+u(mt)%—&-v(xt)zb—)\w (4.42)
da? " da? Y da ’ e '
The corresponding Lax pair (£,.A) is given by
L=040,ud; +v, A= -89 —6ud, — 3u,. (4.43)
12. The coupled system of integrable NPDEs
Up + Uggr + Uyyy = 3UgVzz + SUVpge + FUyVyy + 3UVyyy,
, (4.44)
Uy = 0,

where u(x,y,t) and v(x,y,t) are the two potentials is known as the Nizhnik-Veselov-Novikov system.
It is related to the pair of LPDEs given by

{ ¢:ry = m/%
, (4.45)
W + VYeze + wyyy = 3VzaVe + Svyywy

V. The AKNS Method

In 1973 Ablowitz, Kaup, Newell, and Segur introduced [2,3] another method to determine an integrable
NPDE corresponding to a LODE. This method is now known as the AKNS method, and the basic idea
behind it is the following. Given a linear operator X associated with the first-order system 6, = X0, we are
interested in finding an operator 7 (the operators 7 and X are said to form an AKNS pair) such that:

(i) The spectral parameter A does not change in time, i.e. Ay = 0.
(ii) The quantity 6; — 70 is also a solution to 6, = X0, i.e. we have (0; —T0), = X(0; — T90).

(iii) The quantity X; — 7, + XT — TX is a (matrix) multiplication operator, i.e. it is not a differential
operator.

Having outlined the AKNS method, let us now list the AKNS pairs (X, 7") corresponding to some known
integrable NPDEs and their associated linear ODEs.

1. For the KdV equation (4.4) and the associated 1-D Schrddinger equation written as the first-order

[%1 _ [0 u(x,t)—)\ [%] ’ g — [%] 7 (51)
vl 1o v ¥

system 0, = X0, as




we have the corresponding AKNS pair (X, 7) given by

0 u—A\
X_l ] I (5.2

1 0 4\ + 2u —Ug

Ugs —4X2 4+ 2w + 2u? — um]

. The Zakharov-Shabat system (4.8) and the focusing NLS equation (4.7) correspond to the AKNS pair
(X,T) given by

—iA u —2i\% +ilul? 20+ duy
X = . T= (5.3)

—u* QA —20u* +iuk 200 — i|ul?

. The defocusing NLS equation (4.10) and the associated linear system (4.11) correspond to the AKNS
pair (X, T) given by

—iA u —2i\% —ilul?  2Mu + du,
X = , 7= (5.4)

ut o iA 20t —duk 20\ + i|ul?

. The focusing mKdV equation (4.16) and the associated linear system (4.17) correspond to the AKNS
pair (X,7T) given by

—iA U — 4503 + 20 u? AN20 + 2 Uy — Ugy — 2uB
X = , T = (5.5)

—u A —AD2u + 20 Uy + Ugy + 2uP 4503 — 23 u?

. The sine-Gordon equation (4.30) and the associated linear system (4.31) correspond to the AKNS pair
(X,7T) given by

X = T =—
1 2\ ’ 4\
§U/w 1

) 1
—A g U i [cosu sinu
(5.6)

sinu —cosu

. The sinh-Gordon equation (4.34) and the associated linear system (4.35) correspond to the AKNS pair
(X,T) given by

P 7-L
? A\ ’ 4\
5 Uy (3

(5.7)

) i
A = g Uz ;i | coshu isinhu
isinhu —coshu |

. The AKNS system (4.14) and the associated system of integrable NPDEs correspond to the AKNS pair
(X,T) given by

—iA U —2iA% —juv 2 u + duy
X = , = (5.8)

voIA

20 — v, 2002 + duw

. The Jaulent equation (4.26) can be written as the first-order system 6, = X6, which is given by

lﬂ :lo u(m,t)+kv(x,t)—k2] V] . [zpl 5
v |1 0 ¥ Y



10.

For (5.9) and the associated integrable NPDEs (4.25) we have the corresponding AKNS pair (X,7) is
given by

3
vk + (ux + 3 vvx) Ti2

0 u+kv—k?
X = , T = , (5.10)
1 0

4k? + 20k + (2u + Z)UQ) —vzk — (um + zvvm)

where we have defined

1 3 3 3 3
Tio = —4k*+20k% + (2u + 3 v2> k2 + (vm + 3 1)3) k+ (um +2u? + 3 w? — 3 v2 — 3 m;m> . (5.11)

. For the Dym equation (4.22) and the associated first-order system 6, = X6, which is equivalent to

(4.23) and given by

A

- u(z,t)? , 0= , (5.12)

Y], 1 0 (G (G

we have the corresponding AKNS pair (X, 7) given by
A 472
0 20y —— — 2 Uy,

X = ux,t)? |, 7= | Ty tae | (5.13)

1 0 4 \u —2\uy,,

The 2-component Camassa-Holm (CH) equation

{ ppr + (up)e =0,
(5.14)

my + 2um + umy + opp, =0,

where p(x,t) and u(x,t) are the two potentials, m := u — u,, and o1y = 0,1 and o = +£1, is associated
with the LODE given by

% = (% + Am(z,t) — J)\2p(x,t)2) . (5.15)

We can write the above LODE as a first-order system as 6, = X6 with

o1 2 2
P 0 —+Am(x,t) —aoXp(a,t P P
l = 1 (@) (@) 1. e=| 7. (5.16)
v, L1 0 G (G
The AKNS pair (X, 7T) corresponding to (5.14) and (5.16) is given by
91 2 2
0 — 4+ Am(z,t)—aXp
XY — [ 4 () ] , (5.17)
1 0
1 1 1
——u, oup?l? — <0p2 + um) A+ = (2ugy +2m — oqu) + 2
2 2 4 2
T = (5.18)
1 1
2 2 !



11.

12.

The Camassa-Holm (CH) equation

U — Uggt + 2KUz + BUUy = 2UzUze + Ulgrs,

(5.19)

where k is a constant, is known to be integrable if [m(x,t) + k] > 0 with m := u — u,,. It is associated

with the LODE

ey (1 mxzt)+rk
pra (4 _2)\> v

We can write (5.20) as a first-order system of LODEs as 6, = X6 with

ﬂ’ S m
(@ (4

1 m(z,t)+k
wm] T
v,

1 0

the corresponding AKNS pair (X, 7) is given by

1
1 m+rk g W+4(2ux$7u+2m+2li)
X = 4 2 , T =
1
1 0 —u— A 3l
The integrable NPDE known as the Degasperis-Procesi equation
my + umg + 3u,m =0, m = U — Uy,

is associated with the LODE S d
—_— = — =) t) .
d$3 dl‘ m('T? ) w

We can write (5.24) as a first-order system of LODEs as 6, = X6 with

Yo 0 1 )\m(xa t) Ve Ve
Yz =110 0 Yz |, 0= Lo
v 1, 0 1 0 P P
The AKNS pair (X, 7) corresponding to (5.23) and (5.25) is given by
1 0 A
——u Uy — Aum
0 1 Am7 [en P @
X=1|1 0 0 Ve |, T = —u % U
01 ollw ]
- —u Uy

(5.20)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)



