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g, TNTRODUCTICN.

In this report the connection between rea’ization and linearization
is studiedfrom the point of view developed in T3], Chapter 2. Most
results on lipearization, known in literastur:, are derived using this
cannection. Further, the analcgue of lireari.-ation for meromorphic
nperator functions is introduced and results similar to those for
holomorphic operator functions are deduced.

The operator functions considered here appear as realizations,

In the case considered mostly, namely that of a monic realization,

they have the form

(0.1 W) = D + COA - A) B,

where A is & complex parameter and A, B, C and D are bounded linear
operators acting between appropriate Banach spaces. When D is an
invertible aperator, by the connection between realizetion and
lipparization referred to above, the function W(A} admits a
linearization on the resolvent set p{A} of A of the form

(1.2) AT - (A - B0 '0),

provided sither 8 is left invertible or C is right invertible. In fact,
+rere exists an extension space Z such that the Z-gxtension of W is
analytically eguivalent on p({A) to the linear pencil [(0.2). If the
invertibility condition on B or € is dropped, then still some extension
of W is equivalent on p(A) to some extension of the linear pencil {0.2].

If W is a holomorphic operator function on a bounded open subset f2
of ©, then W can be written in the form (0.1) where {2 < p(A}, D is
invertible and either B is left invertible or C is right invertible.
For several classes of holomorphic operator functions, such as the
classes of [{comonic) operator polyndmials, hnlomerphic functions with
continuous or non-continuous boundary values, we derive in this way a
concrete linearizaticn of the form (0.2). Linearizetion results of
Gohberg and Rodman [412], Gohberg, Kaashoek and Lay [10], Mitiagir f18]
and Den Boer [8] appear as special cases. Also a linearizaticn for
arbitrary entire operator functions is cbtained in this way.

If W is a mercmorphic operator function on a baounced open subset.Q

of T, then W can be written as a realization of the form (.1}, where




U is invertible, B is left invertible, and the part of the spectrum
gfAl of A in @ is the set of poles of W. Also some extension of W is
analytically equivalent on all of § to a fractional linear operator
functicn of the form

(5.3) [AI - (A - 80 'm10I - a7,

Realizations of the form (0.1) appear in several branches of
mathematics. In network theory they appear is the transfer functions
of a finite network, in system theary as th: transfer functions of a
linear system [1, 14] and in operator tﬁeor/ as characteristic operator
functions 456, 5, 20, 7, 3]. Linearization as its origin in the theory
of gifferential equations. I%f is a powerful aid in the study of matrix
and operator polynomials and holomorphic op :rator functions (1G], s=e
also [Z], Section III.4 and the references given therel.

Now let us give & more detailed description of the contents of the
different chapters. In the first chapter we discuss the notions of
realization and linearizatior and explain in abstract form their
connection. As a first application we derive a result of Brodskii and
Zvarcman [6]. The concept of minimality of & realization is discussed
in Section I and the notion of biminimality is introduced. Further we
discuss a general construction for obtaining a minimal realization from
an arbitrary one, which will be used in the second chapter.

In the second chapter we derive the line.rization theorems appearing
in literature by writing the operator function concerned as a reslization
of the form (0.1), where A, B, C and D are iiven in an explicit form.

For the realizatigns obtained we construct their (bilminimal counter-
parts. Further, we make an explicit connection between linearization
and the linearizator introduced by Markus and Macaev [17].

In the third chapter we prove that every meromorphic gperator function
is analytically eguivalent up to extension o a fractional linear operator
functien of the form {0.3). The proof is given by reducing the problem
to the linearization of twc holomorphic operater functions in a special
way. As an ancillary result it renders a representation of the meromarphic
function in the ferm (0,1). There is, howevirr, a peculiarity involved:
whereas for holomorphic operator functions iwwery realization of the form
(0.1} gives rise to a linearization of the - orm (0.2), for the case of
meromorphic cperator furctions not every realization of the form (0.1)

yields a fractional linear operator fumction of the form (0.3].




Finaliy, a few words about rnotation and terminclogy. By an operator
we shall mean eny linear operator between Banach spaces. The null space
and range of an operator T are denoted by Ker T and ITm T, respsctively.
The identity on a Banach space 1is denoted by I: we shall write Ix if we

want to make clear that we mean the identity operator on the space X.




I. LINEARIZATION AND REALIZATION
1. Eguivalence, linearization and realization.

Let X and Y be complex Banach spaces. The complex Banach space of
all bounded linear operators from X into Y will be denoted by L{X,Y).
By GL(X,Y) we mean the set of all invertible operators in L{X,Y]. In
case X = Y we usually write L(X]) and GL(X) instead of L{X,X) and
GL(X,X} respectively.

Let @ be an cpen subset of the Riemann sphere L., and Xq, X2, Yq and
Y2 complex Banach spaces. Two holomorphic operator functioﬁs

A, O+ L(Xq,qu and A

’ : - L(XZ,YZJ are celled equivalent on Q,

2
if there exist holomorphic operator functions E : & - GL(Yq,YZJ and

F:Q- GL(XZ,XqJ, called equivalence functiong, such that
01,1 Az{k} = E[A}AT{A)FEAJ, A e f.

Given a holomorphic operator function A: Q = L(X,Y) and a complex
Banach space 7, the Z-extension of A is the operatof function on {2
whose value at A ¢ § 1s the operator ALA) 8 IZ e LIXx®Z, ¥Y&®BZ).
The Banach space 7 is called the extension space. Two holomorphic

operator functions Aq: Q- L{X1,Y1J and A Q- L[XZ,YZ} are called

5
equivalent up to extension on §, if there exist complex Banach spaces
Z? and 22 such that the Zq—extension of A1 and the Zz-extension ct A2
are squivalent on Q..
By a linearization of A on Q we mean an aperator pencil T - AS that
is equivalent on © to some extension of A. If S is the identity operator,

we say that the linearization is mownZie, and we call T a monic linearization.

Similarly, the linearizaticn is said to be comontie when T is the identity,




and in that case S is called a comonic linearization.

In many problems concerning linearization, there is no loss of
generality in assuming that X = Y. To ses this, we argue as follows
(ef. [10]1). Let A: @ » L{X,Y) be holomarphic. Then the E1EX 8 Y-
extension A of A is a function whose values are operators from
X 8 £1(X B Y} into ¥ ® 21[X & Y). It is clear that X 8 21[X 8 Y} and
Y @ 21(X B Y) are both isomorphic to £1[X 8 Y). So A may be viewed as
an operator function with values in L[£1{X ® Y)). This justifies the
fact that in the rest of the paper we will always assume that X =Y,

The spectrum L{A) of a holomorphic operator function A: @ » L(X]
is the subset of { consisting of all X € Q for which the operator A(A)
is not invertible. Clearly the spectrum of a. holomorphic operator
functién is invariant under extension and eguivalence. One can also
define the eigenvalues, eigenvectors and associated eigenvectors, and
the partial multiplicities of A (ecf. [4, 131). These data of a holomorphic
gperator function are invariaent under extension and equivalence toa.

tet X and Y be complex Banach spaces, and let W: € > L(¥) be a
holomorphic operator function. Here isran open subset of C.

A realization of W on @ is a representation of W of the following form:

(1.2) WA) =D = COAM - A} 1B, A eQc plAl.

Here p{A) is the resolvent set of the operator A and A ¢ L(X), B € L(Y,X),
T e LIX,Y) and D € L{Y). The Benach space X on which the main operator A
is definec is called the state space cf the realizaticn. If the operator

0 is invertible, one can define the operator A = A - BD_1

C. This operator
is called the assoetate (main) operator. Note that it depends on all of

the operators A, B, C and D; still we denote it by A. If reqQc Q{AX],_




then W(A) is invertible while

(1.3) w0 -0 eor - a5 Te 7l

Conversely, if W{A) is invertible, then A « p[AX] while

1 1

L - CAT - A) .

(1.4) Gr - A9 T s ar -t - oz - A Tewoa”

In particular, L(W) = o{A™) n Q.

The realization (1.2) is sometimes called a monic realization, because
the linear pencil AI - A appearing in it is ménic. A proper comonic
realization of W on 9 is a representation of the form

(1.5) WIA) = D + ACCT - AA) 7 'B, 2 e Q.

Here the comonic operator pencil I - AA has invertible values for all

X e Q. In case D is invertible, we define the associate (main) operator

1

of (1.5} ny A% = A - BD 'C. An improper comenic realization of W on 0 is

a representation of the form

(1.8) WA) =0+ CT - A8, A ceQ,

where, as in (1.5}, the comonic operator pencil I - AA has invertible
values for all A ¢ f2. Both types of comonic realization will play a role
in the sequel. Note that the improper comonic realization (41.8) implies

that

D+ B + ACACT - AA) B

D+ CB+ AC(I - AA) TAB, A e Q.

WEAD

It

which are proper comonic realizations for W.

2. The connection between linegarizetion and realization.

In this section we make explicit the conuection between realization

antd lingarization. lhe next Lhenrem, which plays a crucial role in the




rest of this paper, is taken from [3], Section II.4.

THEOREM 2.1. Let

(2.1) WEA) = D + COAT - A) 0B, A < < p(A),

be a monic realization om Q. Here A ¢ L(X), B ¢ L{Y,X), C e L{X,Y)
and O ¢ GLUY). Agsume that B has a left invirse 8, and put Z = Ker B'.
For y e Y, z € Z and X ¢ 2 define

BD-1y + 2+ BD COAT - A) Yz,

(2.2a) E{A)(y,z)

(AT - AJ_1[By + z),

(2.28) FIA)(y,2)

Then E(X}, F(A): Y 8 Z > X are bijective, E and F are holomorphic on

Q and

(2.3) EQOIWIA) B 1] = (AT - AOFA), A e Q.

In particular, A® s a monie linearization of W on Q.

REMARK 2.2. (1} If in Theorem 2.1 the assumption that B has a left
inverse is replaced by the condition that C has a right inverse C+,

then the final conclusion of the theorem remains true. In fact, in

that case one takes Z = Ker C and proves that
(2.4) EQVUIWOS 8 L1 = (I - ATIFN, X e @,
where E(A), FI(A): Y B Z » X are given by

(AT - AIC'y + (A - A)z,

(2.5a) E(A)(y,z)

{2.5b) FiM(y,z) = COy - (1 - ¢ 0)AT - &) TBy + z.

+
(2} If we assume that 8 has a generalized inverse B , then the Ker B+-
extension of W and the Ker B -extension of AT - A* are eguivalent on Q.

la prove this, we assume without loss of gennrality that 0 = I.




. . - + _ . =
Taklng into account that Y = Im B B Ker B end w[;\]|KEI‘ B I[KBI‘ B;

one sees immediately that the matrix representation of W(A} with

respect to Y = Im B+ B Ker B has the form

WD(AE 0
(2.8) WD = , Aoe (L.

H{AD IKer a

If we put Z = Im B+, we obtain

WD(K] 3 IZ 0
(2.7) Wix) = s e f,

0 IKer 8 HA IKer B

where the second factor at the right hand side is holomorphic and
invertible. Moreover, WG{K] =1+ CU[AI - Aa_an, A e . Here CU is an
opaerator from X into Z, and BU ig a left invertible operator from Z
inta X one of whose left inverses is B+, considered as an operator from
Y into Z = Im B'. Since BDCQ = BC, the desi~ed result is now immediate
from Theorem 2.1.

If we assume C to have a generalized inverse C+, then we can prove

in a similar way that AI - A" and W are equivalent up to extension

on £.
(3) Always, irrespective of any invertibility conditicn or B or C, the

functions W(A) B I, and (AI - A") 8 I, are equivalent on .

x Y
In fact, we have (cf. £10], Thecrem 4.5]:

{z.8) EGILI, 8 (T - A IIF(A) = W(A) B I, AeQ,
where
: WL COaz-a) 0 wen) o'
(2.9) E(A) = . LbLoFm = 1
[AI-A) B (AI-AY ~fAT-AY B IX

Take & nutside §, for instance a ¢ oflA). Then it follows from (7.5] that




(2,10) E, (M - (al, @ ACYIECA) = WiA) 8 I,. Aeq.

Here the equivalence function F is given by (2.8}, while Eq is defined by

£,(A) = EQULAA - 271 8 L1, Aeq

Y
where E is given by (2,3). Note that (2.10) shows that A" @ aIY is a
monic linearization of W on .

(4) Dbserve that results analogous to Theorom 2.1 and Remark 2.2, (1}-
(3), can be derived faor comonic realization:. In case the realization
of W on £ has the form (1.5) with D invertiile, we have to consider

I - AA® instead of AL - A", In case the rea’ization of W has the form
1

1.8 with O invertible, however, we have tu ceonsider I + BD 'C - AA

instgad of AI - A%,

For 1 = 1,2, let wi: 2> L{Y)Y be a holomorphic operator function.
Here Y is a complex Banach space and § is an open subset of C. It is
natural to ask the following guesstion. Given monic linearizations T1

and T2 of W1 and w2 respectively on £, is there a simple way to construct

a monic linearization for W = W1W2? Under coartain circumstances the

answer is positive. Suppose, for instance, that the linearizations T1
and T2 appear as the associate operators of realizations of the farm

(2.11) WA =D +C.OAI - A B, Aeq,
1 1 1 1 1

where A, ¢ L{X,), B, € L{Y,x.,}, C. e L(X,,Y) and DO, ¢ GL(Y), % 1,2,
i i i i i~ i i

1

Thus T, = A, - B,0. C, (i = 1,2). Suppase, in addition, that B, and
i i i1 1 1

82 are left invertible, and write

(2.12) A= , o= L = JE o.c %, 0 =0D,0,.
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Then

(2.13) WOA) = D + CIAL - A) '8, X ¢ @,

is a monic realization for W = w1w2 on 2 (cf. [31). Since B is left

invertible, it follows from Theorem 2.1 tha
T1 T1 0
B0 'c. T
2 1 2z

i

(z.14) T

is a monic linearizafion for W on 0.

The same conclusion heolids, if we suppose that C1 and CZ are right
invertible, An analogous result can be derived for comonic linearizations,
provided proper comgonic realizaticns of w1 and W2 an & are given and
suitable invertibility assumptions hold.

In view of the preceding remark it is of interest toc observe that not

every linearization can be aobtained as the associates operator of a

realization. This appears from the followinz examplie.

EXAMPLE 2.3, Let §2 bé the unit disk and Y a complex Banach space. Let
W: § » LIY) be an operator function, continuaus oﬁ Q and holomorphic on
Q such that W(A) is inmvertible for all A € @ and such that there exists
at least one point AD e 8 with the property that W does not admit an
analytic econtinuation to a neighbourhgod of AD; such a function cen be

easily constructed. For instance, take

(2.45) WA) = 1 - (A - ¢1331Y, X o€ G,

Now every operator T e L(Y) such that o{T) n € = @ is a monic linsarization

of W an @ that does not coincide with the associate operator of a monic

realization of W on £, Indeed, assume that

WOAY = v GIAT = A)Y B, A« 0,
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is a monic realization of W on ) such that ) ¢ GL(Y) and A® = A - BD“1C

= T, Since

.1

T.p™t cat - 11 'ep”', A e q,

wixy L= - p?

W 1 has an analytic continuation to some neighbourhood of §. Since
L(W) = @, it follows that W has an analytic continuation to some

neighbourhood of 2, which contradicts the conditions imposed on W.

If T is a monic linearization of a holomorphic Y-valued operator
functicn W on an open subset Q of T, then o(T) n Q = L(W). In particular,
L{W) < o(T). In general, the inclusion will be strict, even when L[W}

is a compact subset of {i. This appears from an example due to H. Bart.

EXAMPLE 2.4. Let Q be the unit disk and Y = C2. Define W on Q by
WA) = .

Let T be a monic linearization of W on £, Then there exists a Banach
space Z such that WA} ® IZ is eguivalent to AI - T on 2. It is clear
that AI - T is a Fredholm operatar for all A € {l. Suppose now that
ag(T) = Z(wW) = {0}. Then AI - T is invertible for all * # 0. It follows
that Al - T is Fredholm for all A € C. But this can only happen when 7
has finite dimension, k say. Consider the function det{AI - T). This
function is a polynomial of degree k+2. Since o(T} = {0}, we actually

have

(2.16) det(Al - T) = Af2 A e gL

On the other hand, it is obvious from the definition of W()X) and the
fact that AI - T and W(A)} B IZ are eguivalent on £, that D is a zero

of det{AT - T) of multiplicity 1. This contradicts (2.16}.
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A more detailed analysis of the argument given in the precading
example reveals that the following is true: Let § be a nenempty open
subset of the complex plane, and let W be & holomorphic nXn matrix
function on . Then W admits a monic linearization T on © such that
olT) = Z{W) if and only if the number of zeros of det W(A) counted
according to multiplicity is finite and at least egual to n.

Suppose W is of the form (2.1) with D irvertible. As we havec seen,
the spectrum of W is in general a proper subset of that of a monic
linearization of W. However, under rather weak assumpticns cne can
construct & monic linearization T of W such that o(T) \ I(W) consists
of only one point.

Suppose Z(W) is a compact subset of §2 and take a € T \  {for

instance a ¢ G(A)). Then S = A" @ aIy is a monic linearizaticn of W

on 2 (see Remark 2.2(3)). In fact the X-extension of W is equivalent

to AL - S on Q. Observe that Z(W) = ¢(S) n Q. So 0(S) n 2 is a spectral

subset for S. Let P be the corresponding spectral projection and let SD

be the restriction of S to Im P. Then G[SDJ = olS) n { = L(W) and

AI - 8 is equiyalent on & to the Ker P-extension of AI - SD. Again using
that a ¢ Q, we obtain that the Ker P-extension of AI - S, 1s equivalent

to {(AI - SO] 2 U\-a)IKer p ON Q, Put T = SD 8 al, . p- Then it is clear

that the X-extension of W is equivalent toc AI - 7T on . S0 T is a monic

linearization of W on . Note that o(T) = O[SD] v {a} = Ztw) u {al.

3. An application.

In this section we shall sxtend a result of Brodskii and %varcman
concerning characteristic operator functions of Sz-Nagy-Foias type

leef . i),
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Let X be a complex number, and let W be an operator function with
values in L(Y1,Y21 which is holomorphic at A. Here Y1 and Y2 are complex

Banach spaces. Let
Wiz) = % [z—A]Jw},

be the Taylor expansion of W near A. Far n = 1,2,..., we define the

ocperator Tn[wJA € L[Y:,Y;] by the Toeplitz matrix

Wy« v ... 0
w1 WU

(3.1 T Wy = )
r%-1 -+ Y

When no confusion is possible, we sometimes write TanJ instead of
Tn(WJA‘

Let YB be another Banach space, and let U and V be cperator functions,
holamorphic on a neighbourhcod ef A and with values in L[Y1,Y3] and
L[YZ,Ya], respectively. Suppose that U(z) = V(zIW{z) for z near A. Then

a straightforward calculation shows that
(3.21 T (U3 =T (VIT (W), N = 1,7,ce.
n n n

From this it is seen directly that W(A) = W, is invertible if and only
if Tn[w) is invertible for all n. With the help of the product fermula

(3.2) we prove the following lemms.

LEMMA 3.1. Let W and W be operator functions holomorphic on a neighbour—
hood of \, whose values belong to LiY,.Y,) and Lf?1,?§) respectively.
Suppose that 7 and T ave two complex Banach gpaces such that the 7-

extension of W and the 7-extension of W are equivalent on a neighbourhood
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of A. Then, for each n ¢ N, tké spaces Ker Tn(W) and Ker TH{W] are
Zgomorphic.

Preof. Since W 8 IZ and W @ }E are equivalent on & neighbourhond of
A, there exist operator functions E and F holemorphic on a neighbour-
hood of A, whose values belong %o GL(VZ a7, Y2 B Z} and GL[Y1 8 7,

71 B 7) respectively, such that

Wiz) 8 1, - E(Z)[Wiz) B TxJF(z), 2z near A,

According to (3.2),
T (W8I, =T (EN (W8 Is)T (F), n e N.
n zZ n n Z°n

Observing that Tn(E] and TH(F] are invertible, it follows that the
spaces Ker Tn(w B EZ] and Ker Tntw 8 y?) are isomorphic. It is, however,
rlear from (3.1) that the latter spaces are isomorphic to Ker Tn[N] and

Ker TH(W] respectively. This completes the proof.
We are now in a position to prove the main result of this section.

THEOREM 3.2. Let Q be an open subset of T and Y a complex Banach space.
Let W: Q - L(Y) be a holomorphic operator function given by the monie

realization
(3.3) WAY =D+ COAL - A) 1B, X e8colA)

Here p(A) i3 the resolvent set of A, while X is the state space of this

It

realization, and D € GLIY). Put A" = A - BD—qC. Then Xer Tn(W)A 18
isomorphic to Ker (A\I - A" for A e Qand n = 1,2,...

Proof. According to Remark I1.2.2(3), the X-extension of W and the
Y-extension of AT - A" are eguivalent on §l. From Lermma 3.1, it follows

that Ker T”(w]A and Ker T”(zI - AX}A are isomorphic (A < 0; n « N).

s
Po show that Lhe lalter apace is isomorphic bo Ko (A1 - A J“, note fhat
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_oaX To [ 7oaX - T e
Tzl - AT, {}D - AI-A 0 I 0 [&U =07,
X I AI-A . X, 0
] . .
... o ] .
0 .. -A%
KEINS NI AI-AT *n-1 0 ]
if and only if (A" - AIlx_ . = x e (AN - AT, = x, (A% - AT)x. = O.
n-1 n-2°°""* 1 0’ )
T T (zI - AS)
Sc the vector (XD’XT""’Xn—1} e X with X # 0 belongs to Ker n A

if and only if [XD’X1""’Xn~¢J is a Jorder chain of A of langtk n in A.
Hence, Ker Tn[zI - Ax]k is isomorphic to Ker {AI - AX]n. This completes
the proof.

The Brodskii-%varcman theorem [6] is an immediate conseguence of
Theorem 3.2. A similar result for characteristic operator functions

of Livsic-Brodskii type can also be deduced from Theorem 3.2.

4, Minimality.

1

Let Y be a complex Banach space and W an operatar function, holomarphic
cn an open subset ) of T, and with values in L(Y). Consider the following

monic realization of W on §2:

(4.1) WA) =D+ COAT - A) 1B, XAeQcplAl,

where A e LX), B e L(Y,X), C e L{X,Y) and D ¢ GL(Y). Here X denotes
the state space. The realization is called controllable, if the
controllability space Im (A|B) coincides with X. Here Im (A|B) is the

smallest closed A-invariant subspzce of X containing Im B. Observe that

+oo

{(4.21 im (A]B) = cl[span U Im (AnB]}.
n=4§

The realization (4.1) is called observable, if its observability space

Ker (C{A) is trivial. Here Ker (C|A) is the largest A-invariant subspace
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of X that is contained in Ker C. Observe that

+c0

(4.3) Ker(C|A} = N Ker(ca™),
n=0 :

The realization (4.1) is called minimal, if it is both controllable and

ohservable.
The noticns of controllability, observability and minimality can be

defined for comonic realizations in an analcgous way. Both the oroper

comonic realization (1.5) and thsa im?roper comonic realization (1.5)

are called controllable if Im {A|B) = X. Here the contrellability space

Im [A[B] is given by (4.2). Observability is defined in a similar way.
The next theorem is well-known, For later use, however, we neec the

canstruction described in its proof.

THEQREM 4.1. Let G be a connected open neighbourhood of infinity. Let

W: Q ~ L(Y) be a holomorphic operator function admitting a realization
(4.1). Then there exists a minimal realization of Won Q with state space
Im (A|BI/LIm(A[B) n Ker (C|A)].

Proof. (1) Let us first construct a controllable reslization of W on §,
with state space Im (A|8). Define A, € LIm (A]B)), B_ e Ly, Im (A]B))
and C_ € L(Im (A|B),Y) as follows:

A X = Ax, ([ x = Cx, x ¢ Im (A|B),
¢ C
(4.4)

ch

By, y £ Y.
Then CCAZBC = cA"B, n2 0. For IX| sufficiently large, AI - A, is
invertible, while

,; +o0 00
D+CMOAI-A) B =D+ T X cAlB =0+ 3T 2 cA'a =
c [ c = C CC -
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With the help of a connectedness argument, it appears that AI - AC is

invertible for all A ¢ §, and

WA) =D+ C (AT -A) B,  Xeq.
cC [ c

It is =asily seen that thils realization is controllable and that its
observability space is Im {AlB) n Ker (clay,

{2) Next let us construct an observable realization of W on Q
with state space X/Ker [CIA}. For z € X, 1let [z] denote the element
of X/Ker (C|A) that contains z. In other words [z] = z + Ker (C|A).
Defing the operators Ag € LiX/Ker (C]|A}Y, By « Ly, x/ker (C[A)Y and

Cq € Lix/Ker (C[A3,Y) by

AgEx1 = [AXT, Cyfx] = Cx, [x7 e X/Ker (C|A),

(4.5)
BGy = [Byj, y € Y'

Note that all three operators asre well-defined. Moreover, CDABBD = CAnB,

n 2 0. In the same way as bafore, we prove that

- - -1
WEA) = D = CD(AI AU} BD’ Aoe @,

Furthermore, this realization is ohservable.

(3} A minimal realization of W on §I can now be constructed by
applying the procedures of the first (second) paragraph to the chservable
(controllable] realization obtained in the seccond (first) one. This

completes the proof.

D, + C.(AT - A.1 B., A e @ c plA.), with
1 1 1 1 1

Two realizations WEA)
state space X4 (i = 1,2) are called quasieimilar, if there exists a
densily defiped injective linear operator 9(X1 > X2) with a dense range,

called a quastisimilardiy, cuch Lhal

; 4 ST S D S Y S T
(4,41 A, A | H, . : n, .,
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It is clear that the relation called quasisimilarity is reflexive and
symmetric. Any two minimal realizations of an operator function W on a
neighbourhood of infinity are guasisimilar (cf. [5, 14]). The guasi-

similarity S is given by

+oa £ £
(4.7) D(S) = span U Im(A"B.), s % A™B.x )= 7 A'B x
N 179 1°1%n 2°2%n
n=0 n=0 n=0
Note that
+00
ImS =span U Im (A"B.).
2572
n=0
{K) .+

The operator S is always clesable. To see ihis, let (z ]K_1 be &
)

tends to scme x € X as

(k]

sequence in 0(3) converging toc 0O while Sz[K

K =+ +o, We have to prove that x = 0. Write z in the form
ﬂK n (k]
T ABY .
11 n
n=0
Then
zK n {K) KK n (&)
L A B,Y - 0, L OA.B.Y X (K + +e),
” 171 'n 272 n
n=0 n=0
For all m =z 0 we have
£ £
m ® m+n (2 K m+n (k3
Cqux = lim z CZAZ BEY = 1im b} C1A1 B1Y =
- K>+ n=() n K++m n=0 4
n zK n (k)
= C1A1[11m ? ALB, Y. 1-o0.
K>+ n=0

{0}, it follows that x = 0. This completes the proof.

Since Ker [CZIAZ]

Two realizations W(A} = O, + C,(AT - Ai]_1

B., A ¢ ¢ pl(A,), with

i i

state space Xi, i=1,2, are called similar, if there exists an operator
S ¢ GL[Xq,XZ] such that (4.8} holds. Obviously, similar realizaticns are

guasisimilar.

F'he minimalization construction obtainad in Theorem 4.1 can be applied
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only to monic realizations on a neighbourhood of infinity, or to

comonic realizations an & neighbourhood of 0. This is rather unfortunate,
because in the next chapter we shell deal mainly with monic realizations
on a neighbourhocd of 0. The main operator of such a realization is

invertible. If we write

(4.8) WA) =D + COM - A) B, X e Q< plA),

wa can exploit the invertibility of A to obtain the improper comonic

realization

W) = -ca - h e, 2 eq,

and construct a minimal comonic realization of W on . In this way,
however, the connecticn of realization with a monic linearization given
by Thecrem 2.1 is lost completely. To circumvent this difficulty, and
thereby retaining the possibility tolobtain a monic lin;arization of

W on £, we introduce the notion of biminimality. The realizétion (4.8)
with invertible main operator A is called bicontrollable, if its
bicontrollability space Im [A|B]t: coincides with the state space X

of the realization. Here
oo

+00 n
Im (A[BY__= cllspan U Im (A'B)]

n=-w

is the smallest closed subspace of X that is invariant under A and A

and contains Im B. The realization (4.8) is called biobservable, if the

biobservability space Ker [C|A]i§ is trivial. Here

+00

+00 n
Ker (C[A)__ = N Ker (CA)
n:-oo

-1 .
is the largest subspace of X that is invariant under A and A and is

rontained in Ker C. The realization (4.8) is called bimintmal, if it is
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both bicontrollable and bichservable.

It is clear that minimality implies biminimality. The converse is
true in the finite-dimensional case. This is due to the fact that A
is then an algebraic operator.

As to biminimality, results analecgous to the cnes cbtained earlier
fer minimality can be derived, For instance, to every monic realization
of a holemorphic operator function W on a connected neighbourhood @ of
5, whose main operator is invertible, a biminimal realization can be
constructed on 2. The construction is completely analogous to that
given in the proof of Theorem 4.1. Also any two biminimal reaslizations

of W on & neighbourhood of both 0 and = are quasisimilar.
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IT. SPECIAL CLASSES

In this chapter we shalil apply the theory developed in the first
chapter to several classes of holomorphic operator functions. These
classes correspond to the linearization results appearing in literature.
For an arbitrary operator function in each class, we shall describe a

linearization, a realization, and a {bilminimal realization.

1. Opsrator polynomials

Let Y be a complex Banach space and let L(A) = A£I + Az-iAﬂ-T + o

—_— AA1 + AU

operatcrs from L{Y). Then it is well-known (cf. £111]) that a monic

be a monic cperator polynamial whose coefficients are

linearization of L on € is given by the sg-called first companion

operator of L, i.e.

0o I & i
o I .
(1.1 C1 = . .
. . 1 0
0 0 I
-A e e . T
- U * AE" 1

Further, [L(A} B8 Iy£-13F(A) = E{AYIXT - Cq}, A € T, where the equivalence

functions E and F have the form

5 -I U“
By, (A) B(A) 0
-1 0 3 -AT I '
(1.2) SCO I R R IS I
.. DR TRE [ n. .. AT I

] " i .
Here BOlA] = | and hnlA] N . A£—1 caa ¥ Aﬁ—n'
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The spectrum of L coincides with the spectrum of the operator C1.

1

- - - -1
To obtain & realization of L 1, we write L(A) 1 @I = F(AY(ATL - Cq) E(A)

A e C©\ ZIL), Let the operators U e L(YE,Y] and R ¢ L[Y,YK) be given by

gn , R =ocol & I]K
i=1

{(1.3) Q@ = row [Sin] g s

Since the first row af F(A} is the operator Q and the first column af

1 1 1

E(kf1i5 the operator R, we have LAY " = Q[L.(A) ' ® IR = QIAT - C1]~ R,

A e C\ EZ(L). This is a montc realisation of L‘fI an L \ ZIL), called

the resclvent form of L (cf. [11]1). Because of the equations

[~ 7 E£-1 EE—E

g =I.{3R,IR...R:|=I ,

R
L%

this realization is a minimal realization of qu on T \ I(L}.
In & similar way, a linearization of the polynomial L can be obtained

with the help of the second companion operator CZ ocf L. For details, we

refer to [11].
£-1 £

+ AT A, v A AD be a comonic operator

Let M(A) = I + XA 1

E-—‘1 + LI B
polynomial whose coefficients are operators from L(Y). We associate with

M a monic operator polyncmial L given by L(A) = KKI + A£-1A£_q t i

aee * AA1 + AU. Then lzL[K_ql M(AY, A # 0. A comonic linearizaticn of

Mon T\ {0} is given hy

£ 1,-1

W7 neh - acgrhT d e o {al,

(1.4) M(A} 8 I = (I8 X\

where the equivalsnce functions £ and F are defined by {1.2) and the
comonic linearization C1 by (1.1). A proper comonic realization of M

on £ is given by
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{1.5} MIA) = 1 + A{AQ e A£_1][I - AS) R, Ae €,
where S and R are given by

- £ ~ £
{(1.61 S = [Gi,j-1I)i,j=1’ R = col {diﬂz]i=1'

Note that R is left invertible. Further, 81 is the asscciate operator of

the realization (1.5). Hence, 61 is a comonic linearization of M on Q.
Both comonic linearizations appearing in this section have been obtained

earlier by Gohberg and Rodman (cf. [12]].

2. Holomorphic operator functions with continucus boundary values.

In this section @ will be a bounded Cauchy domain, i.e. a bounded
open set whose boundary 9 is composed of a finite number of disjoint
closed rectifiable Jordan curves. We assume that 32 is oriented in
the posiiive sense.

By C(3R,Y) we denote the Banach space of all Y-valued continuous
functions on of) endowed with the supremum norm. Here Y is an arbitrary
complex Banach space. For the sake of simplicity we shall suppose that
2 ¢ §.

Let A be an cperator function, holemorphic on §, continuous on the
closure €, and with values in L{Y). Let V e L(C(3Q,Y)), T ¢ L(Y,C(3R,Y])},

woe LICa,Y),Y) and M ¢ L(C(3%,Y)) be the bounded linear operators

defined by

(Z2.1a) (VF1(zY = zfiz), (1yilz] = vy,

{(2.1b) iMF)(z) = Alziflz), wf =-;Lr jigl—dc.
2mi 50 T

Then it follows that for wvach y < Y and A & 99
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. Yk Alg) - T
(2.2) olI = MVAAT - V) 1y = 5= {Q 3

y dt,

50 that we abtain the following monic realization of A on Q:

(2.3) AGD = I+ (I - MVOI - V) o, 1 e q.

As 0 belongs to §2, we have WT = I. Since, in addition, the operater

T e L{C(3R,Y)), defined by

! [ [I - Al(g)IF(g)dE,

aq

" is the associate operator of the realization (2.3), the operator T is a

(2.4) (T£)(z) = zflz) - (27i)

manie linearization of A an . In fact we know from Theorem I.2.71 that .

E(AIALA) B Ler w] = (AT - TIF(A}, where the sguivalence functions

are given by

|

1 [ALZ) - 1TF(L)

2,”_1 8(2 C"'l d::

CEA) (y,Ff31(z) = v + F(2) +

(R-ZJ-1[y + fizl1),

[F{AY(y,f11(z)

The monic linearization (Z.4) has heen obitained earliier by Gohberg,
Kaashcek and Lay {cf. [10]). However, they did not make use of the
connection betweenrn linearizaticn and realization explicitly. They
also proved that O(T)} = Z(A) u 3R, To obtain a shorter proof of this,

we argue as follows. As a conseguence of (2.2),

T+ Wl - MV(M - V) T = (AN, Xed

e \ T

I,

So T is a monic linearization of A on R and of T on € \ §. Therefore,
g{T) n @ = Z{A) n Q and O(T) < Q. It remains to prove that 3Q < ol(T).

Suppose this is not the case., Then there exists a point AO € 3% such

that KDI - T i3 invertible. Notice that
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(2.5) T -wfI-MmVaaT - T e = (A", A ea na)

1, XeC\ G

13

So there exists a neighbourhood U of AD such that { n Z(A) g.
Frem (2.5) it is clear that the restriction of A_1 to U n @ has an
analytic continuation to U with value I. Since V is the assogiate

operator of the monic realizetion (2.5}, 1t follows that AD e plvl,

which contradicts the fact that (V) = 3Q. Hence, 382 < o(T).

We suppose that XZ(A) n &€ 1s a compact sub:set of ©. Then o(T) n §
and 9 are spectrel subsets for T. We shall construct an operator VA
such that A and AI - VA are equivalent up to extension on 2, while
G{VA] = (Al n @ = o(T) n f2. Such an operator VA is not difficult to
construct., Let P be the Riesz projecticn of T corresponding to the
spectral subset Z{A). Then V, is defined as the restrictiunhof T to

A

Im P. Since T is a monic linearization of A aon 2 with extension space

Ker w, it follows from the decomposition AI - T = {(AI - Vol 8 (AT - T]|Ker

that the Ker w-extension of A and the Ker P-extension of AI - VA are
equivalent on £.

To obtain an intrinsic characterization of Im P and VA’ we introduce
the following notation. Let MA be the subspace of C(30,Y) consisting of
all f that have an extension toc a vector function helamorphic on a
neighbourhood of T, v @ and vanishing at =, while Mf has an analytic
continuation te . Since we assumed that Z(A) n  is a compact subset of
Q, 1t follows that each f ¢ MA has an analytic continuation to

Em VvV [ECAY n 1, also dencted by f.

P
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THEOREM 2.1. Let L(R) n Q be a compact sub:iet of § and P the Riesz
projection of T corresponding to the spectrul subset T(A)} n of T.

Then

Im P = MA'

while the restriction Vy of T to Im P is given by

_ -
(v, F1(z) = zf(z) ShT 5& fr)dz.

Proof. As a conseguence of (2,3) and I (1.4}, we have far all

A e N\ ZEA):

-1
Y _flz) AL
[OI - T 'flz) = =5 o 5T

- 13F
1. f (ALZ) 1if(z3 dr.

a0 &
Let A be a Cauchy domain such that Z(A) n Q c Ac A c Q. Put T = 3A.
Then the Riesz projection P of T corresponding to the spectral subset

(A) n Q of T is given by

-1
=1 ¢ ADD
(2.5) (PFI(z) = 5= [ —4—

1 f [Alr) - If(z)
2mi

T 2mi 90 T-A

dz di.

Note that Pf has an analytic continuation (again dencted by Pf) to @m A\ A
that vanishes at «. To prove that MPF has an analytic continuatiorn to I,

it suffices to prove that

1 {(MPFI(z)
J

(2.7} - - dz = Alz,l[PF)(z.], Zooe QN A
2mi 50 z zD 0 8] 0
From (2.8) we have
g WP o 1 A (1 Aoy
2wl a0 z-z, 2mi A0 z-24 2mi T Z-A

1 ALY - T
. [;ﬂi ég = f[g)d%]dk}dz.

Asothe veclor funchion mader L inbopral sipn 06 a conbinoous Fonetion in
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(z,A,Z) on the compact set 8Q x T X 3R, we may apply Fubini’s thecrem
and change the order of integraticn. At first, we evaluate the integral
over z, and cbtain

A[ZU} - ALX)

zo-l

1 Alz)

2mi 30 (z—zo][z-A} AeT.

dz =

(2.8)

dy substitution of (2.8}, we get

A(ZD] - A(A)

1 (MPFI(z) 1 -1

7l g 2oz, dz = == { ZO_A AlA) .
1 AlL) - T ..

. [2111 a{z = FECJdC]dk.

We split the integral into two terms. From {2.B6) it is clear that the

first term is equal to A[ZD](PFJ[ZD]. The second one has the form

1 1 1 AL) - T
A =
ST 1[ oz [Z?Ti afsz = fEC]dﬂd 0.

This completes the proof of (2.7). So MPF has an analytic centinuation

to 8. In particular, we proved that Im P < MA'
To prove that MA < Im P, take f € MA' Then f has an extension that
is halomorphic in T \ A, centinuous on I, \ & and vanishes at ®, while

Mf has an asnalytic cantinuation to £. From (2.68) we have

-1
-1 ALA) 1 AlL)F(T) _
(P2} = o | 5 [2“1 S 25\ dg]dx =

r 30
|
- AL aooroua = pz), oz e a0
2W1 T

In particular, we proved that MA < Im P. Hence,

im P = MA‘
From (7.4) and Lho fach thal MF has an onelytio continuation to @

for every f € MA‘ we obtain
(V. $)(2) = 2f(z) - J— [ frydg,  z e aqQ.
A pall 10

Ihis completes the proof.
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In the results obtained above the state space Craq,Y)l of the monic
realization (2.3]) can be replaced by other Banach spaces of Y-valued
functions on 3R where the operators are definnd by the same formulas.
For instance, if A is Hilder continuous of imlex a € (0,1) on 1, where
Q is a simply connected Cauchy region with a piecewise smooth boundary
curve, we may take the Banach space HG[BQ,Y] of Y-valued Hilder
continuous functions of index o on 3% endowed with tha norm

£z, - F{zz)l[

[1£]1] = sup I‘f[z)[[ + sup 3
zedf 21#22689 _ !21“22‘

If Y is a separable Hilbert space, we.may take the Banach space
L?[BQ,YE of all Y-valued strongly measurable vector functions on 3%
that are sguare integrable. For this case, the space MA has been
introduced sarlier by Markus and Macaev in [17]. The operatcr function
considered in [17] is defined an the closed unizt disk. For this case,
Theorem 2.1 has been aobtained by A. Ran, who also observed that the

Ker w-extension of A and the Ker P-extension of AI - VA are eguivalent

on § (cf. [191]1).

In the above considerations the particular form of the state space
in the realizaticn (2.3) did not play a very significant role. This is
gifferent when we tr? to construct (bi)minimal realizations. Let us
restrict ourselves to the cass when Q is simply connected. SUDPOSE
that Y is a separable Hilbert space. Then the Hilbert space inaﬂ,Yl

admits the decomposition
+ -
(2.8} LZ{BQ,Y) = LZ[BQ,Y) 8 LZ(BQ,Y).

Here L;(BQ,Y} is the subspace of LZ[BQ,Y] consisting of all functions
that admit an anmalytic centinuation to 1, while L;[BR,Y] is the

subspace of all functions thal have an exbension to a function



holomorphic an C_ \  and vanishing at =, As in (2.1) we can define
operators V: LZ[BQ,Y] -+ LZ(BQ,Y]; T: Y > L2[BQ,Y], M: LZ(BQ,Y] -

- LZ{BQ,Y],and w: L2(BQ,Y) + Y. These operalors appear to be bounded
while o(V) = 3Q, In the same way as before we obtain the monic
realization (2.3) of A on . Observe that VM = MV. Then we rewrite

(2.3) and obtain

1

(2.10a) AlA) = I + wVIAI - V) (I - M1, Ae Q.

To obtain a minimal improper comonic realization of A on §, we

observe that V is invertible and rewrite (2.10a) as

(2.10b) AV} = T+ off - v 7 - 10T, A e Q.
$00

The observability space Ker (wIV 1J = N Kor (wV ) of (2.10b)
n=0

cansists of all f ¢ LE[BQ.Y) such that

1 £(z)
5= | —=dr =0 (n=0,1,2,...).
2mi 30 Cn 1

From (2.9) it follows that Ker (mlv—j} Lé(BQ,Y]. Identifying the
guotient space LZ[BQ,Y]/Ker {w[V_1] with L;EBQ,Y], we obtain from
(the proof of) Theorem I.4.1 the following minimal improper comonic

realization of A on §:

(2.113 AL = T+ (T = 2,0 B, Ae Q.

Its state space N1 is the closure in L;(BQ,Y] of all functians g given
by g = P _h, where hiz} = 2(Al(z) - I)f(z), ard f belongs to L;fBQ,Y].
Here P, is the projection of LZEBQ,Y] onto L;[BQ.Y} along LéfBQ.Y?.

The operators wy € L{N1.Y], V1 € L[N1] and Eq € L(Y.NQ] are given by

B _1“ () i . -
wqf = 5T | —= dz, [B1y]fz] (Alz) Iy,
s ’
1

(V1I}f/] sl mqff.
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The construction of N1 is performed by dire:t computation using the
fact that the Y-valued polynomials in 2—1 span a dense linear sub-
space of VL;(BQ,Y].

To obtain a minimal proper comonic realization of A on ), we rote
that we have, in addition to (2.3),

(2.12) A(N) = ALD) + Aw(V - AI)_1UMDT, A oe Q.

Here MD € LIC(3R,Y)) is defined by

(M FI(z) = 2 V(ACz) - ALD)IF(Z), z e 3Q.

This coperator can also be defined as a bouriled linear operator on
LZEBQ,Y], provided Y is a separabie Hilbert space. We rewrite (Z.12)

as

ACA) = ACO) + Aw(I - AV"“J"qmor, A e Q.

With the help of (the proof of) Thsorem I1.4.1 and the fact that the
Y-valued polynamials in z—lT span a dense linear subspace of
VL;[BQ,YB, we obtain the following minimal proper comonic realization

aof A on §:

= + - _15
(2.13) AMA) = ALD) + Dy (T - AV,) B, X e Q.

Its state space N2 is the closure in L;[BQ,Y} of all functions g given
by g = P,h, where h(z) = (A(z) - I)f(z), ard £ € LO(3Q,Y). The

cperators w, € L(NZ,YJ, V2 € L[Nz) and 82 € L[Y,NZ) are given by

RIS _ Alz) - A(D)
wyf = 5 afg — dz, (B,yl(z) — ¥,

_ .
{szl{zJ =z [f(z) mZF].

To obtain a biminimal monic realization of A on Q, we compute the

biobservability space XKer [le]i: of the monic realization (2.10a).
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This space consists of all functions f from the state space LZEBQ,YJ

such that

1

= J tMelgide = 0 (mo= 0,1,2,...0.

E1Y)

Since we assumed that § is simply connectecd, it follows that the
realization (2.10a) is bicbservabls. A biminimal monic realization
of A on @ is then given by

1

(2.14) AR} = T - wg(AI - VB]_ B A e 9.

D,
Tts state space ND is the closure in LZ[BQ,Y] of all functions g of

the form glz) = (A{z) - I1)f(z), f ¢ LZ(BQ,Y]. This follows from (the

procf of) the analogue of Theorem I.4.1 for constructing biminimal
reglizations, and the fact that the Y-valued polynamials in z and

1
b span a dense linear subspace of L2€BQ.Y). The operators Wy €

L(ND,Y}, VO € L{NU] and Bﬂ € L[Y,ND} are given by

w. f =

1
o ST gé £(5)dZ, (Boyl(z) = (Alz] - Ty,

[VDF]{ZJ = zf(z]).

Thé computation of the biminimal realization {2.14} can be repeated
for any monic realization of the form (2.10al, provided the state
space is a Banach space of Y-valued functions on 3f! such that the
Y-valued polynomials ipn z and z_fI span a dense linear subspace of it.
Further the operators used to construct (2.10al} have to be bounded.

To repeat the computation of the minimal comonic realizations (2.11)
and [2.13), the state space under consideration has to be a Banach space
af Y-valued functions on 3 that admits a decomposition analogous to
(2.3). This can be done, for instance, if Y is a separable Hiibert
space and the state space under consideration is LD(BQ,Y], 1 £ p < +2,
Then (7.13) coincides with fhe so-called restricted shift realization

ohtained by Fuhrmann (of. P91,
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3. Arbitrary holomorphic cperator functions.

In this section @ will be an arbitrary open subset of T ccntaining 0.
Let Y be a complex Banach space and let A: Q@ + L({Y) be a holomorphic
operator function. By F we denote the Banach space of all Y-valued

holomorphic functions f on { that are bounded with respect to the norm

(3.1 HF|] = sup btz fLz1] ],
zell

Here b(z) = [max[1,[[A(z}]D]_1, z ¢ {i. Note that b is continuocus and that

(3.2} sup blz){|a{z)]] < +e,
zefd

Cefine V: F » F hy

(3.3) Wi tz) = [z Nz - f00)Y, oz e o\ {o).

(0] s z = 0.
Further, let w: F+ Y, tv: Y > F and P: F > F be given by
(3.4) wf = F03), (tyl{z) =y, (PFI(z] = f(0).

Then all these operators are bounded. Moreover, for all A « {2 the

operator I - AV is invertinle and

(3.5a) WlI - A1 15 = $00), fefF
(cf. [8]). Put
[3.5b) {MFY(z) = AlzZ)f(0), fefF, z € Q.

It follows from (3.2) that M is a bounded linear operator cn F. A
straightforward calculation, using (3.5), shows that

1

(3.8a) AA} = I + (I -AV) (M- I)7, A e Q.

(3.6b) ALA) = AMDY + Aw(T - AVI WME, A e 6.
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Now ot = I. Hence, putting § = I + M - P and applying Remark I.2.2(4},

we obtain the following lineasrization of A on s
E(MI[ALAY B IK 1 = (S - AIF(AY, A e Q.
er w

The equivalence functicns E and F are given by

(EO(y, )2} y + (1 - %JF(Z], z e 9\ {0},

y - Af’(0) s z = 0,

and

y + flz) - {Alz) - A(X))y

Alz) - AlA)
A — y, ze @\ Al

y + FIA) - AA(Ady , z = A,

il

(FiA)(y,F)i(z)

Ihis lipnearization has been obtained by Den Boer without the help of
a realization (cf. [81). If A(G) is an invertible operator, we can
obtain from eguation (3.6b) the following comonic linearization of A

an f2:

-1
£(z) ~ Alz)IA(0) (03 2 e QN {o}.

[TDf)(z) = . s

e (0) - A'(0IAD) #(0), z = O.

We now prove a theorem that will be needed in the next section.

THEOREM 3.1. Let AD be an isoclated point of © \ Q. Then the following
statements are equivalent:

(1) The operator function A has a removable singularity in AD'

(2) Every vector function f ¢ F has a removable singularity in Age

(3) I - AOV ig an invertible operator.

Proof. (1) = (2} Suppose lﬂ is a removable singularity for A. Because
b(z) = [max[1.l[A(z][!]]-1, 2 ¢ §, the function b is bounded away from

soro in a deleted neighbourhood {! of RD' Tt follows that every f ¢ F
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is bounded on U. But then AU is a removable siﬂgulérity of f too.

(2) = (1) For every y € Y, the vectar function Mty has an analytic
centinuation to QU {AD}. Ohserve that (MTy)(z) = Af{zly, z € .

Since y € Y has been chosen arbitrarily, A has an analytic sontinuation
to & u {RD}.

(1] = (3) Suppose that A has an analytic continuation to Qv {XD}. Then
we already know that every f ¢ F has an analytic contipuation to

Qu {AU} too. Put AlAg) = lim ALAY, -F[?\D} = 1im f(A) and

- =1
blAy) = Lmax {1, |A(AD]||}] .

Then there is a natural norm iscmorphism between F and the Banach space
¥ of all Y-valued holomorphic vector functions ¥ on f U {RD} that are

nounded with respect to the norm

(3.7) l1e]| = sup biz)| 1F(z3}t.
zEQU AD}

Since V € L(F)} is similar to an analogous cperator on ?, it follows
that I - ADV is invertible.

{3) = (1) This is clear from (3.6a).

The realizations (3.8a) and (3.6b) have as their pbservability space
the subspace consisting of all f ¢« F such that wV''¥ = 0, n = 0. Since
+00

FO = I - F = 5 AT

n=0

in a neighbourhood of 0, it follows that the observability space
ker (w|V) is the subspace of all ¥ « F that vanish on the connected
companent of { containing 0. So the realizations (3.8a) and {3.6b]
are observable 1f and only if 0 is connected.

o obtain « minimal improper comonic realization of A, let us

supprer: Lhol &0 Tn connee bl Then Lhe toealisatdons E306a)l ced £3060)
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. N o B . -1 _
are observable. Putting CD{z] Aiz) I, Cn+1(z} z [En(z] Cn[B]E,
z € 2\ {0}, while Cn+1{O] = Cé{D], we obtain the fellowing minimal

improper comonic realization of A on §:

) _ -1
(3.8) AV = T+ wy(I - V) By, A e Q.

£

Its state space XU is the closure in F of all functions I Cn(.)yn.
n=4g
where Ygr++-sYp Tange over Y independently .ind £ ranges over the

nonnegative integers. The operators Wy XD > Y, BD: Y + XD and

VD: XD e XD are given by

mU? = £{0J, [Boy](z] = (Alz) - Dy,

(v ) (z) - 2 f0z) - f00), z e 9\ {0},

fr{0) . z = 0.

Observe that wg, VG and B, are bounded whil: I - AVD is invertible for
all A € 1. The proof of (3.8) rests upon th: construction given in the

proof of Theorem 1.4.1.

4. Holomorphic cperator functions on & bounded domain.

In this section  will be a bounded cpen subset of C conteining O.
Let Y be a complex Banach space, and A: Q - L{Y} a holcmorphic opsrator
function. In the previcus section we intreduced the Banach space F of
all Y-valued holomorphic functions an § that are bounded with respect
to the norm (3.1). The weight function b in this norm is, as previously,
given by b(z} = [max[i,[!A{z][Iqu, z € §2. We adopt all notations from
Seéticn 3. In addition, we introduce the Banach space G of all bounded
Y-valued holamerphic functions on Em \ 1 that vanish at o, gndowed with

the supremum norm. let X bo the direct sum of F oand G,




35

Consider the operators W X - Y, Vi X > X, M: X > X and T: Y + X

defined by
(4.1) Wif,g) = 1im wglw), Ty = (1y,0), M =M g I,
LU-%-(X}
(4.2) Vir,g) = (.5,
?{z] = zFf[z) + lim wglw], z € 8,
w—wo
E(z] = zglz) - 1im wg(w), z e L\ Q.
oo

Here the operators M and T are given by (3.5b) and (3.4) respectively.

~

The operators 3, V, M and T are bounded {ci. [8]). By direct computation,

it follows that (V) c aQ and for A €  we have
(4.3) V- an Ve - (B,

(z - M7 ) - F00), z e @ A}

¥[z]

Fr{x) . z = A,

V -
g8(z) = (z - M) iglz) + f00)),  zer A\,
From this, we obtain the following moniec realization of A on O:

(4.4) AV = T -%0I -W TN - DY x e ol

Next we want to give a (partial) description of the spectrum DF‘U.

By V+ we denote the restriction of V to F. Thus V+: F+F is given by
(4.5] WV, fl(z) = zf(z], z € {,

Note that olv_ } = Q.

THEOREM 4.1. ALl limit points of the boundary of Q belong to g(V).
An tsolated point of the boundary of Q belongs to a(Vy, tf and only
if it 18 not a removable singularity of the operator function A.

Proogf. Let An be & limit point of . Suppnse that AG € Q[VJ. Thean
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there exists a ccnnected neighbourhood U of AD such that U ¢ p[VJ.
Since the operater \!+ given by {4.5) is the restriction of V to F,
gither U < p(V } or U = o(V ). Since {l intersects both  and T \ R,
and olV ) = @2, we obtain a contradiction. Hence, AB e o{\V).
Now let A be an isclated point of 3R. If X « p(V), then it is
a direct consequence of (4.4) that A has a removable singularity in AD'
Conversely, let XD be a removable singularity of A. Then it follows
from Theorem 3.1 that all ¥ ¢ F have an analytic continuation to
Qou {AD}. Recall that there is a natural norm isomophism from F into
the Banach space F of all Y-valued holomorphic functions on Q u {AD}

that are bounded with respect to the nerm

[1#}] = sup b(z][[F[z)[[.
zeQu{ryl
Here bfkﬂl - 1im b()A). Observe that V is similar to an analogous operator
;\-*?\g

from L{F 8 G). But then (V) < 3(Q v {RD}) so that AG € pr).

This completes the proof.

To abtain a monic linearization of A on £, we define the operator
T: X+ X by

Tif,g) = (F,2)

Flz) = zf(z) + Alz) lim wgln), z € 9,
{y>00 _
glz) = zglz) - lim wglwl, Z € Ew \ .

Ly roa

Then T is bounded. Since T = V + (M - I)7w, it follows from Remark I.2.2(1)
that T is g monic linearization of A cn f. In particular,

(4.6a) E{(AILALA) B IKer m] = (AT - TIF(AD, hoe 0,

P~ ~

where the eguivalence functions E and F are given by
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(4.8b) E(A)(y,(F,g)} = (fE,gE],

FE[z) = -y + (A-z)Ff(z) - lim wglw), z e R,
N

gEfzJ = [A-zlglz) + éig wglw) + Az_qy, z e O\ Q,
and
(4.6c) F[A][y,[f,gJ; - CFeagl),
folz) = f(z) - (220 (AGz) - Ay,  z e 9\ {A},
F2(0) = g(A) -~ A* M)y,
gF(z] = gl{z) - [Z‘A)-qu[AJ - Ily + 2_1A(AJy, z e,

This linearization has been obtained by Den Boer without using the

connection between linearization and realization explicitly (cf. [8]).

A similar result has been obtained earlier by Mitiagin (cf. [181). We
note that the assertion apperaring in both {8] and [18] that o(T) and
(A} v 30 coincide is not correct in general. A (partial) description

of the spectrum of T is given by the following theorem:

THEOREM 4.2. The spectrum of‘? has the following properties:

1. 0T n @ = 2tA), oM T,

2. ALl limit points of the boundary of 0 are contained in o(T),

3. 4n isolated point AO of 3 does not belong to o(1), 2f and only if
AQ has a deleted neighbourhood on which A(A) is invertible, while
both A and A have a removable singularity in AD'

Ezggi. For the proof of the first property, we refer to [8].

Since the eperater V, given by (4.5) is the raestriction of T to F
and G[V+} = Q, we prove as din Theorem 4.1 that all limit points of

3% belong to a(T).

Q
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iet KO be an isclated point of 3f. If RD € p[?), then clearly AD
is a removable singuiarity of A—ﬂ. Therefore, we may assume that AD
has a deleted neighbourhood U on which A(A) is invertible. Let T be

a positively oriented circle in U with centre AD' Note that for

Ae R\ TIA)
(F - A1) ViFg) = (F,.g4)
'g Aagx »
£ (z2) = (tz=0) Tefizy - f00),  z e @\ {A),

A
Frial, z = A

1

(z) = (z-0) gzl + AOD RO,z eC \ T

Y
Take a fixed 7z € §1 in the outer domain of T'. Since A -+ fk[Z] iz a

holomorphic vector function on 2, it is clear that

1 £ 1
27mi { A-z di = 27

[ £,(2)dx = 0.
r

Because z is an arbitrary point from @ in the outer domain of T, it
follows that f has an analytic continuation to 2 u {AD}. From Theorem 3.1
it follows that AG is a removable singularity of A. That AD is a

remaovable singularity of A—1 too, is clear from the fact that
AT = 1T - TR - DT, ) e 2\ DA,

This identity is obtained from (4.4) with the help of (I.1.3).
Let AD he a removable singulearity of both A and A_q. From (the procf
U?] Thecrem 3.1 it is clear that there exists a natural norm isomorphism

batween F and the Banach space F of Y-valued holomorphic functions on

Qv {kD} that are bounded with respect to the norm introdyced in (3.7].
Observe that T is similar to an analogous operator on F B G. By virtue

aof Lhe £lrsl part of Phe present Lheorom, A o pl e Thils completes the

prooft,
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The biobservability space of the monic rsalization (4.4) is the
subspace of X = F 8 G consisting of all (¢,y) € F & G for which
EV”[¢,¢J = 0, n e Z 7o determine this subspace, we compute V”[¢,¢3,

n e Z For e2ll non-nsgative integers n, we have

(4.7a) Ve,0) = (3.9),
d2) = 2o+ My e TR e s b zeq
biz) = znw[z] - fzn_1¢ gt zi—zw_z LS RV ze T NG,
- -n o0
(4.7b) VI e = LY,
$iz) = z_(n+1}{¢[z] MG PR z”¢n1}, z e Q\ {0},

¢n+1 4 z=0
¥ ~{n+1) =5
Vizd =2 ) ¢ oy ¢ 20y ¢ e+ 2% )Y, z e\ T
Here the lLaurent series of ¢ in 0 and P in = are given by
+00 +00
(4.8) 6lz) = £ 2%, Plz) = T z Ty .
n -n
n=0 n=1
vvil) _ arv- (1] _
From (4.7a) and (4.7b), we have wV (¢,¥) = ¢—[n+1] and wV (9,9) = ¢ﬂ

{n = G,1,2,...). With the help of {4.8), it is clear now that the
biobservability space of the monic realization {4.4) consists of all
{¢,¥) such that ¢ vanishes at the connected component of § containing

0 and Y vanishes at the unﬁounded component of € \ Q. So the realization
(4.4) is biobservable, if and only if § is simply connected.

To obtain a biminimal monic realization of A, we supposé that @ is

. +oo
simply connected. If A{z) - I = £ 2z'A near 0, then Dk+1 is the
n=0
restricticn ta  of the Y-valued polynomial given by Dk+1(zl = AD + zA1 + ..
ree ¥ zKAk, k 2z 0. Let us define C1’C2' 32+ @S in Section 3. Then we prove

with the help of the equations (4.7) that the bicontrollability space
~ ~ ~
Lm{VI[M : l]T}_m conslotys of Lhe closure o 40 F B G of alt urdoeresd palres

{(f,g) of the form (f,g) = (f, + ., g} wher. £,, ¥

.1 ” 1 2 and g have tha form
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r
Fq[zl = ? Cn+1[z]xn, Fz(z} = [Alz) - I}
(4.9) )

-{n+1) ) =~
z Dn+1(z)xn, z - 0, \ L.

Here Xsoee X ahd yU,....y£ ranges over Y independently, while e=ach
of the numbers r and £ range over the non-negative integers. Thus we

obtain the following biminimal monic realization of A on 9:

AV =T+ 3,01 -V E,, Aeq.
1 1 1
Its state space is the bicontrcllability space X1 of the realization

{4.4) which consists of the closure in X = F & G of all ordered pairs

. £), where F1, f2 and g are given

U

(f,g) of the form (f.g) {€1 + f

2

by (4,8)., The operators E?: X? =+ Y and vi: X1 - X1 are the restrictions

of w and ¥V to X respectively. The operator Eq: Y »+ X1 is defined by

1

qu = ($,0), where ${z) = (Alz} - Ily, z € & The operatorslaq, V1 and

§1 appear to be bounded.

5. Entire operater functions

Let Y be a complex Banach space and ﬂq{Y} the Banach space of all

Y-valued sequences {yﬂ];T1 that are bounded with respect to the norm

400
[ Cyyoygovgee 3l = 2y I
n="

Suppose that A is an entire aperator function whose values are operators

from LIY). Let
+00
A(A] = X AﬂAn, Ae C,
n=0

be the Taylor series of A in 0. Abbreviate Y 8 £?{Y} by X. Put a =

1 .
= sup I{An]| /n. Then Oy 2 Uy 2 ono > 0 and lim o, = .0. Let BO = 1 and

n=k k-++o0
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B!< TG e K= 1,2,3,0..0 0 IF A dis not a polynomial, then BK Z 0,

K =1,2,3,..., while

. -1 . _
lim BK BK_1 = lima_ = 0.

K400 K—=+co
From this 1t follows that 1im 81/K = 0. If A is a polynomial of degree £,
Ko 1/k
then BK = 0, x 2 £+1, and hence trivially lim 8 = 0.

K->+co

Define the operators w e LIX,Y), T ¢ L(Y,X) and V « L{X) by

(5.1a) wiyu: yq,yz,ya....) T Vg Ty S (v; 0,0,0,...),
[(5.10) V(yD: yq,yz.ya,...l = (0; aqu.a2y1,u3y2,...].
Then | VS]] = Be» € 2 0. So (V) = {0}, Therefore, I ~ AV ¢ GL{X),

A e €, while
_ =1 _ . 2 3
(5.2) (I AV) Tty EBOy. X81y,A Bzy,l Bsy,...).

Put £ = sup{k: Ao # 0}. Note that £ is finite, if and only if A is

a polynomial. Define the operator M: X - X by

£
-1
(5.3a) MY s YasVosVasaedd = (5 B, A.y.y 0,0,0,...).
0 17°72°73 5=0 30373

This operator is well-defined and bounded. The boundedness of M is

clear from the estimate

(5.3b) Hadl = tha 1™ cad <8, (5= 4.2.5...05.
J J J J

From {5.1a), (5.2) and [5.3) we obtain the following improper comonic

realization of A on :

1

(5.4) ACAY = T + w(M - I)(I - AV) 1, A e,

Define T e L(X) by

£
_ -1
(5.5} T{yD; y1,y2,y3,...) = [jfa Bj Aj yj; yq.yz,ya,...].

{0} m 21{Y} and (I - AV) + Tw(M - I} = T - Ay,

Since wr = I, Ker gy

it follows that the 31{Y}—extension of A 1s eguivalent on T to the
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linear gperator pencil 7 - AV. In fact,
(5.6) E(AI{ACX) & Iﬁq{Y}] = (T - AVIF(A), A €L,

where the equivalence functions E and F are given by

I+ (I - A T - 1w,

1

E(A)

F(A) = (I - AV)

A straightforward calculation shows that
-1 Lk 1

E{k]{y HER' 2 Y ,---) = {y + z AK Z B-, A, V jiY¥a a2y ’lI'}D
0} Y1:¥2¥3 R IS I ] M

F(A)(ya; yq.yz,ya,...] = [ L AR 8y

Here we read £-1 and £-x as « when £ = =,
The linearizaticn (5.8) has heen derived earlier by Den Boer. It is

a generalization of a linearization obtained in [10] for entire operator

functicns of the form

OO
AGM = £ A"a., AeL,

n=0 "
for which |[An|] < Y{n!]_1 (n =0,1,2,...3,

The controliability space of the realization {5.4) coincides with X,
unless A is a polynomial. In case A 1s a polynomial of degree £ the
controllability space of the realization {5.4) consists of all sequences
[yn)ﬂ from X such that y_ = 0 (n = £+1}. So the realization {(5.4) ié
controllable if and only if A is not a polynomial. The observability
space of (5.4), however, is not easy to compute.

Instead of ﬂq{Y}, we can take as the extension space the Banach
space KD{Y} aof all Y-valued seguences (yn):f‘,l for which (||yn|l]n beiongs
L ?p. Hirn 1 < p o« veor The norm of such a aequonce will be the norm of

[;|anlJn in Fp. L s clear Lhal L operalors w, 1 ooand Voeon by slof [ned
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as in [5.1). In arder tc ensure that the operator M given by (5.3) is

well-defined and bounded we now take

1/
a. =2 sup [|A]] N, ok =1,2,3,... .
nzx

One then has the inequality

(5.7) |lAj|| = [IlAjH“j]j <233 <27 (5= 1,230,
and. hence

£ -1 q
OB, |[A]]]7 < e,
jo0 3 A

Here p_1 + q-i = 1., In the same way as before, we derive the realization
[5.4) and the linearizafion (5.6) of A on E. Further, if 1 € p < +»,

the resalization (5.4) is controllable, if and only if A is not a polynomial.
If p = +, then the realization (5.4) is not controllable, regardless of
the choice of A. In fact, if p = +» and A is not a pelynomial, the
controllability space of the realization {5.4} is the Banach space

Y 8 CD{Y}. Here QD{Y} is the closed subspace of £ _{Y} consisting of

all seguences [yn]n that tend to zero.
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ITI, EQUIVALENCE WITH A FRACTIONAL LINEAR FUNCTICON

1. Equivalence and realization

In the first chapter we discussed the'notion of eguivalence for
holomorphic operator functions. Here we shall (mainly) deal with
meromorphic functions. Thersefore it is necessary to extend the notion
of eguivalence.

Let Q be an open subset of the Riemann sphere C_ and X1, X2, Y1 and
Y2 complex Banach spaces. Suppose that for 1 = 1.2, Ai is an L(Xi,Yi)-
valued operator function on @ that is helomorphic on 2 except for
isclated singularities. Then A1 and AZ are called equivalent on Q, if
there exist operator functions E: §{§ -~ GL[Yq,YzJ and F: 1 = GL[Xz,X1],

holemorphic on all of 2, such that
AZ(AJ = E[AJAQ(KJF(K}

for all A e £ outside the singularities of A1 and A2. As before, E and

F are called equivalence funetions. The operator functions A, and AZ

are called equivalent up to extension on 2, if there exist complex

Banach spaces Z1 and 22, called extension spaces, such that the 21~
gxtensiaon of Aq and the Zz-extension (s33 AZ are eguivalent on §. It is
clear that the notion of equivalence (up to extension) is defined for

any pair of meromerphic operator functicens an §2. Two meromorphic operator
functions that are equivalent up to extension have the same poles, pole
multiplicities and partial multiplicities (cf. [4, 13]).

To generalize the notion of realization, let & be an open subset of C,

and Y a complex Banach space. Suppose that W is an L{Y)-valued aperator



46

function on 2 that is holomorphic except for isolated singularities,
A monic realization of W on O is a representation of W in the form

WA =D+ car - a7 '8, xeqn s,

where A ¢ L(X), B e L(Y,X), C e L(X,Y) and O « L(Y), and the sst

L =0(A) n Q is discrete in . The Banach space X on which the main
operator A is defined is called the state space of the realization.

If 0 is invertible, the associate (main) operator A* = A - B0 'C is
defined as in Seection I.1. Note that I contains the singularities of the
the operator function W, and that the notion of realization defined
above generalizes both the corresponding notion in Section I.1 and

the notion of {(monic) realization currenmt in system theory {(cf. [1, 14]),

2. Fractional linear operator functions

Earlier we proved that Up to extension every holomorphic operatar
function is eguivalent to a linear operator polynomial of degree (at
mast) one. Now that the notion of equivalence has been generalized to
meromorphic operator functions, we wént to establish a similar result
for meromorphic operator functiens. In view of the fact that a mero-
merphic function can always be written asxthe quotient of two holomorphic
functions, it is reasonable to expect that the role of the linear
operator pencil will be played by a function of the form (AT - K}(AI - A]‘1
or (AL - A) (AT - A).

It is convenient to introduce the following noctions. Let Q be an
open subset of T and Y a complex Danach spaie. Suppose that A and A
are bounded linear operalors on Y, and let alA) n Q be a tdiscrete subset

ot §l. Then the operator function
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ig

(AL - )

(AL - A)
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(AT - A}

Similarly, the operator function

Tar - ™

on . For quotients of monic coperator polyriomials, such as rational

matrix functions, we have the followipg result.

THEOREM Z.1.

£-1

A

Ye-1

1

+ ..

Let W be an operator function on Y that can be written

. R

as the quotient WA = PR

and Q, while the spectrum of O is a discrete set. Suppose that
pa) = abr - K£_1P£_1 + ..+ Ppoand Q00 = A1

Then

Here Cq,P

and C1,m

7 e oo™,

Q

are the first companion operators of the monic

polynomials P and § respectively, while the equivalence fiunctions

Eq and EQ have the form
[P
Bg (A) venne--
-1 &
0
EP(A] = . '._
0 verenen ‘o0
{(P) ()
Here BU (A} = BQ (A)
sl o0
n
RIS

, En (A

It
—

called a right fractional linear operator function (right f.l.o.f.)

of the monic operator polynomials P

called a left fractiomal linear operator function (left f.l.o.f.) on

g
A e L(Ql).
(3
........... By (A
0
"0 -1 0
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Proof. By virtue of the linearization result for monic cperator
polynemials {cf. Section II.1), thers exists one single eqguivalence
function F such that

-1
’PJF{A] s
1

PO B Typ-q = E;(0AT - C,

B 8 Typq = EgINOI - €, IF(A)

1

From this the desired result is clear.

From the preceding thesorem it is clear that, up to extension, every
ratiopal matrix function W such that W(») - T is equivalent on £ to a
left f.1l.0.f. Similarly, we prove that, up to extension, W is equivelent
on T to a right f.1l.0.f. To see this, write W(A) = E{RJ_1$[K) as the

guotient of two monic matrix polynomials ] and §. Then, up %o extensicn,

}i Here € ~ and C_ ~

. . -1
W is equivalent on T to (AI - C_ ~) "(AI - C 2.7 2.7

2,3 2,P
denote the second companion operators of 1 and ﬁ respectively.

The idea to write a meromorphic operator function as the quotient of
two holomorphic operator functions suggests a gensral procedurs to make
@ given meromorphic operator function equivalent up to extension to a
left {right) f.l.o0.f. This procedure is described by the next thearasm.

Although at first sight the theorem may look rather restrictive, it

nevertheless renders the most general result.

THEOREM 2.2. Let Q be an open subset of T. Suppose that W, and W, are
two L{Y)-valued holomorphic operator functions given by the monice

realizations

W (A} = T+ 0T - M Te, dene o(A), 1 = 1,2,

where A ¢ LIX), C, ¢ LIX,Y), ﬁ? e LIX,Y)Y and B ¢ L(Y,X). Let B have «

1

* + B - * -
left inverse 31 cand A: N e (i - 1,27, [j'a[A;J n Qi a diserete
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1

subset T of Q and W(X) = w1(AJw2[AJ" , A e Q\ %, then a monie

realization of W on Q 78 given by

(2.1) W) = T+ (C, - C)OMI - A;J'qa, e QN I

Further, the Ker B —~extension of W is equivalent on Q to a left
fractional linear operator function. In fact,

1 1

, -1 _ X .
{2.2) E1(AJEWEK1 B I B+]E2[l] = {AI Ai}[AI Ayl s e QN L,

Ker
where the equivalence functions E1 and E, are gtven by

By + z + BC,(AI - Az, req

By + z + BCZ(AI - A)-12. A e .

eqll(y,z]

i

Ez(l](y,zl

Froagf. A straightforward computation, using that BCZ = (AL ~ A;J -

- (ATl - A), yields

WA

-1 x, =1
[I + Cq[AI A) BI.[I - CZEAI - A2] B]

X, =1
I+ [C1 - EZJ{}I - AZJ B.

From Theorem I.2.1, we kngw that for i = 1,2

Ei(l}(y,z) = By + 2z + BCi[AI - A)_TZ, X e Q,

where E1 and E2 are as above, and

F (N {y,2) = F,00(y,2) = DM - a By + 20,

From this (2.2} i1s clear.

If WA = NZ{A]_1W1£A}, Ae 2\ L, and W, and W, are given by
Wi(X) = T + C{AI - A]_qBi, e cplA), 1 = 1,2, while C has a right

inverse C+, then W is equivalent up tc extension to the right f.l.0.f¥.

(AL - A;)_1[XI - A Here AY < A - BT (1= 1,2). In fact,

_ -1 . S X
WA} 8 IKer c - Fz[k] (AT Azl (AT A1)Fq(l}, Ae QN L,



50

where the eguivalence functiocns F1 and F_ are given by

2

F (A (y,2) = 'y + z - (1-ctC)y(AT - AJ““Biy, Aef, i=1,2.

This follows from Remark I.2.2(1). Further, an easy computation shows
that

WIA) = T + C(AT - A;J_1(81 -B), AeQ\ 3.

2

With the help of the remark following Theorem 2.2, we prove

THEUREM 2.3. Let Q be a bounded open subset of €T and W: Q0 + L(Y)

a meromorphic operator function. Then W is equivalent up to extension
on § to a right fractional linear operator function,

Proof. It is clear from the Weierstrass product theorem that there
exist holomorphic gperator functicns W1, WZ: =+ L(Y] such that Z[wz}

coincideswith the poles of W and W(A) ='w2[AJ'1

Wq(hl, Ae Q0N Z[wzl.
Let G be the Banach space of all Y-valued bounded holomorphic functicons
on € \ @ that vanish a8t ®, endowed with the supremum norm, and F tha

Banash space of all Y-valued helomorphic functicns on Q that are bounded

with respect toc the norm

HIFl| = sup b(z) |1Fez) ],
zef)
where
-1
blz) = [max(1,[]w, (z)]], W, z)[[37 .

ODefine the operators M1: F + F and MZ: F > F by

[qu}[z] = wq(z)f{ﬁ}, [M2¥}(2} = WZ[ZJf(DJ, z e §l.

Since sup b(z]][Wi[zlli <+ (i = 1,2), the operators M, and M, are
zefl
bounded (cf, Section II1.3). Define 'ﬁi € L(F & 6) by M, = M, 8 I
(1 = 1,2). The operators w e LIF B G,Y), Ve LIFB8G) and T « LIY,F 8 )

are dafined as in Section 11.4. Far 1 - 1,2, put ?i =V [ﬁi - 1170.
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Then ?i is the asscciate operator of the monic realization

W 0 = T - BOT - V]"“[ﬁi 0%, req,

~t

of Wi on {. Note that W is right invertible with right inverse w

given by
~it —’] ——
wy = (0,gl,g(2) = z 'y, z e T\ .
From the remark made after Theorem 2.2, we have for Z = Kerla+
-1 ~ =1 ~
WlA) & IZ FZ[AJ (AT - T2] (AT - T1]F1(A], Ae 1N EENZJ.

The equivalence functions F1 and F2 can be gbtained from {(II.4.8) by

replacing A by w1 and w2 respectively. This completes the proof.

With the help of Den Boers linearizatiorn result (cf. Section 1I1.4) we
proved above that every meromorphic operator function or a bounded open
set is equivalent up to extension to a right f.l.o.f. The analogous result
invelving ecguivalence dp to extension to a left f.l.o.f. is also true
and follows from a linearization result of Mitisgin (ef. [181).

.As a final application of Theorem 2.2, we derive a manic realization
for rational matrix functions that is well-known in system theory
(cf. [1]). Let W be a rational matrix function on " such that W(w) = I.
Put WlA) = PEA]G[A]—?, where P and Q are two monic matrix polynomials of

£ £ £-1

= + £-1 + + = + +
the form PLA)} = A7I + A P cee + Poand QAT = AT+ AT G, can

- = £-1 + +
POU - GO0 = X7 16, * ... * Ay + Bp, A e L

Then for i = 0,1,...,£-1, we have Gi = Pi - Qi. According to Section I1I.1,
-£ _ -1
AP = I - Py .0 Py (JOAT - 8] R, X e TN {0}.

vioon =1 [0 eee By 1A - s37'/R, A e\ {0}
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Here § and R are given by {II.1.6). From (Z.1), we cbtain

-1
. = .. AL - ,
(2.3] W(AJ I+ {GU 32—13( I C1,Q} R
. . . nif~1)
where C1 Q is the first companion operator of Q. Further, the € -
extensicn of W is eqguivalent on € \ {0} to (AI - C. _J(XI - © ]_1.

1.P 1,0
Hence, in this particular case Theorem 2.2 gives a less general resclt
than Theorem 2.1 insofar as thae sguivalsnce up tc extension of W and
(AT - qupJ[AI = C1,Q]“1 is obtained on & proper subset of T instead
of on the whole of I.

3: Fractional linear operator functions on a finite-dimensional space

In the previous section we proved that, up to extension, BVETY
rational matrix function W such that W(A) = I is equivalent nn T %o
a left [right] f.l.0.f, This f.1.0.f. has the form
(AL - AAT-m7T LT - AT - A1, where A and AY are the main
and asscociate operator of a monic realization of W on C {cf. Theorem 2.1
and Equation {2.3)). On the other hand, there exist rational matrix
functions W that have a monic realization on € with main operator A and
associate operator A such that W is neither equivalentlup to extensiogn
to (AI - AS)(AT - A]_1 nor eguivalent up to extension to [AI - AJ_1(AI - A
on L. As an example, zonsider the matrix function

A ro 4.

1]
It
—
+

W(A)

Because the main and associate operater coincide, W cannot be equivalent

1 1

or (AT - A) (AT - AT

up to extension to either (AL - A®)(AL - A) 1.
These considerations lead to the question as to which monic realiza-

tions of a rational matrix function W of the form
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(3.1) WM = I+ C(AI - A) 'B, A% =4 - 8C,

are eguivalent up to extension on T to the left [right] f.l.o.f.

1

{AI - ACY(AT - A) L(AT - A]_q{AI ~ AXJ]. This guestion 1is partially

answered by the next theorem.

THEOREM 3.1. Let W be a rational matrix function with monie realization
(3.1)}. Then, i1f any pair of the statements below is true, the third
one i8 also correct.

1. W 28 equivalent up to extension on T to the left fractional linear
operator function (AL - AT - S

2. The realization (3.1]1 18 minimal.
1

3. The realization I + BCOAI - M) of (AL - AYAT - A) | i minimal.
Progf. Let the First statement be true. From system theory we knaw that
the McMillan degree of a rational matrix function coincides with its
minimal state space dimension [pf. [Z1, 3] for the definition and the
main propertigs of the McMillan degree). Further, the McMillan degree
is invariant under eguivalence and extension. Because the monic reali-
zations (3.1} and I + BC(AL - A}_1 have the same state space, the

seeond statement is true, if and only 1f the third one is true.

{ gt the second and the third statement be correct. Recall that the

partial pole (zero) multiplicities in the point AD ¢ T of a raticnal matrix

matrix function Z with Z(=») = I coincide with the partial multiplicities
in KD of the main (associate} operateor of a minimal monic realization of
7 on € (cf. [3], Section 2.1). Note that the realizations (3.1) and

I + BCCATI - P\)*/| have the same main and associate operator, and are

both minimal. So, at each point AD in T, the partial multiplicities of

Woand (AT - AY(AT - .‘\J»lI coincide, except possibly one, which is -equal

¢ o e AR
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to the first zero multiplicity of (A-A;JW(A) and (A-X )AL - AT - a7
in AD' Recall that, at each point AO in T, the sum of all partial
multiplicities of W ang (AT - Ax](kI - A]_1 is equal to n and m respec-
tively, where n is the size of W(A) and m the dimension of the state
space of the realization (3.1). Therefore, at sach point AD in T, all
partial multiplicities of the EmHX[m—n’Q]-extension of W and the
Emax{n—m’UJ-extension of (AT - AXJ{AI - A]—1 coincide. From Gohberg

and Sigal [13] it is clear that W and (AT - AS)(AT - A}_1 are locally
eguivalent up to extensién on L. By virtue of a well-known result of

Leiterer (cf. [151), W and (AT - A®)IAT - F]—q are glaobally equivalent

up to extension on C. This completes the proof.
Similarly, we get the following result.

THEQOREM 3.2. Let W be a rational matrix function with monie realization

(3.1). Then, if any pair of the statements below is true, the third

one 18 also correct.

1. W ts equivalent up to extension on T to the right fractional linear
operator function (NI - AJ"1(AI - A,

2. The realization (3.1) Zs minimal.

3. The realization I + (AI - AJ—1BC of (AL - A}—?[AI - A") is minimal.

As to the minimality of a monic realization of the form I + BC(AI - A]-q,

the following can be mentioneqd.

PROPOSITION 3.3. Let W be a rational matriz function with a monie
realization of the form (3.1) and suppose that the state space of (3.1)
18 finite dimensional. Then the following statements are equivalent:

1. The monte realization 1 + DUIAL - A}_1 T3 minimal.

2. The monic realization L + ALIA] - A]_1 18 observable.
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+o0
3. The subspace N ker(A" - A"y is trivial.
4. For each X\, enf;:? Ker(A I - A) n Ker(AjT - Ay = {a0}.
5. The penctls A1 - A and AI - A" are left coprime.
Proof. Obviously the first three statemenis are eguivalent, while the
third statement impiies the fourth one. The equivalence of the fourth
and the fifth statement is well-known in system theory (cf. [11). It
remains to prove that the fourth statement implies the third one.

400
To see this, note that M = n Ker{A" - Axn) is an A- and A®-invariant
subspace of the state spacen;E the realization (3.1} such that the
restrictions of A and A to M coincide. Sinca for all AD € T the spaces
Kar(RDI - A) and Ker(ABI - A®) have a trivial intersection, and the

state space of the realization (3.1) is finite dimensional, it follows

that M = (0). This completes the proof.
The dual of Proposition 3.3 is given by the next proposition:

PROPOSITION 3.4. ZLet W be a rational matrix function with a monic
realization of the form (3.1) and suppose that the state space of (3.1}
is finite dimensional. Then the following statements are equivalent.
1. The montc realization 1 + (AI - A]_qBC ig mintmal.
2. The monte realization I + (Al - 8) 'BC 48 controllable.
£o0
3, The subspace span U A" - A1 is the whole state space.
4. For each Ay € L, I;?gal - A} + Im[AOI - A%) is the whole state space.

5, The pencils AT - A and AL - 2 are right coprime.

Theorems 3.1 and 3.2 only give a partial answer to the question
asked ahove. A related guestion is the following. If & rational matrix
founction W wilh a monlc realisatinn of Lthe form (3.1) is equivalent up

. . . . # 1
to wxbtonslon on O Lo Teth Folon.te 1A ACIEAL - AL L 1n TL albg

. ; -1
eguivalent up to extension to tae right f.l.o.f. (AT - AY (AL - AK]?
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This guestion is answered in the negative by the following example:

o A\ o
= I+ I -171AI - .
g 0 1

i 1 0
(AL - A9 01 - a7 4l
-2

WEA) = 1 -

e

9]
"
)‘-—2

-1 .
Lo 1A

—_

(AT - AY (AL - A%

So (AT - AX)(AT - A) ] and (AT - A)-q(kl - A%} cannot be equivalent up

to extension on €, Hecause their pole orders in A = 0 differ.
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