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SPECTRAL ANALYSIS OF THE TRANSPORT EQUATION.
I. NONDEGENERATE AND MULTIGROUP CASE.

C.V.M. Van der Meel)

0. INTRODUCTION

In the theory of the one dimensional, linear Transport Equation
there are two approaches., The first approach consists of the study
of an operator differential equation of the form

(0.1) T P(s) = A ¥(s), 0 < 5 < + =,

where T is the operator of multiplication by the independent varia-
ble, defined on the space L2[—1,+1], while A is the positive ope-
rator given by

+1
(Af)(u) = f(u) - %_ g(u,u') f{u') du', -1 < u s + 1,

the function g being the scattering function. The solution of Eq.
(0.1) is required to satisfy the following boundary condition:
0.2 lim P s) = .
(0.2)  lim P, y(s) = o,
Here P+ is the orthogonal projection onto the maximal positive
invariant subspace of T which corresponds here with the subspace

of square integrable functions on [-1,+1] that vanish on the inter-
val [-1,0].

The second approach focuses on the Wiener-Hopf operator inte-

gral equation

+oo
(0.3) p(s) = J H(s~t) B y(t) dt = @(s), 0 < 8 < + o,
0

where @(s) is a given vector function, while H(t) is defined in
terms of the operators T and P+ intrcduced above and has the form

1) The research for this article was done while the author was sup-

ported by the Netherlands Organization for the Advancement of
Pure Research (Z.W.0.).
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-1
-1 _-tT
Hgy = 1¥T e P, t > 0.

-p7le7tT 1(I—P+), t < 0.

In this paper we forget about the special form the operators
T and A have in the case of the Transport Equation and study Egs
(0.1) and (0.3), assuming only that T is an injective self-adjoint
operator, B a compact operator for which A = I - B is strictly
positive, while

B=|T|®D

for some 0 < a < 1 and some bounded operator D. This somewhat for-
mal approach has the advantage that in applicatiors to Transport
Theory there is no difference between the treatment of the one-
speed case and the symmetric mulfigroup case.

Under the conditions on T and B stated in the previous para-
graph we prove that Egq. (0.1) with boundary condition (0.2) and
the Wiener-Hopf operator integral equation (0.3) with right-hand

-1
sT ¢, are equivalent and we give explicit formulas

side ¢(s) = e
for the solutions of both equations. Let m be a non-positive num-
ber such that the spectrum of T is contained in the interval
[m,+»). Then, for each k > -m, the solutions y of the differential
equation (0.1) that satisfy

400
§ 7R Jue)] at < + =

have the form

-1
_ =-sT “A. "
¥(s) = e $, P, %= 0.

In case one is searching for bounded solutions, there is a unique
solution ¢ to every boundary value 9, which has the form

-1
(0.4)  y(s) = 5T A

P Yy 0 <8 < + =,
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for some projection P. Because of the equivalence of the operator
differential equation and the corresponding Wiener-Hopf integral
equation, it is clear that the integrable solutions of Eq. (0.3)
with right-hand side @(s) = e‘ST-1w+ are also given by (0.4).

The solutions of the Wiener-Hopf equation (0.3) can also be ob-
tained directly from a Wiener-Hopf factorization of the symbol of
Eq. (0.3), using the method developed in [1], Chapter 1 and 6. By
specifying our results for the operators appearing in the Trans-
port Equation we obtain explicit formulas for the solutions of
this equation, which are new both for a non-degenerate scatte-
ring function and for a multigroup case.

The two approaches hinge heavily upon the existence of the
projection P appearing in (0.4). This projection has been intro-
duced in [18]. In this paper we give a new proof of its existence
which also applies to non-degenerate scattering functions.

Both the differential equation (0.1) and the Wiener-Hopf
equation (0.3) have a long history in Transport Theory. An impor-
tant step in solving (0.1) has been the use of the method of eigen-
function expansion by Case [3]. Although Case considered isotropic
scattering only, his method stimulated a lot of research (reviewed
in [22]1). Hangelbroek first offered a mathematically rigorous
approach [16]. An operator-theaetic approach is due to Hangelbroek
and Lekkerkerker [18], where for the first time the basic projec-
tion P was introduced and the dispersion function (i.e., the per-
turbation determinant of the symbol of the Wiener-Hopf equation
(0.3)) was factorized in order to obtain an explicit expression
for P. The paper [18] only applies to isotropic scattering. Recent-
ly, Eq. (0.1) has been solved for the Transport Equation with a
degenerate scattering function; also an explicit expression for
P, the so-called half-range expansion formula, has been obtained
(ef.[211).

In comparison with the method of eigenfunction expansion,
the Wiener-Hopf approach has not been used very often in mathe-
matical physics (cf.[241). However, judging from the generality
of the results obtained, the Wiener-Hopf approach seems to be more
promising. In [5] to [9], Feldman generalized the theory of systems
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of Wiener-Hopf integral equations, developed in [12] and [11],
to the infinite-dimensional case and applied it to the Transport
Equation with a non-degenerate scattering function. In this way
he obtained the asymptotics of the solutios. Feldman, however,
did not obtain a Wiener-Hopf factorization of the symbol of Eq.
(0.3) nor solution formulas like (0.4). In this paper we shall
supply these, making use of a geometric principle developed in
[1], Chapter 1. In the case of the Transport Equation with a de-
generate scattering function this factorization has been given
in Chapter 6 of the same book.

After a preliminary section, we prove the existence of the
projection P in Section 2. The third section is entirely devoted
to the differential equation (0.1) which is solved with the help
of semigroup theory. In Section 4 we prove the equivalence of the
two approaches and obtain the asymptotics of the solutions of the
two equations as a corollary.

In section 5 we construct a Wiener Hopf factorization of the symbol
of Eq.(0.3) and obtain again the solution formula (0.4),

In Sections 6 and 7 we give the applications to the one-

group and multigroup transport equation, respectively. In case of
a degenerate scattering function we use the formulas for the fac-
tors of the Wiener-Hopf factorization obtained in Section 5 and

get explicit half-range formulas. In contrast to similar formulas
obtained earlier (cf.[18], for instance) there is no additional
diagonalizing factor involved.

In Part II of the paper we shall present new results for the
so-called finite-slab problem, i.e., the Transport Equation on a
finite interval (O;r). Again we shall consider both a differential
equation (namely, Egq. (0.1) on the interval (0,7)) and a (finite
section) Wiener-Hopf equation.

The approach offered in the present paper is essentially a
Banach space approach. Basically, similar results can be obtained
if we assume that T is an injective scalar operator acting on a
Banach space with real spectrum, B a compact operator such that
A =1I-Bis invertible, while B = |T|® D for some 0 < a < 1 and
some bounded operator D. The main difference is the possible non-
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existence of the projection P, due to the appearance of non-trivial
bounded solutions of Eq.(0.1) with boundary value ®, = 0. A gene-
ralization to scalar operators T is desirable in order to treat
the Transport Equation on the space Lp[—1,+1], p £ 2.
In a subsequent publication we shall deal with the case when
A is a (non-strictly) positive operator and reduce this problem
to the case considered here. Applications to the conservative
case of the Transport Equation will be given.

1. PRELIMINARIES

In this paper L[(H) will denote the Banach algebra of bounded
linear operators on a Hilbert space H, endowed with the usual
operator norm ||.]| . The identity element of this algebra will
be denoted by I. For each T ¢ L(H) the spectrum of T will be de-
noted by o¢(T) and its resolvent set by p(T). The null space (or
kernel) and range of the operator T are denoted by Ker T and Im T,
respectively.

Given a self-adjoint operator T ¢ L(H) we denote by m(T) and
M(T), respectively, the infimum and supremum of the numerical
range of T, i.e.,

m(T) = inf <Tx,x>, M(T) = sup <Tx,x>.
]2 ] <1

Here <.,.> denotes the inner product on the Hilbert space H. We
have ¢(T) < [m(T),M(T)}. For every continuous function f: o(T) >,
with only a possible jump discontinuity at 0, we define

(1.1) £(T) = f £(t) E(4t),
o(T)

where E is the resolution of the identity of T. As it is known
(ef.[41),

(1.2) Ie¢T)ll = sup  |£(8)],
teo(T)

From this equation we obtain for 0 < a < 1 and Re A = 0 (A#0)
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(1.3) T]%(T-2) ") < __Ca ,
T I * s

where cOL is some constant depending on T and a only.
In Section 2 an important role is played by the following
two propositions:

im-argh|<el.
the identi-

PROPOSITION 1.1. For 0 < ¢ < im , let Q@ = {A:]
For every self-adjoint operator T with resoclution o

ty E we have

(1.4) s-lim T(T-A)"Y = T - E({0}).

A+0, A
+0, EQ@
PROOF. By (1.1)
-1 f
GO DR SE E%T E(du)f.

Since we have the estimate

1
cosy

|uEA <1 +

(X e Qw, W e o(T) ¢cR),

we may apply the theorem of dominated convergence for vector-
valued measures (cf. [4], Th. IV 10.10) and obtain

lim T(T—x)"1 = o<é) [1-x%(¢{0})] Efau>f.
Xeﬂw,k+0 ; )

Here x denotes the characteristic function of the set {0}. From

this, formula (1.4) 1s clear.

PROPOSITION 1.2. For every nonnegative (self-adjoint) ope-

rator T with resolution of the identity E we have

(1.5) s-1im T(T—A)—l = I - E({0}).

A+0,Rer<0

This proposition is proved in the same way as Proposition 1.1.

Next, we derive a formula for the values of the resolution
of the identity of a self-adjoint operator. Although such a for-

mula is well-known since the thirties (cf.[23,4]), we did not
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find in literature the form it has in the next proposition.

PROPOSITION 1.3. Let T be a bounded self-adjoint operator
with resolution of the identity E. If M is a finite constant exc-

eeding | T ||, we have

(1.6) s-lim =k [ (T-1)71 dar = E(0,+=) + 3 E({0}),
ev0 €

where T is the following curve:

+ g < Mi
+le f A
-ie

-i g m-i

PROOF. Take a vector f. Using (1.1) we have

-1

-1
o1 Jr (T-3)
€

-1 -1
£ drx = =% (t=A) E(dt)f dx.
2Tl J'I‘E 085)

Applying a bounded linear functional to both sides of this identi-
ty, and observing that (t,A) b (t-2)"% is integrable on o(T) x s
we may apply Fubini's theorem and obtain

1

2L @ntans 0 A 0Tt e Eanr.
€ o(T) €

We now compute the integral over FE at the right-hand side:

‘ + 1 arctan L , 0 £t <M,
s (=07 an = m €
2Tl PE

o N

st <0ort >M,

which is bounded above by 1. Applying the theorem of dominated
convergence for vector-valued measures (cf.[4], Th.IV 10.10) we
get

lim o= [ (T-2) 7
e+v0 €

= fax = [x(0,+e){t)+ix({0})(t)]
)

o(T

E(at)f.
Here x(A) denotes the characteristic function of a set A. From
this, formula (1.6) is clear.
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If T is a nonnegative (self-adjoint) operator with Ker T = {0},
it follows from (1.2) that the set

() Ior-0"1% ) s no= 0,1,2,...; = < A < 0}

is bounded. Therefore, the unbounded inverse of -T is the infinit-
esimal generator of a strongly continuous semigroup of order 0.
This is clear from the Hille-Yosida~Phillips theorem (cf.[4], Th.
VIII 1.13). In fact,

-8/t E(dt), 0 < 58 < + o,

[U]
n
—
®

By (1.2) this implies that

-1

< s/l T “,

| e~ST 0<s <+ m,

Finally, note that all results of this section remain true
for scalar operators on a Banach space whose spectrum is a compact
subset of IR. In the norm estimates, however, we have to put a
bounded constant.

2. A decomposition theorem.

Let H be a complex Hilbert space with inner product <.,.>.
A pair (T,B) of linear operators on H is called a self-adjoint

admissible pair on H if

(C.1) T : H~» H is a bounded self-adjoint operator with
Ker T {0};
(C.2) B : H~»H is a bounded self-adjoint operator, B is com-

pact and the spectrum of B is a subset of the open
interval (~w,1);

(C.3) there exists 0 < o < 1 and an operator D ¢ L(H) such
that

B = |T7|%D.

The operator I --B will be denoted by A. Observe that A is inver-
tible, while

c=a"t-15=8(1-B)""
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is compact.
With a self-adjoint admissible pair (T,B) on H we associate
the operator function W : p(T) » L(H) given by

(2.1) Ww(x) = I + T(T-1)"tc.
The function W is called the symbol of the pair (T,B). An impor-
tant property of W is given by the following proposition.

PROPOSITION 2.1. For 0 < @ < im, put Q = {Ael: | im-argh|<v}.
In the norm of L[(H) we have

(2.2) 1im W) = ATL,
X+O,X£Qw

Further, W(A) is invertible if and only if A ¢ p(T) n p(A 1T).
PROOF. According to Proposition 1.1 we have

lim T(T-A)_l £f=f.
X+O,Xeﬂw

Note that the convergence is uniform in f on compact subsets of
H. Since C is compact, formula (2.2) is clear.
The second statement is a direct consequence of the identity

(2.3) W) = (r-0) "1 aaTir-aatt,

The operator S = A—lT will play an important role in what
follows. In the terminology of [1] the operator S is the associ-
ate operator of the node (T,C,-T; H,H) (see also Section 5). The
fact that A is strictly positive implies that

(2.4) <f’g>A = <Af,g>, f,g ¢ H,

defines an equivalent inner product <.,.>, on H. With respect to

this inner product the operator S is selffadjoint. For the special
case of the Transport Equation the inner product (2.4) has been
introduced earlier by Hangelbroek and Lekkerkerker [18].

As S is self-adjoint with respect to <.5.>,, We can use the
Spectral Theorem to define the maximal spectral subspace Hp(Hm)

of S corresponding to the part of the spectrum of S on the positive
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(negative) real line. Since Ker S = {0}, we have
(2.5) Ho= Hy 8 H,.
The projection of H onto Hp(Hm) along Hm(Hp) is denoted by Pp(Pm).
Obviously, Pp and Pm are orthogonal projections in the Hilbert
space (H,<.,.>A).

Also

(2.6) H=H_6H,

where H+(H_) is the maximal spectral subspace of T corresponding
to the part of o(T) on the positive (negative) real line. We use
the symbol P, (P_) to denote the projection of H onto H+(H_) along
H_(H+). The projections P+ and P_ are orthogonal projections on H.
To get the decompositions (2.5) and (2.6) one does not need
Condition (C.3) nor the compactness of B. However, both proper-
ties are heavily used in the proof of the following decomposition

theorem.

THEOREM 2.2. Let (T,B) be a self-adjoint admissible pair

on H. Then

(2.7) H=H_#® Hp = H, 8 Hm'

Further, if P is the projection of H onto Hp along H_ and Q is

the projection of H onto Hm along H _, then

(2.8) TP = (I-Q)T.

The theorem above is the main result of this section. For the
case of the Transport Equation with a degenerate scattering func-
tion several authors have proved the first part of the theorem
(cf.[18, 21]) ; the second part of this theorem is due to Hangel-
broek (cf.[21]). Here the proof of Theorem 2.2 will be given in
a more general way, not using the special form the operators T
and B have in the case of the Transport Equation. Also, we shall
give a proof of (2.8) different from the proof due to Hangelbroek.

To obtain Theorem 2.2, we need two lemmas.
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LEMMA 2.3. We have (A[Hp])l = Ho, (A[E 1) = H -

PROOF. For every subset M of H, we denote its orthogonal
complement_with respect to the inner product <esey by M®. Then
an easy computation shows that A[M*] = M*. As H; = Hm and H; =
= H_ , the lemma is clear.

P
LEMMA 2.4, The gperagor Pp - P+ is a compact operator.
PROOF. According to Proposition 1.3, we have
(2.9) P = s-lim o% [, (8-M)7Mar, B = s-lim o [ (T-2)"tan.
b ev0 £ €40 €

Here FE is the following curve

i £ M

+ie ‘ h s
-ig)

-i ¥ 3 .

1 7 [, EX}

while M is a fixed constant exceeding maxQIT”JIA-lTH). From (2.9)
we obtain

1

(2.10) (P -P,) £ = lim = [ =07 - (@-07hE A,
€40 £

A straightforward calculation, using (2.3), shows that

1

(2.11) (s-0)"Y - ()7t = o(p-n)7t

¢ win) to(r-a)7t,

A ep{T) a p(8),

Now C = BA™Y and B = |T|® D for some 0 < o < 1 and D ¢ L(H). We

get

1 1

pA™tw(n) " rr(r-a) 72,
A e p(T) n p(8).

(s-0)"% = (-7 = o) %(r-a)”

Because of Proposition 2.1 and the boundedness of T(T—A)_1 on

the set {A ¢ L : Re A = 0, A # 0}, it follows that there exists
a constant N1 such that

(2.12) l(s-07F = (r-07H] < wf |TI® T2 T, Re A = 0.

By a straightforward estimation, using (2.10), (2.122), (1.3) and
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a suitable upper bound for the lengths of the curves FE, one ob-

tains
-1 -1 -1 g1
(2.13) FIEs IFE[(S-X> =(T-x)"Tlar |l < o, i u* " du, 0 < e <1,
and
(2.14) et [(8-0) " =(r-0)"h1an] < W ? Wt qy
271 JT AT 21 ,
0<e<éd <1,

for some positive constant N2. From (2.11) it is clear that
(-0t - (-0t
Since the integral at the left hand side of (2.13) is absolutely
convergent in the norm, it follows that this integral represents

is a compact operator for all A « Fe’ 0 < e < 1.

a compact operator. From (2.14) and the convergence of the impro-
per integral uo‘—1 du, it appears that Pp - P+ is the limit in
the norm of a sequence of compact operators and therefore compact

itself. This completes the proof.

In many cases it is possible to specify to which ideal of
compact operators Pp - P, belongs. Recall that B = T|* D for some
0 <a<1and D e L{(H). If we suppose, in addition to our previous
assumptions, that D belongs to a symmetrically normed ideal J of
compact operators (cf. [13] for the definition and main properties
of such an ideal), then we can repeat the proof of Lemma 2.4, using
a symmetric norm of the ideal J rather than the operator norm of
L(H), and deduce that Pp - P, belongs to the ideal J.

PROCF of Theorem 2.2. We first show that Hp n H_ = Hm n H+ =
= {0}. Take f « Hp n H..Onthe ane hand, we have f ¢ H_, and there-
fore <Tf,f> < 0. On the other hand, we have f ¢ Hp, and hence
<Tf,f> = <Sf,f> 0. Consequently, <Tf,f> = 0, and thus f = 0.

A
Hence, H n H_ =
2 p -

>
{0}. In the same way we prove that Hm nH, = {0}.

Consider the operator V, defined by

1

av}
]
+
jav)
]

(2.15) N

Since I - V = (P_ - P+)(Pp - P,), it follows from Lemma 2.4 that
V is a Fredholm operator of index 0. Further, Ker V = [Hp n H_]
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® [Hm n H+] = {0}. So V is invertible. Since Im V can be expressed
byImV=[Hp+H_]n[Hm+H+],wegeth+H_=Hm+H+=H.
From this we obtain (2.7).

It remains to prove (2.8). Observe that T P f = (I—Q*)Tf = 0,
f ¢ H_. The second part of this equation is clear from the identi-
ty (I-Q") P, = [P, (I-Q)]" = I - Q". Since H, + H_ = H, it suffices
to prove (2.8) for all f ¢ H . Take £ ¢ H_. On the one hand, T P f=
= Tf. On the other hand, Tf = A(A™IT f) spA[Hp] = H, (cf. Lemma
2.3). Since Im(I-Q%) = Ker(I-Q)* = H;, it is clear that (I-Q")Tf =
Tf. Hence, T P £ = (I-Q*)Tf. This completes the proof.

3. THE OPERATOR DIFFERENTIAL EQUATION TY = - Ay

Let H be a complex Hilbert space with inner product <.,.>.
Suppose that (T,B) is a self-adjoint admissible pair on H. As in
Section 2, put A = I - B. In this section we are interested in the
operator differential equation

(3.1) TP = -Ay.

A function ¢ : (0.+») » H is called a solution of the equation
(3.1) ir

(I) the function t » T ¥(t) is strongly differentiable on
(0,+») with derivative -Ay(t), and

(II) 1im P+ y(t) = 9, -
t+0

Here @ is a given function in the maximal spectral subspace H,
of T corresponding to the part of o(T) on the positive real line.

The function @, is called the boundary value of the solution y.
For later use we remark that any solution of (3.1) is strongly
measurable.

To describe the solutions we shall use the notations intro-
duced in the preceding section. In particular, P is the projection
of H onto Hp along H_, defined in Theorem 2.2. »

In the three theorems below we describe the solutions of the
operator differential equation T¢ = =-Ay.
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THEOREM 3.1. For every ¢, ¢ H,, there is a unique bounded
solution of the operator differential equation Ty = -Ay with boun-

dary value o, . This solution is integrable and given by

-1
(3.2) p(t) = 7t A p @, 0 < t < + o,

THEOREM 3.2. Let -« < min(0,m(T)). Then for every ¢, ¢ H
there is at least one soclution y of the ogperator differential
equation Ty = -Ay with boundary value 0, such, that

400

(3.3) J
0

Suppose that A,,...,A; are the distinct eigenvalues of AYT with

+,

e "/x (o) || dt < + .

»

Ai < -k (i=1,2,...,m). Then all solutions with boundary value

¢, that satisfy (3.3) are given by

-1 m m
_ =tT "A _ -t/X.
IP(‘G) = € P(w+ j§1¢0j) + ng e J ‘DOJ',
where, for i = 1,2,...,m, 9,; ranges over the eigenspace of A-lT

associated with the eigenvalue Ai. Further, the number of linearly

independent solutions with boundary value 9, coincides with the

sum of the multiplicities of the eigenvalues of A% T on (-»,-k).

A similar theorem holds if we are searching for solutions ¥ such
that

(3.4) ess-sup e_t/K”w(t)H < 4 ™,
0<t<+»
If Condition (3.4) holds true, then for a sufficiently small
e > 0 we have Condition (3.3) with x replaced by k - . Using the
previous theorem, it is ¢lear that in this case we have to consider

1

the eigenvalues of & "T not exceeding -«.

THEOREM 3.3. Let x > max(0,M(T)). Suppose that H 1is the
maximal spectral subspace of ATl corresponding to the part of
G(A—lT) on [0,k). Then, for a given @, e H,, there is a solution

of the operator differential eguation Ty = -Ay with boundary value

@, such that

+
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+ oo
(3.5) g e E Kyt flat < + ,

if and onlY.if ®, € HK + H_. In this case the solution ¢ is unigue
and given by (3.2). Further, the codimension in H+ of the subspace
of all boundary values ¢ _ for which a solution satisfying (3.5)

exists coincides with the sum of the multiplicities of the eigen-

values A of A717 with A = «.

PROOF of Theorem 3.2. Let E be the resolution of the identi-
ty of At (as a self-adjoint operator in the inner product (2.4)).
Take « > -min(0,m(T)). Let K be the image of E((0,+w)u(-=,~x)) and
L = Im E([-k,0]). As A”'T has a trivial kernel, we have K 8 L = H.
Put

-t7" 1 ,

(3.6) T(t) = e K #® IL’ 0t < + o,
Then T is a strongly continuous semigroup on H which can be viewed
of as the direct sum of a uniformly continuous semigroup on a
finite- dimensional space and a strongly continuous semigroup with
generator (=T A]H ) @ OL. As the infinitesimal generator of the
former semigroup has the set {Al yeen } as its spectrum, where
Al,... A denote the eigenvalues of A~ T on (-»,-x), it is clear
that its order is strictly less than 1/k. An easy application of
the Hille-Yosida-Phillips theorem (cf.[4], Chapter VIII, for in-
stance) shows that the latter semigroup is strongly continuous
and bounded. Hence, T is a strongly continuous semigroup of H with
infinitesimal generator -T_1A|K ® OL’ whose order is strictly less
than 1/«.

Suppose that ¢ is a solution of Ty = -Ay satisfying (3.3).
We shall first prove that there exists a vector & in K such that

(3.7) AIT p(t) = T(E) B, 0 <t < + .

We first note that, for all A # 0 in the closed left half plane,
the integral

K w(t) dat
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is absolutely convergent and represents a vector function, holo-
morphic on the open left half plane, continuous up to the boun-
dary and with 0 as its continuous boundary value at A = 0. Put

g = KA(K‘X)'l
half plane onto the interior domain of the circle with centre

. Then this M&bius transformation maps the open left

-ik and radius ik.

Note that @(t) = e_t/l< y(t) satisfies the operator differen-
tial equation kA 1T = —(A—1T+Kl)w, and is integrable on (0,+x).
As in the definition of a solution of Ty = -Ay, we Suppose that

Ty rather than ¢ 1s strongly differentiable. Integrating both sides
of the former equation over the positive real axis, one sees that
the following limits exist:

¥ = lim A7MT @(t), 1im "t

t+0 Tt

T o(t).

Put 0 < o < B < + », A straightforward computation yields

_ B _
(3.8) AATIrekI) [ ¥ M g(t) at = kafe®/* a ro(1)18
o 1 B i
+ kAT e @(t)dt, Re A < 0.
a
From this equation it is clear that lim eP/A a7ip ©(t) exists

for all imaginary A # 0. Hence, Bt

1im  A7MT o(t) = 0.
t>+e

In (3.8), we take the limit as a+0 and B + +», and obtain

+00

+oo
T ¥ Mgt)at,
0

AATIT4eT) f et/
0

A o(t)dt = kr § o+ ka™d

Re A = 0 (A#0).

Recall that ¢(t) = e_t/K y(t). Inserting y¢(t) = et/K @(t) and

z = KX(K—A)_l, we obtain

+co
(3.9) f ettty at = g(g-aTim)Tt g,
0

for all ¢ #.0 for which (Re c+%K)2 + (Im ;)2 < (%K)E. By the inte-

grability of o@(t) = e-t/K y(t), the vector function at the left
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hand side of (3.9) has 0 as a continuous boundary value at 7 = 0.
Next, we prove that § ¢ K. Applying A T E([-«,01) to (3.9),
we get

+oo ~
A7 E(1-x,01) f %% y(t) at = ca"ir(z-a"im) 7Y E(1-k,01)9,
0

for all ¢ # 0 for which (Re c+;K)2 + (Im g)e < (%K)2,UE function
at the left hand side having 0 as a continuous boundary value at
¢ = 0. The right hand side of this equation, however, is holomor-
phic on the exterior domain of the circle with centre -jk and
radius ik, and continuous on its closure. By virtue of the self-

adjointness of A_1

T in the equivalent inner product (2.4), the
last part of this statement is a corollary of the propositions
1.1 and 1.2. The boundary value of the right hand side of ¢ = 0
vanishes too. 3o, by Liouville's theorem, it follows that
E([-x,0]) & = 0. Therefore & e X.

Recall that -T
a strongly continuous semigroup on H. From (3.9) and [4], Theorem
VIII 1.11, we obtain (3.7). If @, is the boundary value of ¥, we

get, using (3.7),

A[K ® OL is the infinitesimal generator of

(3.10) T, =P, AV, ¥ e K.

Prom the decomposition K = Hp & Im E((-»,-k)) and the fact that
A_lT maps Im E((-»,-k)) onto itself (to see this, note that
Im E((-=,-kx)) is finite-dimensional) we obtain

1
(3.11) ¥ =¥, + AT o,

where wp € H and ¢ ¢ Im E((-»,-k)). Then A wp € H; (ef.Lemma

2.3). Since ﬁer Q" = H; and P+(I—Q) = I - Q, we have A wp =
(I—Q*)A wp = (I—Q*)P+ A wp' By virtue of (3.11), we have
by = (I-Q0F A Y - (I-Q*)£+ T ¢,. Using (3.10) and (I-Q")P, =
I-Q, we get A wp = (I-Q ) T (w+—w0). With the help of (2.8),
we have A wp =T P(w+—wo). Using (3.11), we eventually get

=

(3.12) v = a"ip P(0,-0,) + A 1p @,
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From this equation and the injectivity of A_lT, we obtain
(3.13) pt) = T(EIP(o,m9y) + @wgl, 0 <t < + =,

Note that c(A_lT) n (=e,-k) is a finite set of eigenvalues of
rank one; the value of the rank is due to the self-adjointness
of A_IT in the equivalent inner product (2.4). Denote the distinct
1 A - I

1:i.., m Then WO = jzlqus
where woj is some vector in Ker(Aj—A T). Therefore,

eigenvalues of A T on (-»,-g) by A

1

-tT A -t/ s

m m
(3.14) w(t) = € Py ‘-§1 Woj) + ;1 e J woj:

0 <t < + =,

Conversely, every vector function of this form is a solution

of Ty = -Ay with boundary value @, for which (3.3) holds. To see
m

this, write @, = j§1 woj

under consideration has the form (3.13), where A_lT[P(w+—¢O) + @O]

¢ Im E((=»,~x)). Then the vector function

belongs to the domain of the infinitesimal generator (-T—lAIK) & OL
of T. Hence,
d

-1
T AT v(t)

1

]

-T77A T(%) A‘lT[P(w+—wo) t @l

-p(t), 0 <t < 4 =,

Further, lim P+ y(t) = P+[P(¢+—®O) + wO] 0, So every vector
function Bfothe form (3.14) is, indeed, a solution of Ty = -Ay
with boundary value @, . The estimate (3.3) for ¢ 1s a consequence
of the fact that T is a strongly continuous semigroup of order
strictly less than 1/k.

Since Hp n Im E((~»,-x)) = {0} and all solutions of the type
under consideration have the form (3.14), it is clear that the
number of linearly independent solutions of Ty = -Ay with bounda-
ry value ¢, coincides with the sum of the multiplicities of the

1

eigenvalues of A T strictly less than -k. This completes the

proocf of Theorem 3.2.

PROOF of Theorem 3.1. From the proof of Theorem 3.2 it 1is
clear that the function (3.2) is bounded, integrable and a solution
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of Eq. (3.1) with boundary value ?,-
Now, conversely, suppose that ¢ is a bounded solution of

Ty
-k < min(0,m(T)). So for all such «, there exists a vector
¢ € Im E((-»,-x)) such that

-Ay with boundary value ¢ _. Then ¥ satisfies (3.3) for all

v(t) - T(t) P e, = T(t) (I—P)c.pK, 0 < t < + o,

Taking the limit as t+0 (which is possible) and using the injec-
tivity of I-P on Im E((-»,~-k)), it appears that all vectors @,
coincide. Put ®y = © .. Then @, € f Im E((-»,-k)) = {0}. Hence,

1

~tT TA

p(t) = T(t) P o, =ce Po,, 0 Lt < + oo,

From this, Theorem 3.1 is clear.

PROOF of Theorem 3.3. If ¢@_ « HK + H_, then P @, € ImE([0,k))
= He. Since (T(‘C)IHK)'< is a strongly continuous semigroup
on HK of order < -1/(k-8§) for some 6§ > 0, it follows that the
vector function (3.2) satisfies Condition (3.5).

To prove the converse, take k > max(0,M(T)). Then
U(A—lT) n [k,+=) consists of a finite number of eigenvalues of
rank one. Let AO be one of these eigenvalues. For every

@ e Im E({AO}), we have
T(6) b= e 20y, 05 <4,

while § ¢ Ker(Ay-A" ). So |[T(t)3] = e */POlg|, ¢ = o.
If y is a solution of TY = -Ay satisfying (3.5), then
+o0
[ TR RN | dt < + .
From Theorem 3.1 it is clear now that ¢ has the form (3.2) with
E({AO}) Po, =0. Since AO is an arbitrarily chosen eigenvalue
of A_lT on [k,+»), we have E([k,+»)) P ¢, = 0, and therefore
P ¢, ¢ Im E([0,k)). Hence, 0, « HK + H_.
To finish the proof, note that the codimension in H, of the

subspace of all boundary values ¢ _ for which a solution satis-
fying (3.5) exists coincides with dim H+/[(HK+H_) n H+], which
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equals the codimension of HK + H_ in H. From the decomposition
Hp ® H = H (cf.Theorem 2.2) we also have [HK + H_ ] 8 Im E([k,+»))=
= H. This completes the proof.

4, A WIENER-HOPF OPERATOR INTEGRAL EQUATION

In this section we associate with a self-adjoint admissible
pair (T,B) on a complex Hilbert space H a Wiener-Hopf operator
integral equation, and we prove that this Wiener-Hopf integral
equation is an equivalent form of the operator differential equa-
tion considered in the previous section.

Let H be a complex Hilbert space with inner product <.,.>
and (T,B) a self-adjoint admissible pair on H. Consider the Wiener-
Hopf operator integral equation

+oo
(4.1) p(s) = [ H(s=t)B ¢p(t) dt = @(s), 0 < 8 < + =,
O .
where the kernel H is given by
-1
sp71 o7t P, ,t > 0.
(4.2) H(t) = -1
-1l T T p ,» b < 0.

In (4.1) the given function ¢ : (0,+») - H is assumed to be strong-
ly measurable and

too
! o(s) || ds < + =.

By strong measurability we mean measurability with respect to the
Lebesgue measure as defined in [25], Section VI. 31; all integrals
of vector functions appearing in this section will be Bochner
integrals with respect to the Lebesgue measure (cf.[25], Section
VI. 31).

Let ¢ : (0,+») » H be strongly measurable. Then for each
0 < s < + » the function H(s-.)B ¢(.), defined on (0,+«), is
strongly measurable too. We call ¢ a solution of Equation (4.1)
if

+o0

(4.3) é [H(s-t)B ¥(t)] dt < + ®», 0 < 5 < + =,
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and ¢ satisfies (4.1).

LEMMA 4.1. Let -k < min(0,m(T)), and let ¢ : (O,+x) ~ H
be strongly measurable. Then formula (4.3) is satisfied, whenever

(4.4) ess-sup et/ lw(e) ]| < + =,
0<t<+m

PROOF. Recall that there exists an 0 < o < 1 and a D ¢ L(H)
such that B = |T|®D. Put 8 = 1 - a. Let E denote the resolution
of the identity of T. Put m = min(0,m(T)) and M = max(0,M(T)).

As

LYW E(a), 0<t <+,

(4.5) H(t)=
0
- wTt e ), e <t <o,

- o0

a simple computation shows that

(-m)"B "M ¢ < gm,
B (_:y=B -8B
(4.6) [ IT|® Hee) s B (W) Te T s B <O,
"t " e , 0 <t < gM,
M_B e-t/M , t > BM.

If m = 0 (-M=0), we read (-m) P ¢”F/m (7B e—t/M) as 0.

To prove (4.3) one considers the integrand H(s-.)B ¢(.) on
the intervals (0,s-gM), [s-fM,s), (s,s-Rn] and (s-8m,+w). Because
of (4.4) the function y is essentially bounded on the first three

-t/x

bounded intervals and e y(t) on the fourth unbounded interval.

But then one can use the estimates (4.6) to obtain (4.3).

The next theorem provides the equivalence between the Wiener-
Hopf operator integral equation (4.1) and the operator differential
equation Ty = -Ay studied in the previous section.

THEOREM 4.2. Let -k < min(0,m(T)). Suppose that ¥ is a strong-
1y measurable function such that (4.4) holds. Then v is a solubion

of the operator differential equation Ty = -Ay with boundary value
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integral equation (4.1) with right-hand side w(s) -sT

1
D
©

Further, every such solution ¢ is continuous.

PROOF. Let ¢ be a solution of the Wiener-Hopf operator in-

~-g7-1
sT @

tegral equation (4.1) with right-hand side @(s) = e and

+J
assume that ¢ satisfies (4.4). Consider the function

+0o0
g(s) = é H(s=t)B ¢(t)dt.

We shall first prove that g is continuous.
Take h > 0. Using the definition of the kernel #H one sees

that
_hT-l S
(4.7) g(s-h) - g(s) = [& P_ - P.] J H(s-t)B y(t)dt
0
nTt teo
~-[e P_ - P_1 [ H(s+h-t)B y(t)dt
S+h
s+h
+ [ [H(s+h-t) - H(s-t)IB w(t)dt.
s
Note that
-1 -1
(4.8) s-1im ¢ BT P, = P, s-lim ehT P_ = P_.
h+0 h+0
Recall that B = [Tla D for some 0 < a < 1 and some bounded opera-

tor D. Put B = |T|#® D and §(t) = e °/K y(t). A straightforward
estimation, using that @ is essentially bounded on [s,+=) and
E/x H(s-t)Y¥ is integrable on the interval [s,+=x) (ef.(4.6)),
ylields the boundedness of the set of vectors

t e

+x n
(4.9) [ H(s+h-t)B y(t)dt
s+h
for 0 < h < 1.
We now show that the right-hand side of Eg.(4.7) tends to
zero as h+0. From (4.8), (4.9) and the identity

-1
1im || 7] %P TP - 1) = ©
hvo

it is clear that the first and second term at the right-hand side
of Eq.(4.7) vanish as h+0. The vanishing of the third term of the
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right-hand side of this equation is clear from the estimates
o-1 - o~1
H(s-t)B = O(]|s-t]| ), H(s+h-£t)B = O(|s+h-t| Vs

which hold true for s < t < s + h and a sufficiently small h (cf.
(4.6)), and the essential boundedness of the function ¢ on the
interval [s,s+1]}. It follows that

lim {g(s+h)-g(s)} = 0.
h+0

In a similar way we prove that

lim {g(sth}-g(s)} = 0.
h+0
Hence, g is continuous.
Also ¢ is continuous. From (4.1) we get that the function
y is continuous.
Next, we shall prove that the function Tg is strongly dif-
ferentiable and we shall compute its derivative.
Take h > 0. Using the definition of the kernel H, we get

(4.10) 0" YT g(s+h) - T g(s)] =

-1 s

=0 Y™ T B -P 1T [ H(s-t)B w(t)dt
-1, nrt +o

- h “[e P_-P_IT [ H(s-t)B ¥(t+h)dt
4 Sth o

+h - | T[H(s+h-t) - H(s-t)IB y(t)dt.
S

Because of the equation

-1
s-lim n"te™ T p -p 17 = - P

h+0
the first term at the right-hand side of (4.10) tends to the vec-
tor —P+ g(s) as hv0. As the function ¢ is continuous and the func-
tion t b et/K

the theorem of dominated convergence for Bochner integrals [25]
that

+,

fi(s-t)B is integrable on [s,+w), it follows from

+ o0 . +co
idm [ H{s-t)B yp(t+h)dLt = [ H(s-t)B y(t)dt.
h+0 s s
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Using that

-1

P A

s-lim h “[e

h+0
it follows that the second term at the right-hand side of Eq.
(4.10) tends to -P_ g(s) as h+0. By the continuity of the inte-
grand the third term at the right-hand side of Eq.(u.lo) tends
to P, B y(s) + P_ B y(s) = B y(s) as hv0. Using Eq.(4.10) and
the results of the computations we made we get

1im h_i[T g(s+h) - T g(s)]
n+o

- g(s) + B w(s).

In a similar way we prove that

lim h_l{T g(s+h) - T g(s)}
h40

- g(s) + B y(s).

Hence, Tg is strongly differentiable and its derivative is equal
to -g + By.

Also Ty is strongly differentiable and T¢ = -¢. Using this
in (4.1) one obtains that Ty is strongly differentiable, while

THp = T& + Tgp = -g + By -@= -Ay.

Next, we prove that ¢ is, indeed, a solution of T¢ = -AY
with boundary value 9, - Applying P+ to both sides of (4.1) we get

S -sT—l
P, ¥(s) - [ H(s-t)B y(t)at = e ©0,, 0 <5<+,
0

Recall that we have (4.3) (cf.Lemma 4.1). Therefore,

S
lim [ H(s-t)B y(t)dt = 0.
s+y0 O

Consequently, ¢ is a solution of the differential equation
Ty = -Ay with boundary value @, .

Conversely, let ¢ be a solution of Ty = -AyY with boundary
value ¢, that satisfies (4.4). As we noted in Section 3, the

function y is stréngly measurable. By virtue of Lemma 4.1 we have

(4.3).
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Since Ty = -Ay

-y + ?w, we perform a partial integration
-sT~
e

and obtain for ¢(s) = @,
s -1
[ o (s-0)T P, TH(t)dt =
0
-1 s -1
= 17T T e mpe)1S - I LS I I T

S
TP ¥(s) - Te(s) - [ T H(s-t) w(t)dt, 0 < s < + =,
0

So we have

S
J T H(s-t)[TP(t) + w(t)ldt = TIP,_ ¢(s) - o(s)].
-0

Using (4.3), the continuity of Ty and the norm estimate

—1 _
"1 G *tT P_|| £ |m] 1.t/m

”T s b 2 -m,

where m = min (0,m(T)), we have

-1
lim e+tT

>+

P_y(t) = 0.

We now repeat the argument above and obtain

+o0
J T H(s=t)ITP(E) + v(t)ldt = TIP_y(s)].
S

Therefore,

+o0
T f H(s-t)B ¢(t)dt = T[Y(s) - @(s)], 0 < 5 < + =,
0
Using that Ker T = {0}, we get Equation (4.1). This completes the
proof.

From Theorem 4.2 and the results of Section 3, we obtain the
solutions oflthe Wiener~Hopf equation (4.1) with right-hand side
@(s) = e_ST ¢, The next three theorems describe the solutions

of (4.1) (ef. the remark after Theorem 3.2).

THEOREM 4.3. For every ®, € H_, there is a unique bounded
solution of the Wiener-Hopf integral equation (4.1) with right-
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-1
hand side ¢(s) e~sT @, . This solution is integrable and given

by

1

(4.12)  y(s) =T A p g 05 <4

THEOREM 4.4. Let -k < min(0,m(T)). Then for every ®, ¢ H,
there exists at least one solution of the Wiener-Hopf integral

equation (4.5) with right-hand side o(s) = e=sT™1 ¢, , for which

(4.12) ess-sup e—t/K”w(t)” <+ o,
O<t<+o

Suppose that Al,...,km are the distinct eigenvalues of Aq&T with
Ai < -k(i=1,2,...,m). Then the solutions with right-hand side

p(s) = e'ST_1 @, that satisfy (4.12) are given by
1

_ -sT A .o =S/,
(4.13) ¥(s) = e Ploy-5L40p5) + 544 @ J g5
where, for i = 1,2,...,m, ¥y Tanges over the eigenspace of A_lT

associated with the eigenvalue Ai. Further, the number of line-

arly independent solutions with right-~hand side ¢(s) = e'ST_1 9,
coincides with the sum of the multiplicities of the eigenvalues
of A7

T on (==,-k].

the

THEOREM 4.5. Let k > maxgg,M(T)). Suppose that H  is
maximal spectral subspace of A “T corresponding to the part of

c(A_iT) on [0,k). Then, for a given $, ¢ H , there is a solution

——

Oof the Wiener-Hopf integral equation (4.1) with right-hand side

@(s) = e-sT™1 ¢, such that
oo

(h.14) TR e flat < + -,
0

Af and only if o < H + H_. In this case the solution ¥ is unique
and given by (4.11). Further, the codimension in H,_ of the sub-
space of all vectors ¢, inducing a right-hand side o(s) = e'ST—1w+
for which a solution satisfying (4.14) exists coincides with
the sum of the multiplicities of the eigenvalues A of A~ T with
Az K.

Theorem 4.4 is related to Theorem 2 in [6]. In [6] Feldman
studied the Transport Equation (see Section 6 of the present paper)



Van der Mee 555

by transforming the equation into a Wiener-Hopf integral equation.
Among other things he proved that every solution satisfying (4.12)
has the form

m
3 s/A

(4.15) Y(s) = wp(s) tsiye J ©gj> 0 <8 <=,

where A ,...,A are the distinct eigenvalues of I

-k, while, for i = 1,2,...,m, o1 belongs to the eigenspace of

T not exceeding

A_lT corresponding to the eigenvalue Ai and wp is integrable.
Note that Equation (4.15) is a direct consequence of (4.13) and
represents the asymptotics of the solutions of the Wiener-Hopf
integral equation (4.1) with right-hand side @(s) = e‘ST—jL @,

5. FACTORIZATION OF THE SYMBOL.

In the previous section we have reformulated the operator
differential equation Ty = Ay as a Wiener-Hopf operator integral
equation of the form

4+
(5.1) Y(s) - f H(s=t)B p(t) dt = @(s), 0 < 8 < + =,
0

and we have used the equivalence of the two equations to obtain

the solution of Eq. (5.1) £or the case when o(s) = e'ST—1w+. In tnis

section we solve Eg.(5.1) @irectly by.establishing a Wiener-Hopf
factorization of its symbol.
In (5.1) the kernel H(t) is defined by (4.2). It follows that

the symbol of Egq. (5.1), i.e., the Fourier transform of the opera-
tor function I - H(t)B, is, up to a trivial change of variable,
given by
+oo
I-f ¥ ue)s at = (T-a)"

-0

1 (T-AA), Re A = 0.

Both sides of this equation tend to I in the norm as A » 0 (Re A=0)
Clearly the symbol of Eq. (5.1) coincides with the operator func-
tion

1

W(A)A = [I+T(T-A) "ClA, Re X\ = O,

which, up to a constant invertible factor at the right, is just
the symbol of the self-adjoint admissible pair (T,B) on the Hilbert
space H.
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To obtain the solutions of Eq. (5.1) directly we shall use
the method of Wiener-Hopf factorization. By this we shall mean
the following. Let I' be an oriented simple closed rectifiable
Jordan contour on the Riemann sphere. The inner domain of T will
be denoted by F+ and the outer domain by F_. Suppose we have a
continuous operator function

W : T > GL(H).

Here GL(H) denotes the group of invertible operators on H. By defi-

nition, a left Wiener-Hopf factorization of W with respect to the

contour T is a representation of W in the form
(5.2) W(x) = W+(X) D(A) W_(X), A e T,

where w+ is holomorphic on and continuous up to the boundary of
F+,
factor D has the form

the values of w+ on F+ u T are invertible and the diagonal

) rofa-xas\fi
D(A) = Py + .3 (X?T:) Pis A e T.
Here A e F_ \{=}, while Pl""’Pr are disjoint one-dimensional

projections with sum I - P,. Finally, «;,...,k, are non-vanishing
integers satisfying Ky ZeeeZ Koo
It is easy to prove that the integers Ky 2...2 K, are uniquel

determined by W and T ([10], Proof of Theorem 1.1, They are called
the left (partial) indices of W with respect to the contour T.

The points A, and A_ can be arbitrarily chosen within F_ and F_,
respectively, without affecting the values of the left partial in-
dices of W with respect to T.

If the left partial indices all vanish then (5.2) is reduced
to

W(A) = W,(A) W_(A), A e T

such a factorization of W is called a left canonical (Wiener-Hopf)

factorization of W with respect to I'. The factors W_ and W_ are
unique up to a constant invertible factor at the right and left,
respectively.
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Analogowsly, by interchanging the order of the factors in (5.2)
and keeping unchanged the form of the diagonal factor D, we de-
fine a right (canonical) Wiener-Hopf factorization and right
(partial) indices of W with respect to T.

In this section we only consider the case when one region
contains the open right half-plane, whereas the other one is
contained in the open left half-plane. We therefore use the con-
vention that F+ contains the right half-plane and F_ is contained
in the left half-plane.

THEOREM 5.1, Let (T,B) be a self-adjoint admissible pair on
the Hilbert space H and P the projection of H onto Hp along H_.
Then a left canonical Wiener-Hopf factorization of the symbol W

with respect to the imaginary axis exists and is given by

(5.3 a)  W(A) = [I+T(T-A)"1 (I-P)CIrI+TP(T-2) 1c1,

(5.3 b)  [I+T(T-A) Y(1-P)c1™l = 1 - T(I-P) (A7 T-2) "I,

1 1

(5.3 ¢) [I+TP(T-2)"Yc1™t = 1 - p(a"ir-a)"? pc.

THEOREM 5.2. Let (T,B) be a self-adjoint admissible pair
on the Hilbert space H and Q the projection of H onto H along
H,.Then a right canonical Wienepr-Hopf factorization of the sym-
bol W with respect to the imaginary axis exists and is given by

(5.4 a)  W(A) = [I+T(T-1) " 2(I-Q)CIrI+TQ(T-1) tc1,

where the inverses of the factors have the following form:

(5.4 b)  [I+7(T-A) " (1-@)c1™! = 1 - T(1-q)(a"im-n)"1 ¢,

(5.4 ¢y [I+7@(T-0)"tc17t = 1 - patie-n)T? qc.

PROOF of the Theorem 5.1, Consider the operator node (cf.

[1]1) 8 = (T,C,-T,I;H,H) whose transfer function is the symbol W
of the pair (T,B). The associate node 6% of 6 is then given by

o* = (A-lT,C,T,I;H,H). Since, as a consequence of Theorem 2.2,
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the state space H can be written as the direct sum H = H_ & H_,
where H_ is invariant under the main operator T of the node ¢ and
Hp is invariant under the associate operator A_lT of 8, it follows
that the projection P with kernel H_ and image Hp is a supporting
projection of 8. Then (5.3 a) is just a corollary of Theorem 1.1
of [1]. Noting that I - P is a supporting projection of the asso-
ciate node BX, the formulas (5.3 b) and (5.3 ¢) are clear from
the same theorem.

We now prove that (5.3 a) is, indeed, a left canonical Wiener
Hopf factorization of W with respect to the imaginary axis T.

Since

1

I+ T(T-3)"1(I-P)c = I + [T(T-A)"%P_J(I-P)C,

this operator function has an analytic continuation to the open
right half-plane F+. By Proposition 1.2 and the compactness of
(I-P)C, it tends to I + (I-P)C in the norm, as A » 0 from the
closed right half-plane F, uT.

Since

1

1 - ra” -yt = 1 - A[A'lT(A'lT-A)’le]Pc,

this operator function has an analytic continuation to the open
left half-plane F_. By the self-adjointness of A-lT in the equi-
valent inner product (2.4), Proposition 2.1 and the compactness
of PC, the value of this operator function tends to the operator
I - APC in the norm, as X » 0 from the closed left half-plane
F_u T.

In a similar way, we prove that I + ’I‘P(T—A)-1

CII-T(I-F)
(A_lT—A)_lc] has an analytic continuation to the open left [right]
half-plane F_[F+], while its value tends to the operator

I+ (I—Q*)C [I-QY¥AC] in the norm, as A + 0 from the closed left
[right] half-plane F_ u T [F+ u Tl. To be able to apply Proposi-
tion 1.2 again, we have to use the Ildentities TP = (I—Q*)T and
T(I-P) = Q*C (cf.Theorem 2.2). This completes the proof.

Theorem 5.2 is proved likewise. We remark that the existence
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of the Wiener-Hopf factorizations obtained in Theorem 5.1 and
5.2 is also clear from [15], Theorem 4.3 (or 4.4). If either
0(B) ¢ (-1,+1) or o(B) ¢ (-»,}), the existence of a canonical
factorization of W with respect to the imaginary axis is clear
from [14], Theorem 4.1. First we take B in such a way that

6(B) ¢ (-1,+1). Then the operator A = I - B is invertible, while

max JW(rx) A-If| < |B] < 1,
Re A=0

proving the existence of both a left and a right canonical fac-
torization of W with respect to the imaginary axis. If we choose
B in such a way that o(B) < (-=,}), then o(C) ¢ (-1,+1), ahd

Ltherefore- . -

‘max [W(x) = If < [lef < 1.
Re A=0

From this we have the existence of both a left and a right canoni-
cal factorization with respect to the imaginary axis in case
0(B) c (-»,}). Hence, if B satisfies the extra condition that
either o(B) < (~1,+1) or o(B) c (-»,}), there exists both a left
and a right canonical factorization of W with respect to the ima-
ginary axis. In the isotropic case of the Transport Equation
(cf.Section 6) the operator B has only one eigenvalue, which is
strictly less than +1. Hence, in this case W has both a left and
a right canonical factorization. Note, however, that the Gohberg-
Leiterer theory [14,15] does not yield the factors explicitly.
Now that the right-hand side of Egq.(5.1) has the special

form @(s) = e‘ST":L ¢, and a left canonical Wiener-Hopf factoriza-

+
tion of the symbol of this equation is explicitly known, we are
able to derive an explicit formula for the (unique) integrable
solution ¢ of Eq.(5.1). Put

+o0
@(s) = 0, Y(s) = [ H(s-£)B ¢(t)dt, -» < 5 < 0.
0

Then Eq.(5.1) holds true for all s ¢ IR\{0}. For integrable ¥, put

+oo o]
.00 = [ e Pueat, 5,00 = e yioyat,
0

-0
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+o0
f B2

-0

- +x
H(A) = Ht)dt, o_(A) = [ e o(t)at
0

for Re A = 0. Then we have
[FHOOBT §.(1) + ,(0) = §,(1), Rek = 0.

Since I - H(A)B = W(A) A, we have for Re X = 0

1

(5.5)  w_(0A 0+ w007 e, 00 = w00 e,

where W_ and W, are the factors of a left canonical factorization
of W with respect to the imaginary axis, obtained in Theorem 5.1,
i.e.,

1

(5.6) W_(A) = I+ TR(T-0)"Ye, w07 = 1 - pz-pyaThe-n) e,

Further, by [41, Theorem VIII 1.11, we have

(5.7) .0 = ar(x-T) g, .
A straightforward computation, using Liouville's theorem and Egs.
(5.5)-(5.7), yields

5.0 = ATttt pe,, §,(0) = -AT(T-0) TH(I-P)e, .

By [4], Theorem VIII 1.11, we have

-1
-sT "A
pis) = e Po,, 0 < 58 < + o,

which corresponds to the solution obtained in Theorem 4.3.
Next, we consider those solutions of Eq.(5.1) with right-hand
side @(s) = e"ST"1 ¢, that satisfy the condition

(5.8) ess-sup e UK |lp(t)] < + =,
0<t< oo

for some ¢ > -min(0,m(T)). These solutions coincide with the
essentially bounded solutions of a Wiener-Hopf operator integral

equation with right-hand side wo(s) = eJ'S/K ¢(s) and symbol

(5.9) W "1™ ha, Re A = 0.
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This Wiener-Hopf equation can be solved by making a left Wiener-
Hopf factorization of the operator function (5.9) with respect

to the imaginary axis or, what turns out to be equivalent, by
making a left Wiener-Hopf factorization of the symbol W of the
pair (T,B) with respect to the circle PK with centre -k and radius
(k. In this way, making use of the solution formula (4.9){ we
obtain information about the left partial indices. '

THEOREM 5.3. Let (T,B) be a self-adjoint admissible pair on
a Hilbert space, and let -« < min(0,m(T)). Then the symbol W of

the pair (T,B) has a left (right) Wiener-Hopf factorization with

respect to the circle I' with centre -jk and radius 3« if and only,
if -x is not an eigenvalue of the operator A T. If this is the
case, all left partial indices of the symbol W with respect to the
circle I'. have the value -1, while the number;%i these ipndices
coincides with the number of eigenvalues of A “T, strictly less

than -k, counted according to multiplicity.

PROOF. Let ¢ be a solution of Eq.(5.1) with right-hand side
@(s) = e=sT™1 ¢, satisfying Condition (5.8). Put

-s/k -t/

bo(s) = ™3 y(s) (O<s<rm); Ho(t) = e7*/% H(t) (saRM0}).

Then wo is an integrable solution of the Wiener-Hopf operator
integral equation

+oo

(5:10)  wo(s) - [ Hg(s=0)B ug(s) at rs/x

e o(s), 0 <8 < + =,

The symbol of this equation is, up to a trivial change of variable,

given by
e 1 -1
I - [explt(x "=k 7)] H(t)B dt = W(z)A,
-1 _ ,-1 =1 - . .
where g = A -k ~, Re £ = 0, and W is the symbol of the pair

(T,B). Then g ranges over the circle TK with centre -ik and radius
i:k. Clearly the problem of solving Eq{5.10) amounts to constructing
a left Wiener-Hopf factorization of the operator function W with
respect to FK. According to [15], Theorem 4.3 (or 4.4), such a
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factorization exists if and only if all values of the operator
function W on the circle FK are invertible. With the help of Pro-
position 2.1 it is easy to see that this is the case if and only
if -~k is not an eigenvalue of A_IT.

According to a well-known result (cf., for instance,[ 1],
Theorem VIII 6.1, and [8], Theorem 1), the number of linearly in-
dependent solutions of a homogeneous Wiener-Hopf operétor integral
equation is, up to a sign, equal to the sum of the negative left
indices. By this same result, the operator defined on the Banach
space of H-valued L _-functions on the interval [0,+) by the left-
hand side of Eg.(5.10) has a closed range whose codimension equals
the sum of the positive left indices. However, from the theorem
describing the solutions of Eg.(5.10) (i.e., Theorem 4.5} it is
clear that the sum of the negative left indices coincides with

1T on the inter-

the opposite of the number of eigenvalues of A
val (-=,-k], while the sum of the positive left indices vanishes.
Therefore, all left indices are negative.

It remains to prove that none of the left indices is less
than -1. To see this we argue as follows. Since every integrable
solution of Eq.(5.10) has the form

-1

w(s) = e 5T TRy

0 < 5 < + oo

O!
for some vector 9> it is clear that such a solution vanishes
identically if and only if it vanishes at s = 0. The assertion is

clear now from [12], Theorem 9.2. This completes the proof.

We conclude with a remark. Take Ky < Ky < min{(0,m(T)) and

1T. From

assume that neither ~K4 nor -k, is an eigenvalue of A~
the previous theorem it follows that the sums of the left indices

of the operator function W with respect to the circles FK and FK N
respectively, differ by the number of eigenvalues of the %perator
A—l
This statement has been proved earlier by Feldman (cf.[7], Lemma
1; [9], Theorem 5).

T on the interval (’Kl,—K2), counted according to multiplicity.

6. THE TRANSPORT EQUATION: ONE-SPEED CASE.
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In the present and the next section we apply our results to
the Transport Equation. This equation describes the time-indepen-
dent transport of particles through a homogeneous, semi-infinite
medium. Let x be a position coordinate ranging over (0,+»), u
the sine of the angle between the velocity and the surface of the
medium, g the scattering function and Y the angular density. As-
suming, in addition, that the particles do not interact and have
a (nearly) constant speed, one obtains

+1
(6.1) u %% (x,u) + p(x,u) = Il glu,u') $(x,u')du’.

The solution 3 has to satisfy a boundary condition of the form

(6.2) lim ¢(x,u) = w+(u), 0 <us1,
x40
and the following growth condition
+1
ess-sup e x/x [ Iw(x,u)|2du]1/2 <+ ™,
0<x< 4+ -1

for some fixed x > 1.
The scattering function g in Eq.(6.1) will be assumed to be
a real symmetric function satisfying the following two conditions:

+1
ess-sup J | g(u,u') |¥ du' < + =,
-1sps<+l <1

+1 r
ess-sup [ | g(u,u') |* du < + e,
-lsu's+l -1

for some fixed 1 < r < 2. According to [19], Theorem 3(2.X), this
implies that the operator B : L2[-1,+1] - L2[—1,+1], defined by

+1
(6.3) (Bf)(u) = Il g{u,u') £(u')du', -1 < u < +1,

is a well-defined compact self-adjoint operator. We shall assume
that o(B) belongs to the open interval (-«,+1).

By writing ¢(x)(u) = ¢(x,u), we may consider the unknown
function y as a vector function with values in the Hilbert space
L2[—1,+1] of square-integrable functions on [-1,+1]. In this way
Equation (5.1) can be written as an operator differential equation
of the form
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(6.4) Ty = -Ay,

where A = I - B and T is the operator of multiplication on
L2[—1.+1], i.e.,

(T£)(u) = uf(u), -1 < u < +1.

Note that T is a bounded self-adjoint operator with Ker T = {0}.
The next lemma allows us to apply the theory developed in Section
3 to the operator differential equation (6.4).

LEMMA 6.1. [The pair (T,B) of operators introduced above

48 a self-adjoint admissible pair on L,[-1,+1].

PROOF. It remains to show that the pair (T,B) satisfies
Condition (C.3) of Section 2. In order to do this take
0 <a< (2r)71
imposed on the scattering function g. For such an o the operator
Sa, defined by

(r-1), where r follows from the two conditions

(8,800 = |ul™® £w), -1 5w = 1,

is a well-defined and bounded linear operator from L2r[-1,+1]

into L2[-1,+1]. This is a direct consequence of H8lders inequality.
The operator given by the formula (6.3) is a well-defined

compact operator from L2[—1,+1] into L2r[—1,+1] (ef.[19], Theorem

3(2.X)); we shall denote this operator by BO. Put

+1
(DE)(w) = f Jul™® glu,n') £(u")dut, -1 < u < +1.

By virtue of the identity D = Sa BO’ the operator D is a compact
linear operator on L2[—1,+1]. As the operator ITIQ € L(LE[_1’+1])
acts by the formula

o

(o)) = Jul® £(u), -1 < u < +1,

we have the following commutative diagram:

a
S
LE[_1’+1] J_T_I—- L2[‘1,+1]<_.9'_ LZP[_1’+1]

BN To ’/,/)' B,

Lz['1’+1]
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From this diagram Lemma 6.1. is clear.

By the previous lemma, the theory developed in Sections 2
to 5 can be applied. In particular, the main results of these
sections, i.e., the decomposition Hp ® H_ = Hm ® H, = H (Theorem
2.2), the theorems describing the solutions of the differential
equation Ty = -Ay (Theorems 3.1, 3.2 and 3.3), the equivalence
result for the two approaches (Theorem 4.2) and the factorization
results (Theorems 5.1 and 5.2), are applicable to the Transport
Equation. For H, H_ and H_ we have to read L2[-1,+1], L2[0,1]
and L2 [-1,0], respectively. As an example, we mention the'fact
that for every ¢ e L2[O,1] the Transport Equation (6.1) has a
unique bounded solution with ¢, as its boundary value. This so-
lution is given by the formula

-1
(6.5) vx) = e A p g 0 <cx< +m,
+

Here, as before, P is the projection of H along H_ onto Hp.

A formula like (6.5) does not have any practical meaning
as long as we are not able to find an explicit expression for
the projection P. Such expliecit expressions are provided by the
next two theorems. In these theorems we restrict ourselves to the
case when the scattering function is degenerate. More precisely,‘
when the scattering function g is given by the expression

(6.6) gusu’) = 2Z, a; pa(u) pi(ut), ~1 € p,u' < +1,
J=0 J J

J
For j = 0,1,...,n, the function p; is the normalized (real) Le-
gendre polynomial of degree j, while aj < 1. For j = 0,1,...,n,
put by = aj(l-aj)_l. Then we have

B = 'ZO a. <., pj > pj, C = j§0 b. <., pj > pj.

To get an .explicit formula for the projection P, we intro-
duce the auxiliary functions A, A, and A_. Let A{A) be the deter-
minant of the operator

1

(A7hr-x) (7-07E, a £ 1-1,+10.
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Then A has a left canonical factorization A = A, A_ with respect
to the imaginary axis (cf.Theorem 5.1). Because A(x) = 1, we
normalize A, and A_ by the condition A (=) = A_(«) = 1.

For j = 0,1,...,n, we put
{A+(u)((I-P)pj)(u), -1 <w <0,

(6.7) 5j(u) = A_(U)((I‘Q)pj)(“)’ 0 < p = +1,

where P(Q) is the projection of H onto Hp(Hm) along H+(H_), intno-
duced earlier. We have the following result.

THEOREM 6.2. _If the scattering function g has the form

(6.6) and 50’ 51""’5n are defined by (6.7), then the projection
P is given by the equation

- 1
- = 21/2 e(uw)Pa(u) _ w(v)-@(u) K{u,v)
((I-Plo)(u) = 277% Blyhs - Jv. 8528 bty O

for -1 < u < 0. For 0 < p < +1, we have ((I-P)g(u) = 0. Here the
kernel K is given by

n
K(u,v) = j§o bj ﬁj(u) ﬁj(v)-

PROOF. C(Clearly, (I-P)T = T(I-P) - (I-P)CT P. By induction
we easily prove that

K_ . 1o
(I-P)TX = TK(I—P)-igé ot (1-pycT P 7717, ke .

Inserting the explicit form for the operator C, we get

K
(I-P)T® £ = T (I-P)f -
Ke1 n . . . .

- k-1-1 1,00 )
1% jEg Py <TP T £, p;> T (1 P)pj, k e IN.

Using Theorem 2.2, we have for every g e H:

<TPg9pJ'> <Tg>(I'Q)pj>

1 -
[ ue(u) B au (5=0,1,...,m).

From this equation and the fact that Ker P = H_ = L2[—1,O], it is
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clear that we have for -1 s u < 0:

((I-P)T"f) (u) = u®((I-P)f)(n)
ﬁj(u)ﬁ-(V)

k1 1 il k-i
- ko ng b,j U (I) F () -—(—r‘l-(—“ IRG dv.
Because of the identity

Tl k- v
i%o ¥

and the way in which the kernel K is defined, we obtain the theo-

rem for all functions ¢ of the form w(t) = t¥

. By linearity, the
theorem is true if ¢ is a polynomial. But the right-hand side of
Eq.(6.8) is an integral operator on the space L2[O,1] with values
in L2[—1,O], whose kernel is essentially bounded. Such an integral
operator, however, is bounded. Because the polynomials are dense

in L2[—1,+1], the theorem is clear.

In case of isotropic scattering we have a constant scattering
function g(u,u') = 3 ¢ where ¢ < 1, Then n = 0, ag = ¢, bO z
= c(l—c)_l. Put e(u) = 1. Then Py = 1 Y2 e. In view. of (6.8),
it suffices to compute (I-P)e in order to obtain an explicit for-
mula for the projection P in which 50 is known. This computation
will use the factorization formulas obtained in Theorem 5.1 and
5.2.

THEOREM 6.3. If the scattering function g has the form
=L Ui fas tue oI

g(u,u') = ic for some constant ¢ < 1, then for -1 < u < 0 we have
1
v _ oelu) -1 W(v)-p(u) dv
I-P = ——%—7 - le(1- . .
((I-P)e)(n) e te(1-e) é v = T (7A_()

PROOF. We have C = %c(l—c)_1-<.,e> e, while the determinant
A has the form

-1t -1
A(A) = 1+ fc(l-c) Il u(u-1) = au.

By direct computation (cf.[4], Exercise VIII 9.11) we have
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Alt+ie)-A(t-ic) 1

21

- t

lim me(l-c)
evy0

From Theorem 5.1 we have

-1 <t < +1.

1

(6.9) A (M) = 1+ 3e(1-¢) "t < T(T-2)"H(I-P)e, e> .

Let T'_ be an oriented contour in the closed left half plane that
cuts the real line at A = 0 perpendicularly and enclcses the parts
of the spectra of T and A—1 T in the open left half plane once in

the positive direction. From (6.9) we have for k = 0,1,2,...

(6.10)  (-2n)7' [ A A_(A) ax = je(1me)Th <TPH(I-Ple, e

On the other hand, it follows from the analyticity of A_ outside
[-1,0] and the continulty and non-vanishing of A, in the closed
left half plane that

0 K . .
L ~1 K _ 1 t . A(t+ie )-A(t—ie)
(6.11) (-=2@i) = [, AT A_(X) dax = = lim - dt.
r_ L} A (%) £v0 21
From (6.10) and (6.11) we have
K 0 £ K
<T(I-Ple, T e> =;2 (Y £ dt, k= 0,1,2,....
+o
Since {Te} (=0 Spans a dense linear subspace of H = L2[-1,+1],
we obtain -1
A (u) s 1 < u <0,
((I-Ple)(u) =
0 0 < u < +1.

In a similar way, we get 1
A_(u) s 0 < u-< +1,

((I-Qle)(u) =
0 , -1 < u <.

1

Hence, B,(n) = 1//2 and K(u,v) = lc(1-c)””. Applying the previous

theorem we obtain the present one.

As a concluding remark we note thét results similar to Theorem
6.3 have been obtained by several authors (for instance, [3,16,
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18,20,22]), while a result similar to Theorem 6.2 has been -ob-
tained in [21]. All these authors, however, need an additional
diagonalizing factor in the formulas for the projection P.

7. THE MULTIGROUP TRANSPORT EQUATION.

In the present section we apply our results to the multigroup
transport equation. This equation describes the time-independent
transport of particles through a homogeneous semi-infinite medium.
Now it is assumed that the particles do not interact and are di-
vided into N groups of particles with (nearly) constant speed.

Let x be a position coordinate ranging over (0,+») and p the sine
of the angle between the veldcity and the surface of the medium.
For i = 1,...,N, let wi be the angular density within the i-th
group and oi a scalar number proportionate to the mean speed of
the i-th group. Here O45.--,0y2re ordered in such a way that

O 2...20y = 1.

Let I denote the N x N ~-diagonal matrix with diagonal elements
Gqseves0y- For i,j = 1,...,N, the function gij describes the scat-
tering from group j to group i. Put

Guu') = (s (uou')), 3.
1] i,d=1

Then G 1s called the scattering function. Let ¥(x,u) be the column
‘vector with elementswl(x,u),..., wN(x,u). According to [2], the
particle transport is described by the vectorvalued integro-diffe-
rential equation

5 1
(7.1) u 'a‘g (x,u) +  9(x,u) = [ G(u,u") ¢(x,p")du’, 0 < x < +=,

with boundary conditions

(7.2) lim wi(x,u) =@
x+0

We shall denote the column vector with elements @, i(u) by ®+(u).
H

+’i(u), 0 s u=<+1, 1i=1,2,...,N.

Besides the boundary conditions (7.2) the solution ¢ has to satisfy
a growth condition of the form
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+1
-x/ 2
ess-sup e 'K LS wi(x,u)l du]i/2 < + o,
0< X< o0 -1
for some fixed k > 1 and 1 < 1 < N.
The scattering function G in Eq.(7.1) will be assumed to be

an N x N-matrix of real symmetric functions satisfying the follo-

wing conditions for i = 1,...,N:

*1 r r
ess-sup Ilg Au,u')]T dp' < + », ess-sup Ilg (u,u')l du < tw,
-lgus+l - -l<u'<+1 -1

for some fixed 1 < r < 2. According to [19], Theorem 3 (2.X), this
implies that all the operators B.. L2[—1,+1] > L2[—1,+1], defined

1]
by
+1
(BiJf)(U) = _J’l gij(]—l:ﬂ') f(u')du': -1 < p < +1,

are well-defined compact operators (1<i,j=N). Assuming, in addi-
3 1 - -
tion, that gij(p,u ) = gji( ',u), we have BlJ BJl
We shall consider Eq.(6.1) in the space H = [ ([ -1,+171, E )
of all EN—valued L2 functions on [-1,+1], endowed w1th the inner

product
<f,g> = g f f. (U) ( ) du,

where f(g) is the column of functions fl""’fN (gl,...,gN). Define
the operator B : H + H by

(Bf)i = B., f., 1 <1 s N.

jE1 Big 1o

Then B is a self-adjoint compact operator on the space H. Our fi-
nal assumption will be that the operator A = I - EB is strictly
positive.

We define the operator T : H -+ H by
(T£); (w) = ufy(u), 154 = N, -1 = 3 s +1.

Then T is a self-adjoint operator with spectrum [-1,+1], whose null
space is trivial, The same holds true for the operator 2_1 T.
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LEMMA 7.1. The pair (I - 7,571 B) of operators introduced
above is a self-adjoint admissible pair on L,([-1,+1], EN).

PROOF. It remains to show that the pair (Z_1 T, g1 B) satis-
fies Condition (C.3) of Section 2. In order to do this take
0 < a < (21:’)—1 (r-1), where r follows from the conditions imposed
on the scattering function G. Note that IZ—l T % = 7% 7%
The lemma will be clear now from the argument used in the proof
of Lemma 6.1 and the specific form of the operators T and B.

By the lemma, the theory developed in Section 2 to 5 can be
applied. Put C = Z_l[(I-Z-lB)_1
are played by 5 7 B, A, 1 C, E 1 T, I T, respectively. From

Theorem 2.2 it follows that H_ & H_ = H, where Hp(H_) is the spec-
1

-I]. Then the roles of B,A,C,T,A °T

tral projection of A"+ g% 1 (z71 T) corresponding to the posi-
tive (negative) part of its spectrum. From Theorem 3.1 it is clear
that for every ®, L2([O,1], mN) the multigroup transport equation
(7.1) has a unique bounded solution with @, as its column vector

of boundary values; this solution is given by the formula

Y(x) = e_XT 1ZA P ®,, 0 < x <+ o,
where P 1s the projection of H onto Hp along H_.

As a concluding remark we note that the existence and unique-
ness of a bounded solution of Eq.(7.1) has been proved earlier in
[2] under somewhat more restricted conditions for degenerate scat-
tering functions.
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