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,ANALYTIC OPERATOR FUNCTIONS WITH COMPACT SPECTRUM. 

I. SPECTRAL NODES, LINEARIZATION AND EQUIVALENCE 

~.A. Kaashoek, C.V.M. van der Mee , L. Rodman 

This paper arose from an attempt to classify analytic oper- 
ator functions modulo equivalence in terms of their lineariza- 
tions and to use the linearization as a tool to obtain spectral 
factorizations. In this first part spectral linearizations and 
spectral nodes are introduced to provide a general framework to 
deal with problems concerning the uniqueness of a linearization 
and the existence of analytic divisors. Two analytic operator 
functions Wl(.) and W~(.) with compact spectrum are shown to have 
similar spectral line~rizations if and only if for some Banach 
space Z the functions WI(.) ~ I Z and W2(.) ~ I Z are equivalent. 
In parts II and III of this paper spectral nodes will be used 
intensively to deal with a number of factorization problems. In 
particular, in part III for Hilbert spaces and bounded domains a 
full solution of the inverse problem will be given, which will 
be used to construct spectral factorizations explicitly and to 
solve the problem of spectrum displacement. 

0. Introduction 

First let us recall some known notions and facts concernfng 

equivalence and linearization. Let a be an open set in ~, and 

let W I : ~ ÷ L(Y I) and W 2 : ~ ÷ L(Y2) be analytic operator-valued 
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functions. Here $(Yi), , i : i,~, stands for the Banach algebra 

of all (bounded linear) operators acting on the complex Banach 

space Yi" The functions W l and W2 are called equivalent on ~ if 

w1(~) : E(~Jw2(~)~(~) , ~ ~ ~ , 

where El(k) : Y2 + Y1 and F(h) : Yl ÷ Y2 are (two-sided) invert- 

ibie operators which depend analytically on k ~ ~. (In this 

case Yi and Y2 are necessarily isomorphic.) A (bounded linear)" 

operator T: U ÷ U, where U is a Banach space, is called a line- 

arization of the analytic operator function W: n ÷ L(Y) if for 

some Banach space Z the operator functions W(k) ~ I Z and kI U - T 

are equivalent on n. Here I Z and I U stand for the identity 

operators on the spaces Z and U, respectively. The operator 

function W(.) @ I Z will be referred to as the Z-extension of W. 

A systematic study of the problem to classify analytic 

operator functions modulo equivalence was started in [9,10]. In 

these papers the linearization was introduced and proved to be an 

important tool in the study of operator functions. Later papers 

about linearization ([22,5,18]) concerned mainly the existence of 

linearization and various explicit formulas for it. In the pre- 

sent paper we come back to one of the main themes of [9,10]. 

Can linearization be used to classify operator functions up to 

equivalence and extension? In general the answer is no. A given 

analytic operator function may have many different non-similar 

linearizations. Nevertheless for operator functions with compact 

spectrum the problem has a positive solution provided spectral 

linearizations are used only. 

Let W: C ÷ L(Y) be an analytic operator function, and assume 

that the set 

(0.i) Z(W) = {~ c C I W(~) is not invertible} 

is a compact set of ~. We call the set Z(W) the spectrum of W 

in C. An operator A: X ÷ X, where X is a Banach space; is said 

to be a spectral linearization of W on ~ if the spectrum ~(A) of 

the operator A is a subset of ~ and for some Banach spaces Z I and 

Z 2 the operator functions W(~) ~ IZland (~I X - A) ~ I Z are 
2 

equivalent on C. A spectral linearization of W always exists 
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provided the spectrum Z(W) is compact, and if Y is a Hilbert 

space, then the domain of a spectral linearization can be chosen 

to be a Hilbert space too. 

The linearizator, introduced and studied in [20], is an 

example of a spectral linearization. If W(~) : Z~ ^JA. is a 
J=U J 

monic (i.e., its leading coefficient A Z is equal to the identity 

operator I) operator polynomial, then its companion operator 

(o.2) 

0 I 0 ... 0 

0 0 I ... 0 

- : : : 

0 0 0 ... I 

-A 0 -A 1 -A 2 ... -A£_ I 

is a spectral linearization of W on ~ (see [L2, 13, i4] for more 

details). A Hilbert space contraction T with spectral radius 

less than one turns out to be a spectral linearization of the 

holomorphic function U0 T on the open unit disc, where e T is the 

Sz-Nagy-Foias characteristic operator function of T (cf. [28]) 

and U is a suitable fixed unitary operator. 

Spectral linearizations classify analytic operator functions 

with a compact spectrum up to equivalence and extension. This is 

the contents of the next theorem, which is one of the main re- 

sults of the present paper. 

THEOREM 0.i. Let WI,W 2 : ~ ÷ L(Y) be analytic operator 

functions with compact spectra. Then there exist Banach spaces 

Z 1 and Z 2 such that Wl(h) @ IZI and W2(~) @ IZ2 are equivalent on 

if and only if W 1 and W 2 have similar spectral linearizations. 

In particular one sees that for a given operator function 

the spectral linearization is uniquely determined up to simi- 

larity. In other words we have the following corollary. 

COROLLARY 0.2. Let X 1 and X 2 be Banach spaces, and let 

T i E L(Xi), i = 1,2. Then for some Banach spaces Z 1 and Z 2 the 

functions (~IxI - TI) @ IZI and (~Ix2 - T2) @ IZ2 are equivalent 

on an open set containing the spectrq of T 1 and T 2 if and only 

if T 1 and T 2 are similar. 

In case Z l : Z 2 : 0 Corollary 0.2 was proved in [25], but 

the method used in [25] is not strong enough to obtain Corollary 
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0.2. The similarity referred to in Corollary 0.2 will be de- 

scribed explicitly in terms of the operator functions that give 

theequivalence between (kIXl- T I) • IZI and (lIx2 - T2) @ IZ2 . 

Theorem 0.i is proved in this paper as a corollary 

of a general theory of spectral nodes. Let ~ be an open set in 

~, and let w: ~ + L(Y) be an analytic operator function with 

compact spectrum in ~. A quintet @ = (A,B,C;X,Y) is called a 

spectral node for W on ~ if X is a Banach space, 

A: X+X , B: Y÷X , C: X÷Y 

are (bounded linear) operators and the following conditions are 

satisfied: 

(Pi) ~(A) c ~ ; 

(P2) W(X) -I C(XI- A)-IB has an analytic extension on ~; 

(P3) W(~) C(xI-A) -I has an analytic extension on ~ ; 

(P4) nj= 0 Ker CA J = (0) 

The operator A will be referred to as the main operator of the 

spectral node 0. 

The notion of a spectral node is a natural generalization 

of the notions of standard triples and r-spectral triples for 

operator polynomials, which have been introduced and studied in 

[12, 13, 14, 16, 27]. On the other hand, spectral nodes are 

related to realizations for analytic operator functions (of. [3], 

Section 2.3; also [ii], Section III.l). 

Linearization theorems of [I0] are used to establish the 

existence of spectral nodes. Spectral nodes for a given W are 

unique up to similarity, i.e., if (AI,BI,CI;XI,Y) and (A2,B2,C2; 

X2,Y) are spectral nodes for W on fl, then 

A 1 = S-IA2S , C i = C2S , B I : S-IB2 

for some invertible operator S. Furthermore, we show that the 

main operator in a spectral node is a spectral linearization of 

w on ~, and, conversely, every spectral linearization of W on 

is the main operator in some spectral node for W. Note that 

these properties already prove Corollary 0.2. 
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In part II of this paper the connection between the invari- 

ant subspaces of the spectral linearization and analytic divi- 

sors will be explained. As applications the stability of spe- 

tral factorization will be proved and necessary and sufficient 

conditions will be obtained for the existence of Wiener-Hopf 

factorizations in terms of the moments of W -I (cf. [27], also 

[llJ, Section Ill.l). In part III for Hilbert spaces and bounded 

domains the main inverse problem will be solved completely, and 

this will be used to construct spectral factorizations explicit- 

ly without using the cocycle theory (see, for instance, [15]). 

Furthermore, in part Ill the problem of spectrum displacement 

will be solved and we give applications to the theory of charac- 

teristic operator functions. 

Let us now describe the contents of the various sections of 

this first part. In Section 1 we prove the uniqueness of spec- 

tral nodes. In Section 2 a calculus of spectral nodes is deve- 

loped which is comparable to the operational calculus for ope- 

rators. Explicit formulas are given for the spectral nodes of 

a product and a direct sum of two operator functions. The con- 

nection between the spectral nodes for an operator function W 

and the spectral nodes for an extension W(.) ~ I z is described. 

Also, in this section, we describe the effect on the spectral 

nodes of a number of standard operations on operator functions, 

such as taking duals, applying MSbius transformations (cf. [3], 

Section 1.5) and passing to the hull of an operator function. 

In Section 3 the existence of spectral nodes is established and 

the connection with linearization is described. In Section 4 

spectral nodes are characterized in terms of invertibility of 

operator matrices of the form 

fA-~ B t 
L , ~6 ~ . C 

As a corollary we obtain that the main operator of a spectral 

node is a spectral linearization. Further, we give necessary 

and sufficient conditions in order that the quintet (A,B,C;X,Y) 

is a spectral node for an analytic function W: ~ ÷ L(Y) such 

that W(X) -l has an analytic continuation outside Z(W) including 
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the point =, and we show how in that case the function may be 

reconstructed from the spectral node. In Section 5 we prove 

Theorem 0.I mentioned above. Further, in this section, 

for separable Hilbert space we give a complete description of 

the minimal extensions that are needed to make equivalent two 

operator functions that have similar spectral linearizations. 

We conclude with a few remarks about notation and termino- 

logy. We use the symbol ~ to denote the Riemann sphere ~U {~}. 

By a bounded Cauchy domain A we mean a bounded open set in 

whose boundary consists of a finite number of disjoint, closed, 

rectifiable Jordan curves that are oriented in the positive 

sense. If g is an open subset of ~ and a a compact set in ~, 

then one can always find a bounded Cauchy domain A such that 

a A c ~ c ~ (see [24], Section 148). The symbols X, Y, Z 

denote complex Banach spaces. The Banach space of all [bounded 

linear) operators between X and Y is denoted by L(X,Y); if X= Y, 

we write L(X). Throughout this paper ~ is an open subset of @, 

and 

w: ~ ÷ L(~) 

is an analytic operator function whose spectrum E(W), which is 

defined by (0.i), is a compact subset in ~. All operators are 

assumed to be bounded and linear. 

Acknowledgement: We are grateful to I. Gohberg for several 

useful and stimulating discussions on the subject of this paper. 

i. Uniqueness of Spectral Nodes 

In this section we show that for a given analytic operator 

function spectral nodes, whenever they exist, are unique up to 

similarity. First we derive the dual of Condition (P3) for a 

spectral node. 

PROPOSITION I.I. If @ = (A,B,C;X,Y) is a spectral node for 

W on ~, then (h -A)-IBW(~) has an analytic continuation to ~. 

Proof. Let A be a bounded Cauchy domain such that 

~(A) a A c ~ c ~. We have to show that for each y ~ y 

1 
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Put H(h) = W(~) -I - C(h -A)-IB, ~ ( ~ \ Z(W). Note that H has 

an analytic continuation to ~ (cf. Condition (P2)), while 

( i . i )  a(~-A)-~BW(~) = s - ~(~)w(~) .  

By induction one proves that 

] In(I-A)-IBW(1) ydh (z ( 2 \ -A, n > O) 
An~(z) - 2~ii 3A z-h - " 

It follows that for each z ( fi\ A- 

1 I ~nEz-K(~)W(~)  ] yd~ = 0 ( n >  
CAn~(z) - 2~i 3A z-~ O) 

Using (P4) one sees that ~(z) = 0, z (~\ ~. D 

THEOREM 1.2. For i = 1,2, let O i = (Ai,Bi,Ci;Xi,Y) be a 

spectral node for W on ~. Then there exists a unique invertible 

operator S: X 1 ÷ X 2 with the property that 

(1.2) C2S = el, A2S = SAI, B 2 = SB I 

The similarity S and its inverse S -I are given by the formulas 

(l.3a) S = (2~i) -I I~ (I-A)-iB2W(~)Cl(h-A1)-ld~ 
A 2 

(l.3b) S -I = (2~i)-i( (%-AI)-IBIW(X)C2(h-A2)-Idh 
;3 A 

where A is a bounded Cauchy domain such that (c~(A1) U o(A2) ) a A 

a-Aa2. 

Proof. Let T be the operator defined by the right-hand 

side of (l.3b). Note that the definition of T and S does not 

depend on the particular choice of the Cauchy domain A. There- 

fore we choose a bounded Cauchy domain A' such that A a ~ a A' 

c Z -w c ~. T h e n  

TS = (2~ti) -1 I3A' (P-AI)-IBIW(p)C2(v-A2)-Isdv 

= (2~t¢) -2 (p-A1)-IB1W(v)C2(~-A2) (;~-A 2) 
A' A 

We use the resolvent identity to rewrite the integrand as 
-I 

(P_AI)-IBIW(~)C2(P_A2)-I B2W(X)CI(h-AI) _ 
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(~-A ]-IBIW(~)C 
2 (k_A2]-IB2w(k]CI(k_AI] -I 

Observe that for a fixed v ( ~A' the first term is analytic in 

on A. It follows that the double integral of the first term 

is zero. To integrate the second term we interchange the order 

of integration. By Proposition 1.1 the function (v-AI)-IBIW(v) 

is analytic on ~. It follows that 

TS = (2~i) -1 f (I-AI)-IBIW(X)C2(I'A2)-IB2w(I)CI(X-AI)-Idx. 
A 

Now we use formula (1.1) together with Condition (P3) and Pro- 

position 1.1, and get 

TS = (2~i) -I [ (X-AI]-IBIW(X)CI(X-AI)-Idl. 
A 

For n ~ 0 we multiply by the operator CIA ~ from the left, apply 

the formula AI(I-AI ]-I = k(l-Al)-l- I and make use of Condition 

(P3) n times. For n { 0 this yields 

CIA~TS = (2~i) -I f lncI(I-AI]-IBIW(I)CI(I-AI ]-]dl. 
A 

Finally we apply formula (l.1) and Condition (P3] once again and 

get 

- f - CIAITS = CI.(2~i) 1 kn(l-A1 ) Idl , n~ 0 . 
Z 

As ~A encloses O(Al) , we eventually get 

CIA TS = CIA 1 , n ~ 0 

Now we use Condition (P4) and conclude that TS = I X . In the 
1 

same way it is shown that TS = IX2. Hence, S is invertible and 
-l S =T. 

• To prove (1.2) we use arguments exposed previously, namely 

formula (i,i), Proposition 1.1 and Condition (P3). For instance, 

denoting H2(I ) = W(I) -I C2(X-A2)-IB 1 we have 

= (2~i) -I ~ C2(I-A2 )-IB A 2W(k)CI(k-AI)-Idx = C2S 

= (2~i)-I~A ClCk-Al)-Idk- (2~i)-l~A H2(k)WCk)Cl(k-A1)-Idk" 

Because of (P3) the second integral vanishes, and the first one 

equals C l . 
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Finally, the uniqueness of the similarity is immediate 

from Property (P4) and Eqs. (1.2). o 

COROLLARY 1.3. If O = (A,B,C;X,Y) is a spectral node for 

W on ~, and A is a bounded Cauchy domain such that o(A) c A c 

c ~, then 

(2~i) -I f (I-A)-IBw(~)C(I-A)-Idl = I X 
& 

Proof. Apply the previous theorem for 0 1 = 0 2 = o, and 

remark that the similarity obtained is unique. [] 

Two spectral nodes 0 1 = (AI,BI,CI;XI,Y) and 0 2 = (A2,B2,C2; 

X2,Y) are said to be similar if there exists an invertible 

S: X I ÷ X 2 such that formula (1.2) holds true. 

THEOREM 1.4 .  Two analytic operator functions WI, W2: 

÷ L(Y) with compact spectrum have similar spectral nodes on 

if and only if the function WI(X)-I - W2(1)-I has an analytic 

continuation to ~. 

Proof. Suppose that for i = 1,2 the quintet O i = (Ai,Bi, 

Ci;Xi,Y) is a spectral node for W i on ~, and assume that 0 1 

and 0 2 are similar. Then there exists an invertible S: X I ÷ x 2 

such that C2S = Cl, A2S = SA 1 and B 2 = SB I. Then the function 

Wi(h)-i W2(h)-i = [Wi(1)-i Ci(l-Ai )-iBi ] - [W2(I)-i 

C2(h-A2)-IB2 ] has an analytic continuation to a. 

Conversely, assume that Wi(X)-I W2(~)-i has an analytic 

continuation to a, and let @ = (A,B,C;X,Y) be a spectral node 

for W i on ~. Obviously, W2(x)-i C(~-A)-iB = [Wi(~)-i 

C(~-A)-iB] + [W2(~)-i Wi(1)-i] has an analytic continuation 

to a. Further, the function W2(1)C(I-A)-i = Wi(1)C(k-A)-i - 

W2(h)[W2(1)-i Wi(l)-i]wi(i)C(i-A)-i has an analytic continua- 

tion to a. So Properties (Pi) (P4) hold true for the node 

and the operator function W 2. Hence, @ is also spectral node 

for W 2 on ~. [] 

2. Calculus of Spectra ! Nodes 

In this section a calculus of spectral nodes is developed. 

In the next section these results will be used to construct ex- 

plicitly a spectral node for a given analytic operator function, 

starting from linear functions. First we derive a lemma that 
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will play an essential role in what follows. 

LEMMA 2.1. Assume that for the quintet (A,B,C;X,Y) the 

properties (PI) , (P2) and (P3) hold. Let x be an element of X 
-i 

such that a(~-A) x vanishes on a neighbourhood of infinity. 

Then a(~-A)-Ix = 0 for all ~ ~ ~(A). 

Proof. Write h(h) = C(X-A)-Ix, ~ ~ q(A). Let A be a 

bounded Cauchy domain such that s(A) c A c 5 c ~. It suffices 

to show that h(~) = 0 for ~ ~ A. Let U be the unbounded con- 

nected component of ~ \ 5, and let At''''' mA be the connected 

components of A. The closure of U has points in common with 5. 

Assume k0 E ~ N ~I" As h(k) vanishes on U and h is analytic 

outside o(A), the function h vanishes on a neighbourhood of ~0" 

But then the same is true for Wh. According to Property (P3) 

the function Wh has an analytic continuation to ~. Because A I 

is connected, Wh is zero on ~I" From Property (P2) it follows 

that z(W) c o(A). So we may conclude that h vanishes on ~A I. 

But this implies that h is zero on the unbounded component of 
n 

~ \ U 5. and we can repeat the argument. Proceeding in this 
j = 2  J '  

way we obtain h = 0, and the proof is complete, a 

In the same way we can show that, if C(~-A)-lx vanishes on 

some non-empty open set in the complement of o(A), then the 

vector C(h-A)-Ix = 0 for all ~ a(A). 

THEOREM 2.2. For i = 1,2, let Wi: ~ ÷ L(Y) be an analytic 

operator function with compact spectrum, and let e i = (Ai,Bi, Ci; 

Xi,Y) be a spectral node for W. on ~. Put 

i (2.1) A = , B = , C = [ C 1 Q ] , 
0 A 2 ] B 2 

where the operators R and Q are defined by 

R = (2~i)-i[ (~-AI)-IBI{W2(~) -l - C2(~-A2)-ZB2}dk 
A 

Q = ( 2 ~ i )  -1 {Wl(X) -~ _ C~(X_A~)-zB } C 2 ( X - A 2 ] - l d x  
A 1 

Here  A i s  a b o u n d e d  Cauchy  d o m a i n  s u c h  t h a t  ( e ( A 1 )  U ~(A2)  ) c A 

a A c ~. Then (A,B,C;X 1 @X2, Y) is a spectral node for W = W2W 1 

on ~. 
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Proof. Since ~(A) c (q(Ai) U s(A2)) it is clear that Pro- 

perty (Pl) holds. For k t (a(A I) U s(A2)) we have 

(X_A)-I = i (l-A1 }-1 (X-AI)-IBIC2(X-A2)-lJ 
0 [X_A2)  -1 

It follows that for ~ / (~(A i) (~(A2)) 

C(A-A)-IB = CI(A-Ai)-IR+ CI(X-AI)'IBIC2(X'A2 )-iB2 + Q(X-A2)-IB 

Take w ( Q\ ~. Using the resolvent identity and Property (P2) 

for W l and W 2 we compute that 

Ci(w-A1)-IH = (2~i)-II~ (w-~)-~Yi(~)-IS2 (~)d~ ; 

Q(w-A2)-~B= = (2~i)-~I~ (w-~)-iS (~)W2(~)-ld~ 
A I ' 

where for i = 1,2, Hi(~) = yi(~)-i _ Ci(~_Ai )-I Bi. It follows 

that the functions 

Wi(~)-i~2(~) - CI(~-AI)~IR, S~[~)W~(~) -i ~(~-A2)-~ 

have an analytic continuation to Q. Now 

w(~) -I_O(~_A)-I~ : wi(~)-Iw2(~) - ~ - a ( ~ - ~ ) - ~  

= {WI(X)-IH2(X) - CI(X-A1)-IR} + {HI(I)W2(X) -I - QCX-A2)-IB2} 

s1(~)s2[i), ~ ( ~ \ (~(A i) U ~[A~)) 

This shows that W(~) -i C(k-A)-iB has an analytic continuation 

to  ~ t o o .  

To derive (P), we first note that for w ( ~ \ A- 

(2~i) -i I (w-k)- IH Q(w-A2)-I = 3A i (~')C2 ( X - A 2 )  - l d x  " 

This implies that HI(X)C2(X-A2 )-I - Q(I-A2)-I has an analytic 

continuation to ~. Now 

W(~)C(~-A) 
where 

v1(~) = w2(x)w1(x)c1(x-A ~) 

v2(~] = W2(X)O2(X-A e) 

-I 
= [ v ~ ( ~ ) ,  v 2(~)] 

-I 

-1 + W[~){Q(~_A2)-~ ~(~)C2(~-A 2) -1 }. 

2 " 
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This implies that W(k)C(k-A) -I has an analytic continuation to 

~, and hence Property (P3) holds true. 

Finally, to prove (P4) take x = (Xl,X 2) ~ ~ Ker CA j 
"=0 " 

Then C(~-A)'ix vanishes on a neighbourhood of infinity. Using 

Lemma 2.1 we conclude that C(X-A)-Ix is zero for ~ ~ s(A). Take 

E ~ \ (o(A1) U o(A2)). As C(~-A)-Ix = 0, we have 

CI(k-AI)-Ixl + CI(X-AI)-IBIC2(k-A2)-Ix2 + Q(k-A2)-lx2 = O. 

Multiplying from the left by WI(k ) and rearranging terms we get 

C2(I-A2)-Ix2 = -Wl(1)gl(h-Al)-ixl + 

WI[I) [HI(1)C2(I-A2 )-I Q(I-A2)-I]x2 

In this identity the left-hand side is analytic outside o(A2) , 

whereas the right-hand side has an analytic continuation to c. 

By Liouville's theorem we have C2(l-A2)-lx2 = 0 outside o(A2) , 

and therefore x 2 = 0. But then 01(k-A1)-Ixl = 0 on a neighbour- 

hood of infinity, and therefore x I = 0. Hence x = 0, and Pro- 

perty (P4) has been established, o 

If for i = 1,2, the function W[ 1 has an analytic continua- 

tion to ~. \ z(Wi) , then it is clear from Property (P2) and 

Liouville:s theorem that for i = 1,2 

-IB. Wi(1)-I = D i + C i(k-Ai) 

for some bounded operator Di: Y + Y. Applying the previous 

theorem one sees that in this case the node 

IIA J  i 1 @ = , , [ C i DIC 2 ]; X i • X2, Y 
0 A 2 B 2 

is spectral node for W = W2W 1 on ~. In the terminology of [3], 

Chapter I, the node @ is the product @ = 8281 of the nodes @ 2 

and e I . 

A result similar to Theorem 2.2 has been provided in [12] 

in the framework of operator polynomials (see also [2, 26]). 

THEOREM 2.3. Let e = (A,B,C;X,Y) be a spectral node for W 

on ~, and let E(k) ~ L(Y) and F(k) 6 L(Y) be invertible opera- 

tors that depend analytically on I ( ~. Put 
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= ( 2 ~ i )  -1 I (h-A)-IBE(~) -ldh R E J 

QF = ( 2 ~ i ) - 1  / F(h) - IC(~-A) - lda  ' 
ak 

where k is a bounded Cauchy domain such that ~(A) c k c A c ~. 

Then (A,RE, QF;X,Y ) is a spectral node for EWF on ~. 

Proof. Remark that (0,0,0;{0},Y) is a spectral node for 

both E and F on ~. Now apply Theorem 2.2 twice and identify 

the new space {0} • X • {0} with the original space X. 

THEOREM 2.4. For i = 1,2 let Yi be a complex Banach space, 

Wi: ~ ÷ L(Yi) an analytic operator function with compact spec- 

trum and @i = (Ai'Bi'Ci;Xi'Yi) a spectral node for W i on ~. 

Then 

(A 1 • A2,B I • B2,C 1 • C2;X I • X2,Y I @ Y2) 

is a spectral node for W I ~ W 2 on ~. 

THEOREM 2.5. Let Y and Z be complex Banach spaces, and de- 

note by ~ and ~ the projection of Y ~ Z onto Y along Z and the 

natural embedding of Y into Y • Z, respectively. 

If (A,B,C;X,Y) is a spectral node for W on ~, then (A,B~,TC; 

X,Y • Z) is a spectral node for W(.) • I Z on ~. If (A,B,C; 

X,Y • Z) is a spectral node for W(.) • I Z on ~, then (A,BT,~C; 

X,Y) is a spectral node for W on ~. 

Proof. The first part is clear from the previous theorem 

and the fact that (0,0,0;{0},Z) is a spectral node for W2(~) = £z 

on ~. Let us prove the second part. Obviously, Property (P1) 

holds. Since W(~).~C(~-A) -I = ~.(W(~) $ Iz)C(~-A)-I, and 

W ( ~ ) - I  ~ ( a _ ~ ) - l ~  = ~ [ ( W ( a ) - i  ~ IZ ) C C a - A ) - I B ] ~  f o r  

E ~ \ o ( A ) ,  i t  i s  c l e a r  tha t  P r o p e r t i e s  (P2) and  (P3) h o l d  t o o .  

To e s t a b l i s h  t h e  f i n a l  P r o p e r t y  (P4), we assume  t h a t  f o r  

some x E x t h e  v e c t o r  f u n c t i o n  ~ C ( ~ - A ) - l x  = 0 on a n e i g h b o u r h o o d  

of  i n f i n i t y .  As ( P 1 ) ,  (P2) and  (P3) have  b e e n  e s t a b l i s h e d  a l -  

r e a d y ,  we may a p p l y  Lemma 2 .1  and  i n f e r  t h a t  ~ C ( X - A ) - l x  = 0 f o r  

X I o ( A ) .  Le t  us  d e n o t e  by p t h e  p r o j e c t i o n  o f  Y • Z o n t o  Z 

a l o n g  Y. Pu t  
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~(~)  : [ w ( ~ ) - 1  m i z  ] _ $ ( ~ _ ~ ) - i ~ ,  ~ \  z ( w ) .  

Applying p to this identity we see that p~(~_~)-1~ has an ana- 

lytic continuation to ~. But then pC(X-A)-IB : 0, X~ o(A). 

With the help of Corollary 1.3 we obtain 

pc : (2~ i )  -~ I p ~ ( ~ - ~ ) - ~ B [ w ( ~ )  • z z ] ~ ( ~ - ~ ) - ~ d ~  : 0, 
J ~A 

where A is a bounded Cauchy domain such that o(A) c A c ~ c ~. 

So on a neighbourhood of infinity we have C(~-A)-Ix: ~C(X-A)-Ix 

= 0, and x : 0 because (P4) holds for (A,B,C;X,YOZ). [] 

In the next proposition ~ will denote the Mobius trans- 

formation 

~ ( k )  = (pX + q ) ( r k +  s)  - I  , 

where p ,  q,  r and s a re  complex  numbers and ps  - q r  # O. We 

c o n s i d e r  ~ as a map f rom the  Riemann sphere  ~.  i n t o  i t s e l f .  

The inverse map is given by 

-i (~ )  : ( - 8 ~ + q ) ( r x - p )  " I  

I n  a n a l o g  7 w i t h  Theorem 1.9 o f  [ 3 ]  we have 

THEOREM 2.6. Put ~ = m-1[~] \ ~}. Let 0 = (A,B,C;X,Y) 

be a spectral node for W on ~, and suppose T = p - r A is in- 

vertible. Put 

= -~q-sA)T-l, B = T-IB, C = (ps-rq) CT-i 

Then 0 = (A,B,C;X,Y) is a spectral node on ~ for the operator 

function 

~(~) : w ( ~ ( ~ ) ) ,  ~ ~ ~ . 

Proof. As T : p -rA is invertible, the inverse map m -I is 

analytic on the spectrum of A. So ~-I(A) is well-defined. In 

fact, ~-I(A) = -(q-sA)T -I coincides with the main operator of 0. 

By the spectral mapping theorem 

which e s t a b l i s h e s  (P1) .  

A s t r a i g h t f o r w a r d  c a l c u l a t i o n  shows t h a t  f o r  a l l  ~ ~ ~ \  o(A) 

rCT-~ + ~ ( ~ - 2 ) - ~  = C(~(~)  A ) - I ~  . 
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Since W(~) = W(~(~)), ~ E ~, we now directly obtain (P2)° 

Property (P3) is clear from the identity 

C ( h - A )  - I  = ( r ~ + s ) - l ( p s - q r ) C ( ~ ( ~ ) - A )  -1, ~ E ~ , 

a n d  t h e  f a c t  t h a t  r ~  + s ~ 0 f o r  a l l  ~ E ~.  F rom t h e  same  

i d e n t i t y  a n d  Lemma 2 . 1  i t  f o l l o w s  t h a t ,  i f  C ( ~ - A ) - l x  = 0 i n  a 

n e i g h b o u r h o o d  o f  i n f i n i t y ,  t h e n  

H e n c e ,  C(~-A) - l x  = 0 f o r  a l l  ~ ~ ~ \ s ( A ) .  U s i n g  P r o p e r t y  (P4)  

f o r  t h e  s p e c t r a l  n o d e  @, we c o n c l u d e  t h a t  x = 0.  T h i s  e s t a b -  

l i s h e s  (P4) for the quintet @, and the proof is complete, o 

Next we consider a well-known construction for Banach spaces, 

which originates from [4]. Let X be a complex Banach space. 

We associate with X the Banach space <X> = ~ (X)/co(X), which 

consists of all classes of bounded sequences (Xn)n_O,_ Xn ~ X 

(two bounded sequences (Xn) =0 and (Yn)n=O are in the same class 

if and only if lim IIXn-Ynl I = 0), and is endowed with the quo- 

tient norm 

l l < ( X n ) ~ : O > l l  = In f~Sup I IXn -Zn I I :  l im  z k = 0} .  
I n t o  k~ 

Then one easily sees that x --+ <(x,x,x,...)> is an isometric 

embedding of X into <X~. 

If X l and X 2 are complex Banach spaces, and T: X l ~ X 2 a 

bounded linear operator, then the so-called hull of the operator 

T will be the operator <T>: <XI> ~ <X2>, given by 

One e a s i l y  checks t h a t  t h i s  o p e r a t o r  i s  w e l l - d e f i n e d  and bounded. 

F u r t h e r ,  the map T ~ <T> i s  a con t i nuous  l i n e a r  t r a n s f o r m a t i o n  

f r o m  L(X1,X2) i n t o  t h e  s p a c e  L(<XI>,<X2>). I f  T 6 L(X1,X2) a n d  

s E L(X2,X3) ,  t h e n  

<ST> : <S> <T> 

If X is a Banach space and T E L(X), we easily see that o(<T>) 

c s(T) (in fact, o(<g>) = q(T) ; see [19]). A Hilbert space 

analogue of the above construction can be found in [19]. 
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We now state the following 

THEOREM 2.7. Let @ = (A,B,C;X,Y) be a spectral node for W 

on ~. Then 

<e> = (<A>,<B>,<C> <X>,<Y>) 

is a spectral node on ~ for the operator function <W>, defined 

by 

( 2 . 2 )  <W>(k) = <W(k)> , ~ ( g  

P r o o f .  B e c a u s e  t h e  map T - * < T >  i s  a c o n t i n u o u s  a l g e b r a  homo-  

morphism from the Banach algebra L(Y) in L(<Y>), it follows that 

the operator function <W>, defined by (2.2), is, indeed, analy- 

tic on ~. Since <Iy> = l<y> , iT follows that <W> has a compact 

spectrum which is contained in the spectrum of the operator 

function W. To see this, note that for k (n\ X(W) 

<w(~)> <w(~) -I -I> > = < w ( x )  < w ( ~ ) >  -- < z ~ >  . 

We shall now establish Properties (PI) (P4) for the 

quintet <@>. Property (P1) is clear, because o(<A>) a s(A). 

Properties (P2) and (P3) follow from the identities 

<w>(~)<c>{~z<x > <Ai) -I = <W(~)a(~-A)-I> ; 

<W>(X) -~ <a>{~z<x > - <A>}-~<B> : <w(~) -~ - C(~-A)-~B> , 

which hold true for ~ ( ~ \ z(W). 

It remains to establish Property (P4). Choose <(Xn)n=O > 

( <X>, and let <C><A>k<(xn)n=O > = 0<y> (k = 0,1,2,...). Then 

(2.3) <C>{kI<x > - <A>}-l<(xn)n=O > = 0<y> , 

on a neighbourhood of infinity. Using Lemma 2.1 we see that 

Eq. (2.3) holds true for all ~ ~ e(<A>), and therefore for all 

~ ~(A). 

Since @ = (A,B,C;X,Y) is a spectral node for W on ~, it 

follows from Corollary 1.3 that for some bounded Cauchy domain 

A such that s(A) c A c A- c e we have 

( 2 . 4 )  (2~i) -I ] (~-A)-~BW(~)a(~-A) -Id~ = I X • 
3A 

Observe that this integral is defined as a limit in the norm 
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topology of L(X) of a sequence of Riemann sums. Since T ~ <T> 

is a continuous algebra homomorphism from L(X) into L(<X>) which 

maps I X into I<X>' it follows from Eq. (2.4) that 

(2~i)-I laA (I-<A>)-I<B><W>(1)<C>(I-<A>)-Idl = I<X> " 

With the help of (2.3) we now obtain <(Xn)n=O> = 0<y>, which 

establishes Property (P4)" o 

THEOREM 2.8. Let @ = (A,B,C;X,Y) be a spectral node for W 

on ~. Then 

@ = (A ,C ,B ;X ,C ) 

is a spectral node for W* on ~, where (W ~) (~) = W(~) ~, k 6 

Proof. Properties (PI) and (P2) hold true by duality, and 

Property (P3) is clear from Proposition I.i. To prove (P4), 

take g ~ On=oKer B*(A*) n. Then B*(~-A*)-Ig vanishes on a neigh- 

bourhood of infinity. Lemma 2.1 implies that B*(k-A*)-lg = 0, 

I f ~(A ~) = o(A). So for all x E X and I ~ ~(A) we have 

~((~-A)-IBx) = O. 

Take z ~ X. For the moment we fix x E ~ \ o(A), put 

x = W(~)C(~-A)-Iz and conclude that g((I-A)-IBw(~)C(~-A)-Iz) = O. 

But then the latter identity holds for all z ~ X and I ~ ~ \ s(A). 

We now apply Corollary 1.3 and i.nfer that g(z) = 0 for all z ~ X. 

Hence g = 0, which established Property (P4) [] 

Note that Theorem 2.8 implies that for any spectral node 

span ~ Im AnB = X . 
n=0 

It follows that, in the terminology of Chapter 3 of [3], spectral 

nodes are minimal nodes. 

In the definition of a spectral node the roles of the 

operators B and C are not symmetric. Of course, in (PI) and 

(Pe) they play analogous roles, but (P3) and (P~) are conditions 

on the pair (C,A) only. The analogues of (P3) and (P4) for the 

pair (A,B) are: 

(P3') The operator function (h-A)-IBw(I) has an analytic 

continuation to ~ ; 

(P4') span ~ Im AnB = X . 
n=0 
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Note that from Proposition I.i and Theorem 2.8 we may conclude 

that a spectral node @ = (A,B,C;X,Z) for W on ~ has the proper- 

ties (P3') and (P4')" Conversely, if the quintet @ = (A,B,C;X,Y) 

satisfies the conditions (PI), (Pz), (P3') and (P4') for w on ~, 

then @ is a spectral node for W on ~. To see this, observe that 

@* = (A*,B*,C*;X*,Y*) satisfies (PI) to (P~) for W* on ~, and 

hence @* is a spectral node for W* on ~. But then @** = (A**, 

B**,C**;X**,Y ~*) is a spectral node for W *~ on ~, because of 

Theorem 2.8. It follows that conditions (P3) and (P4) hold true 

for the pair (C**,A**), and thus, since x is embedded into x**, 

the pair (C,A) has Properties (P3) and (P~) too. Consequently @ 

is a spectral node for w on ~. Hence, the notion of a spectral 

node is completely symmetric with respect to B and C. 

Suppose that e = (A,B,C;X,Y) is a quintet such that for 

some open subset ~ of ~ and some analytic operator function 

W: ~ ÷ L(I) with compact spectrum, the conditions (Pi), (P2)' 
(P~) and (P3') are fulfilled. Using the technique of the proof 

of Theorem 1.2 one easily shows that 

n~ 0 Ker CA n • span ~ Im AnB = X 
n= 0 • 

and that the projection of X onto the closed linear span of the set 

Un= 0 Im AnB along Nn= 0 Ker CA n is given by the operator 

(2~i) -I f (X-A)-IBw(h)C(h-A)-Id~ 
A 

where A is a bounded Cauchy domain with o(A) c A c ~ c ~. In 

that case (P4) holds if and only if (P4') holds. 

3. Construction of Spectral Nodes and Linearization 

Up to now several properties of spectral nodes have been 

established but not yet their existence. This will be done in 

the next theorem. In the next theorem we assume for simplicity 

that zero is inside ~. 

THEOREM 3.1. Let W: ~ ÷ L(Y) be an analytic operator func- 

tion with compact spectrum Z(W). Suppose that A is a bounded 

Cauchy domain containing 0 such that g(W) a A c ~ c ~, and let 

M be the set of all continuous Z-valued functions f on the 

boundary 3A which admit an analytic continuation to a Y-valued 
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function in ~ \ Z(W) vanishing at ~, while W[l)f(1) has an ana- 

lytic continuation to ~. The set M endowed with the supremum 

norm is a Banach space. Put 

A: M + M , (Af)(z) = zf(z) (2~i) ~I ~ f(~)d~ 
A 

B: ~ ÷ M , (By) [z) = ~ z---~w y dw 

C: M + Y, Cf = (2~i) -I [ f(w)dw . 
A 

In the definition of B the contour r is the boundary of a 

bounded Cauchy domain ~' such that ~(W) a A' c ~-i a A. Then 

(A,B,C;M,Y) is a spectral node for W on ~. 

From the proof of Theorem 3.1 it will be clear that this 

theorem remains valid if M is endowed with the Lz-norm (see the 

remark after the proof of Lemma 3.3). Hence we may conclude 

that for the case when Y is a separable Hilbert space the space 

on which the main operator of a spectral node acts may be 

taken to be a separable Hilbert space too. 

The proof of Theorem 3.1 takes several steps. First we 

employ the calculus of spectral nodes, which has been developed 

in the previous section, to construct a spectral node for W on 

assuming that a linearization of W on a is known. This will 

be done in Theorem 3.2 below. Next, we use the fact that ex- 

plicit formulas for linearizations of W may be given. In fact, 

making use of the linearization formulas of [I0], Section 2.2, 

we shall derive Theorem 3.1 as a consequence of Theorem 3.2. 

THEOREM 3.2. Consider on ~ the linearization 

(3.1) w(1) • I z ~ F(~)(~-r]F(1) , ~ ~ 

Let ~: Y • Z + Y be the projection onto Y along Z, and let ~ be 

the natural embedding of Y into Y ~ Z. Further, let ~ be a 

bounded Cauchy domain in ~ such that z(W) a A a ~ a ~. Put 

X = Im[(2~i) -I ~ (h-T)-idh] 

i.e., X is the spectral subspace of T corresponding to the part 

of a(T) inside ~. Define 

A: X ~ X , A = TIX ; 
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A 

A 

Then (A,B,C;X,Y) is a spectral node for W on ~. 

Proof. By the linearization (3.1) it is clear that z(W) = 

o(T) ng. Let 

p = (2~i)-i~ (~-T)-IdX 
A 

be the Riesz projection of T corresponding to the part of o(T) 

inside ~; so x = Im P. Further, let U be the space on which T 

acts, and let <: X ÷ U be the natural embedding of x into u. 

Then (A,P,K;X,U) is a spectral node for X - T on ~ (here P is 

considered as an operator from u into x). 

Choose a ~xed point ~0 ~ ~, and put E(~) = E(~O)'IE(~ ) and 

F(h) = F(~)F(~0)-~ Then E(~), @(1): U ÷ U are invertible and 

depend analytically on ~. Consider the operators B: U ÷ X and 

C: 7 ÷ U, defined by 

B = (2~i)-i~ (~-A)-ipE(~)-idk = (2~i)-I I (~-T)-l~(~)-id~ , 
A 8A 

C (2~i)-i~ ~(~)'I(~-A)" 1 ~ - : < dk = (2~i) -I >(X)-I(~-T) id~ " 

A A 

By applying Theorem 2.3, we get a spectral node on ~ for the 

operator function V, defined by 

namely the quintet (A,B,C;X,U). Note that W(k) • I z = E(ko)V(k ). 

F(k 0) for each k ~ ~. It follows that 

(A,BS(~ 0)-~, ~(~0 )-~;x,~ ~ Z) 

is a spectral node for W(k) @ I Z on ~, and hence 

( 3 . 2 )  (A,BE(ko)-IT,~F(kO)-I~;X,y) 
i s  a s p e c t r a l  node  f o r  W on n ( i f .  Theorem 2 . 5 ) .  F i n a l l y ,  o b -  

s e r v e  that B = BE(k0)-~ and C = ~.F(~0)-~. [] 

We shall use Theorem 3.2 to derive Theorem 3.1. We begin 

with a remark. Let ~0 be an open set in # such that Z(W) c ~0 

c ~. If @ = (A,B,C;X,Y) is a spectral node for W on ~0, then 
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trivially @ is a spectral node for w on ~. Hence it suffices 

to construct a spectral node for W on some open neighbourhood of 

z(W). Now choose ~0 = ~' where & is as in Theorem 3.1. We 

shall apply the Gohberg-Kaashoek-Lay linearization of W on A 

(cf. [I0], Section 2.2) and Theorem 3.2 to construct a spectral 

node for W on A, and hence for W on ~. 

Let C(~A,Y) be the Banach space of all continuous Y-valued 

functions on ~A endowed with the supremum norm, and let T be the 

operator on C(~A,Y), defined by 

(3.3) (Tf)(z) = zf(z) + (2~i)-I~ [W(~)- I]f(~)d~ 

I 

A 
The operator T is a linearization of W on A (cf. [I0], Theorem 

2.2). In fact, we have (cf. [I0], Section 2.4) 

(3.4) G(k)[W(k) @ IZ] = (k-r)F(k) , k E A , 

where Z = {g E C(3A,Y): (2~)-1~Az-lg(z)dz = 0} and 

1 [ w(w)-Z(y + g(w))dw • 
(3.5) (G(k)(y,g))(Z) = -y g(z) ~ ~A W-k 

(3.6) (F(k) (y ,g) ) (z) = (z-k)-l(y +g(z)) 

The operators q(~), F(~): Y • Z ÷ C(~A,Y) are invertible and de- 

pend analytically on ~. It is known (cf. [i0], Theorem 2.3) 

that 

~(~) = z(w) u ~A . 

To construct from this linearization a spectral node we have to 

identify the spectral subspace of T corresponding to the part of 

a(T) inside A. This is done in the next lemma. 

LEMMA 3.3. The spectral subspace M of T corresponding to 

the part of s(T) inside A consists of all f E C(3A,Y) that can 

be extended to a Y-valued function analytic outside Z(W) and 

vanishing at ~, while Wf has an analytic continuation to ~. 

Further, for each f E M 

(3.7) (TT)(z) = zf(z) (2~i)-I F f(w)dw 
A 

Proof. For each f E C(~A,Y) and ~ ( A \ Z(W) we have 

(3 8) [(k_T)_if](z) = £(z) W(k) -1 1 ~ W(W)-I f(w)dw 
" ~ - z ~ - s ~ a w~-~ 

Let A' be a bounded Cauchy domain such that ~(w) c A' c ~-z c A, 
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and put r = ~A' The Riesz projection P of T corresponding to 

the part of oCT) inside A is then given by 

(3.9) (Pf)(z) : ~ ~-~ 2~ ~ ~-x f(w)dw dx . 

First assume that f can be extended to a Y-valued function 

analytic outside Z(W) and vanishing at ~, while wf has an ana- 

lytic continuation to ~. Then formula (3.9) implies that for 

all z ~ ~A we have (Pf)(z) : f(z). So f E M. Also, in this 

case, 

I~ w(~)f(~)d~ = o o 

By substituting this into the definition of T, we see that (3.7) 

holds true. 

Secondly, assume that f ~ M. Then f : Pf, and hence we can 

apply formula (3.9) to show that f can be extended to a function 

analytic outside A' and vanishing at ~. This extension of f 

will also be denoted by f. Take z 0 ~ A \ ~-T. To show that Wf 

admits an analytic continuation to ~, it suffices to show the 

equality 

(3 i0) I I~ W(z)~(z) dz = W(zo)f(z o ) 
• 2~i _A z - z o 

Using f = Pf, we have 

i I~ W(z)f(z) dz = 1 I~ W(z) { 1 Ir W(k)-I 
2~i A z - z O ~ A -z-z 0 ~ z - ~ " 

I 1 I~ W(w)-I f(w)dw)d~}dz 
• ~ A S - ~  

As t h e  i n t e g r a n d  i s  a c o n t i n u o u s  f u n c t i o n  i n  (z,k,w) on t h e  c o m -  

p a c t  s e t  ~A × r x ~A, we may a p p l y  F u b i n i ' s  t h e o r e m .  A t  f i r s t ,  

we e v a l u a t e  t h e  i n t e g r a l  o v e r  z a n d  o b t a i n  

1 I@ WCz) W(t) - WCzo) 
A (~-~o)(~-~) dz = ~_Zo 

Substitution yields 

I~ 1 Ir w(~)-w(z°) w(~) 
l w(z)f(z) dz : 2~--i ~- zo 

A z -z 0 
-I 

ill ) ~i ~A W- k f(w)dw d~ . 
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Now we split the double integral at the right-hand side into 

two terms, apply Fubini's theorem to the first one of these 

terms, and obtain 

1 W(z)2[z) dz - 1 W[w)f[w) -~ [X_Zo)~W_~ ) dw + 
2~i A z - z 0 2~i A 

W[Zo) 1 ~ W(~)-II 1 ~ W(w)-I ) 
~i ~iy ~ A ~Cy fCw)dw d~ 

As z 0 and w are lying outside ~-T, the integral over h appearing 

in the first term at the right-hand side vanishes. Comparing 

the second term at the right-hand side to formula (3.9), we now 

obtain Eq. [3.10). [] 

In the case when Y is a separable Hilbert space, none of 

the previous arguments is affected if we take the space L2(~A,Y) 

of strongly measurable Y-valued L2-functions on ~A instead of 

C(aA,Y). For this case, and A the unit disc, Lemma 3.3 has 

been established in [23], where Fourier expansion was used. In 

this particular case the operator (3.7) coincides with the li o 

nearizator introduced in [20], where the space M has been de- 

fined by using the characterization described in Lemma 3.3. It 

was shown in [20] that ~(TIM) = Z(W); this fact is now immediate 
I 

from Lemma 3.3 and the linearization (3.3). In the present form 

Lemma 3.3 also appeared in [21]. 

Let us finally prove Theorem 3.1. 

Proof of Theorem 3.1. Let T be the operator defined by 

(3.3). We know that T is a linearization of W on A. So we may 

apply Theorem 3.1 to the linearization (3.4). By Lemma 3.3 the 

spectral subspace of T corresponding to the part of sCT) inside 

A coincides with M and 

A = rFM 

(cf. (3.7)). Let be the boundary of a bounded Cauchy domain 

A' such that z(W) c A' c A-7 c A. To finish the proof it suf- 

fices to show that the operators B and C introduced in the 

theorem satisfy the following identities: 

[3.11) B = (2~i) -I ~ (~-T)-IG(~)zd~ 
@ 
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(3.12) C = (2~i) -1 ~ ~F(k)-l(k-T)-ldk 

where F(k) and G(k) are given by Eqs. (5.5) and (5.6), the map 

is the projection of Y @ Z onto Y along Z and • is the natural 

embedding of y into y @ Z. Recall that Z = {f E C(~A,Y): 

(2~i)-iIsAZ-lf(z)dz = 0}. Then (Ty)(Z) = y(Z ~ ~A) and ~f = 

(2~i)-IyaAz-lf(z)dz. 
To compute the right-hand side of (3.11), note that 

(~-T)-1~(~)~y : F(~)(w(~)-ly,0). 

Using the definition of F(k) (see (3.5)), we obtain for each 

z E ~A and y E Y the following equality: 

[ 1 ~ (~-T)-iG(~)Tyd~Idz - 1 ~ W(k)-I 
2-~ 2~i z---~ d~" 

This proves (3.11). 

Take f ~ M. Denote by f also the analytic continuation of 

f to ~ \ z(W). Since Wf has an analytic continuation to ~, we 

see from (3.7) that 

[(k_T)-if](z) = f(z)-~(h) 
k - z 

Thus 

2~i ~ A z 

and (3.12) holds. [] 

We now state a corollary that is immediate from Theorem 

3.1, the linearization (3.4) and Theorem 1.2. 

COROLLARY 3.4. The spectrum of the main operator of a 
spectral node for W on ~ coincides with Z(W). 

From Theorem 3.2 it follows that on a bounded open set 

every analytic operator function w with compact spectrum has a 

spectral linearization (see the introduction), namely, the main 

operator of a spectral node for W on ~. To see this, recall 

that on a bounded open set c every analytic operator function W 

has a linearization T (cf. [22, 5]), i.e., there exist a Banach 

space Z and invertible operators ECX) and F(k) depending analy- 

tically on k E ~ such that 

(3.133 W ( h )  • I Z = E ( k ) ( k - T ) F ( k )  , ~ ~ ~ . 
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From this equation and the compactness of z(W) it is clear that 

s(T) n ~ = Z(W), while Z(W) and ~(T) \ ~ are spectral subsets of 

T. So we may write T = T O ~ TI, where ~(T0) = ~(T) n ~ and 

s(T I) = s(T) \ 2. If X and U are the spaces on which the opera- 

tors T O and T 1 act, respectively, then it is clear from (3.13) 

that 

w(~) • z z : ~(~)[(l-T0) ~ ZU]~(~ ) , ~ (~ , 

where F(I) = [I Xe (k-T1)] F(1) is an invertible operator de- 

pending analytically on I ( ~. So the operator T O is a spectral 

linearization for W on ~. From Theorem 3.2 it follows that T o 

is the main operator of a spectral node for w on ~. Hence on a 

bounded domain ~ the main operator of some (and, by Theorem 1.2, 

every) spectral node for W on 2 is a spectral linearization for 

W on ~. 

We shall see in Section 4 that a spectral linearization 

for W on ~ exists also if ~ is unbounded. 

We conclude this section with a remark concerning functions 

with continuous and invertible boundary values. Let ~ be a 

bounded Cauchy domain, and let W: [ + L(Y) be an operator func- 

tion that is analytic and continuous up to the boundary of ~. 

Assume that W has invertible boundary values. For such a func- 

tion the spectrum z(W) = {I ( [: W(l) is not invertible} is a 

compact subset of 9. The definition of a spectral node applies 

to W without essential changes, and all the results and construc- 

tions of Sections 1 - 3 remain valid. Of course, in all the con- 

siderations one can choose the bounded Cauchy domain A to be 

itself. 

4. Characterizations of Spectral Nodes and Inverse Problems 

The main theorem of this section is the following: 

THEOREM 4.1. Let A: X ÷ X, B: Y ÷ X and C: X ÷ Y be given 

operators. Then @ = (A,B,C;X,Y) is a spectral node for some 

analytic operator function W: ~ + L(Y) with compact spectrum if 

and only if the following two conditions hold: 

(i) s(A) a ~ ; 

(ii) there exists an analytic operator function H: ~ +L(Y) 

such that 
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(4.1) ~(x) : IIA-Xc ~(X)B I 
is invertible for all k E ~. 

More precisely, if (i) and (ii) hold, then W: ~ ÷ L(Y), defined 

by 

(4 2) E(~)-I I* * 1 
• -- , k E ~ , • w(~) 

is analytic on ~, has a compact spectrum, 8 = (A,B,C;X,Y) is a 

spectral node for W on ~, and 

(4.3) W(k) -I = H(X) + C(Z-A)'IB , k 6 ~ \ s(A) 

Furthermore, W is uniquely determined by these properties. 

Conversely, if @ = (A,B,C;X,Y) is a spectral node for W on 

~, then (i), (ii) and (4.2) hold for a unique operator function 

H defined by (4.3). 

Proof. Suppose that conditions (i) and (ii) hold. For 

E ~ let W(k) be defined by the right lower entry of the block 

matrix E(k) -1 (cf. (4.2)). We shall show that @ = (A,B,C;X,Y) 

is a spectral node for W on g. 

Write 

E(k) -I i TII(~) TI2(X) 1 
= , ~ ~ ~ , 

T 21 (4) W(~) ] 

where Tli(k) ~ L(X), T12(~) ~ L(Y,X) and T21(k) E L(X,Y) depend 

analytically on k. From the identities E(k)E(k) -1 = I and 

E(k)-IE(k) = I we have for all k E ~: 

(A-k)T12(k) = -mw(k) ; T21(h)(g-k ) = -W(k)C ; 

CTl2(k) + H(k)W(k) = I; T21(k)B + W(k)H(k) = I ; 

TII(~)(A-~) + r12(~)C = Z . 

From these equations we easily cbmpute that for k ~ ~ \ q(A) we 

have 

T12(k) = (X-A)-IBw(k) ; T21(X) = W(k)C(k-g) -I • 

[H(k) + C(k-A)-lB]w(k) = I; W(k) [H(X) + C(k-A)-IB] = I ; 
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Tll(k) = -(k-A) -1 + (k-A)-IBw(k)C(I-A) "l 

We know that c(A) c ~, which establishes (Pi). From the above 

equations it appears that Properties (P3) and (P3') hold true 

(see at the end of Section 2 for (P3')). Also the operator 

function W has a compact spectrum contained in ~(A), while 

W(k) -i = H(k) + C(k-A)-IB , k E ~ \ ~(A) 

From this identity Property (P2) is clear. 

To establish (P~), we choose a bounded Cauchy domain A 

such that o(A) c A c ~ c ~. From (4.3) and the analyticity of 

Tii on ~ it appears that 

(2~i) "i [ (k-A)-IBw(k)C(k-A)-Idk = I 
o 

A 
In view of the remark made in the last paragraph of Section 2, 

Property (P4) follows. Hence e = (A,B,C;X,Y) is, indeed, a 

spectral node for W on ~. 

Conversely, let e = (A,B,C;X,Y) be a spectral node for w 

on ~, and use Property (P2) to define an analytic operator func- 

tion H: ~ ÷ n(Y) by Eq. (4.3). Define Z: ~ \ o(A) ÷ n(x) by 

(4.4)  Z(X) = -(X-A) - i  + (X-A)-IBw(I)C(k-A) -1 

First we show that Z has an analytic continuation to g. 

Let A be a bounded Cauchy domain such that o(A) c A c ~c ~, 

and take u ( ~ \ A. With the help of the identity 

( ~ - k ) - i ( k - A ) - i  : ( ~ - A ) - i ( k - A )  - I  + ( ~ - k ) - i ( ~ - A ) - i ( k  ( ~ A ) ,  

we easily compute that 

2~i A V - k "T~ -IBW(~)C(~-A)-Id~ + 

(~-A)-: i I~ SW(~)C(~-A)-: 
2~ A ~ - ~ d~ = 0 

in view of Corollary 1.3, Property (P3) and the fact that ~ ~ A-. 

So Z has an analytic continuation to ~. 

From Property (P3) and Proposition I.I it is clear that 

(4.5) Ii Z(X) (k-A)-IBW(~) I 
W(~)C(~-A)-: W(~) 
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has an analytic continuation to ~. We define analytic operator 

functions H: Z ÷ L(Y) by (4.3), and E: ~ ÷ L(X • Y) by (4.1). 

Then a straightforward computation shows that for I 6 ~ \ s(J) 

the operator E(1) is invertible and that its inverse is given 

by (4.5). By analytic continuation, E(I) is invertible for all 

( ~, which establishes Condition (ii). Condition (i) is iden- 

tical to (PI), Finally, the uniqueness of H(X) follows from 

( 4 . 3 ) .  [] 

Note that in condition (ii) of Theorem 4.1 the compactness 

of the spectrum of the operator function W does not appear. 

This fact we shall exploit later in part III of the paper. 

COROLLARY 4.2. If @ = (A,B,C;X,Y) is a spectral node for 

W on ~, then the operator A is a spectral linearization of W on 

~. In fact, 

i °I[ °I ( 4 . 6 )  E ( 1 )  = F ( I )  , ( I  ( Q )  , 
0 W(1) 0 Iy 

where E(1) and F(I) are invertible operators depending analy- 

tically on the parameter I ( ~ and are given by 

I ?: 1 E ( x )  = , F ( x )  = 

C H(h) I-C(I-A)-IBW(h) 

~ere ~ ( ~ )  = w ( ~ ) - ~  - C ( ~ - A ) - I B .  

Proof. The invertibility of E(I) for all ~ ~ ~ is clear 

from the previous theorem. The inverse of F(l) is easy to cal- 

culate and is given by 

F ( 1 ) - I  = ~ I+(I-A)-IBW(I]CC (X-A)-IBW(1)I ] 
Finally, Eq. (4.6) is established directly, n 

From Property (P2) it is clear that z(W) c ~(A) if A is the 

main operator of a spectral node for W on g. Using Corollary 

4.2 we directly infer that 

z ( w )  = ~ (A )  

From Corollary 4.2 it is also clear that any analytic 

operator function with compact spectrum has a spectral 
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linearization (note that in the previous section we only proved 

this for operator functions on a bounded domain). The converse 

of Corollary 4.2, namely that any spectral linearization of w on 

a is the main operator of a spectral node for w on g, will be 

proved in the next section. 

We remark that Theorem 4.1 and Corollary 4.2 have obvious 

analogues for analytic operator functions on a bounded Cauchy 

domain ~ with continuous and invertible boundary values. For 

example, if W: ~ ÷ L(Y) is an analytic (in ~) operator function 

with continuous and invertible boundary values, and @ = (A,B,C; 

X,Y) is a spectral node for W on ~, then there exists an ana- 

lytic operator function H: ~ ÷ L(Y) with continuous boundary va- 

lues such that the operator E(~), defined by (4.1), is invert- 

ible for all ~ E ~. Further, the spectral linearization (.4.6) 

holds on the closure of ~. 

Given an operator function W: ~ ÷ L(Y) as in the preceding 

paragraph, one can find an analytic (in ~) operator function 

W: ~ + L(Y) with continuous and invertible boundary values, 

which satisfies the following properties: 

Ca) ~-i has an extension to ~ \ z(W) that is analytic ex- 

cept possibly for a finite number of poles outside ~; 

(b) W and W have the same spectral nodes. 

Moreover, if # \ ~ is connected, then we can choose W in such a 

way that ~-I is analytic in #~ \ Z(W) except possibly for a pole 

at infinity. To prove this one applies the operator version of 

Runge's theorem (cf. [7], Lemma I.i in [15]) to approximate on 

the operator function H(~) appearing in (4.1) by a rational 

operator function R(~) with poles in ~ \ ~. If ~ has a con- 

nected complement, then R(~) may be chosen to be a polynomial. 

As a final remark in connection with Theorem 4.1, we con- 

sider the special class of monic operator polynomials. Let 

L(~) be a monic operator polynomial on 7, and let (A,B,C;X,7) 

be a spectral node for L on the full complex plane. Then it 

follows from Theorem 4.1 and the identity L(X) -I = C(~-A)-IB 

(~ ~ ~\ Z(L)) that the operator 
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(4.7) i A-;~B ] C  0 
is invertible for all ~ ~ @, and its inverse is given by 

[A(~.) B ] -I [ Z(k) (k-A)-IBL(k) ] 
= j 

C 0 L(k) C(k-A) -1 L(k) 

where 

Z(k)  : -(k-A) -I + (k-A)-IBL(k)C(k-A) -I 
F o r  t h e  s p e c t r a l  n o d e  

K, [ 0 

of L, where ~ is the degree of L and K is its companion operator 

(see formula (0.2) and [14]), the invertibility of (4.?) can be 

seen directly, because in this case (4.7) is equal to 

L~ I 0 . .  0 
0 -~ I 
. ° 

(4.8) 
0 0 " -~ I 0 

-A 0 -A l -A~_ 2 -k-A£_ I I 

I 0 0 0 0 

where Aj, j : 0,...,~-l, are the coefficients of L. 

The characterization of spectral nodes, given by Theorem 

4.1, can be viewed as a solution of an inverse problem. Let 

A: X ÷ X, B: Y + X and C: X ÷ Y be given bounded linear opera- 

tors, and let ~ be an open set in @ containing ~(A). The in- 

verse problem concerns the following question: Under what con- 

ditions on A, B and C is the quintet (A,B,C;X,Y) a spectral node 

for an analytic operator function w on ~? If one specifies the 

class of functions, then more explicit solutions of this inverse 

problem than the conditions of Theorem 4.1 are known. For exam- 

ple (cf. [12, 2]), the quintet (A,B,C;X,Y) is a spectral node 



Kaashoek et al. 534 

for a monic operator polynomial on the full complex plane if and 

only if for some positive integer ~ the map 

CA 

• : X ÷ y ~ 

CA ~- 1 

is invertible and its inverse is of the form [ * ... * B ]. 

The next theorem solves the inverse problem for another 

class of operator functions. 

THEOREM 4.3. Let A: X ÷ X, B: Y + X and C: X + Y be given 

operators. Then @ = (A,B,C;X,Y) is a spectral node for some 

analytic operator function W: ~ ÷ L(Y) with compact spectrum and 

with the property that W(k)-I has an analytic continuation to 

~ \ E(W) if and only if the following two conditions hold: 

(i) ~(A] c ~ ; 

(ii) there exists an operator D: Y ÷ Y such that 

E(~) = IA-~c BID 

is invertible for all k ~ ~. 

More precisely, if (i) and (ii) hold, then W: ~ ÷ L(Z), defined 

by 

E(X)-I i* * ] = , k E ~ , 

has the required properties. 

Conversely, if @ = (A,B,C;X,Y) is a spectral node for W on 

~, and W(h) -l has an analytic continuation to ~ \ 2(W), then (i) 

and (ii) hold for a unique operator D defined by 

-i (4.10) D = lim Y(~) 

Furthermore, W is uniquely determined by these properties and 

(4.11) W(I) -I = D + C(I-A)-IB , ~ ~ ~ \ q(A) 

Finally, if h 0 E ~ and 
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then W is also given by 

( 4 . 1 3 )  W(~) = U + ( ~ - X O ) R ( I -  ( ~ - ~ 0 ) S ) - I Q  , ~ ~ ~ • 

P r o o f .  S u p p o s e  t h a t  C o n d i t i o n s  ( i )  and  ( i i )  h o l d .  F o r  

E fi l e t  W(~) be  d e f i n e d  by  t h e  r i g h t  l o w e r  e n t r y  o f  t h e  b l o c k  

m a t r i x  E(~)  -1 Then i t  i s  c l e a r  f r o m  Theorem 4 . 1  t h a t  

W: ~ ~ L(Y) i s  an  a n a l y t i c  o p e r a t o r  f u n c t i o n  w i t h  c o m p a c t  s p e c -  

t r um s u c h  t h a t  e = ( A , B , a ; X , Y )  i s  a s p e c t r a l  node  f o r  W on ~.  

Using Eq. (4.3) (with H(~) = D) we obtain (4.11). So W(~) -1 

has an analytic continuation to ~ \ x(W). 

Conversely, let @ = (A,B,C;X,Y) be a spectral node for W 

on ~, and suppose that W(X) -I has an analytic continuation to 

~ \ x(W). Then it is clear from Theorem 4.1 that there exists 

an analytic operator function H: ~ + L(Y) such that the operator 

E(~), defined by (4.1), is invertible for all X 6 ~. Further, 

we exploit Eq. (4.3) and see that 

H(X) = W(~) -1 C ( ~ - A ) - I B ,  ~ E ~ \  Z(W) 

L i o u v i l l e ' s  t h e o r e m  y i e l d s  t h a t  H(~)  ~ D i s  c o n s t a n t .  Bu t  t h e n  

C o n d i t i o n s  ( i )  and  ( i i )  and  Eq. ( 4 . 1 0 )  a r e  c l e a r .  

I t  r e m a i n s  t o  e s t a b l i s h  Eq. ( 4 . 1 3 ) .  L e t  X0 E fl, and  l e t  

E ( ~ 0 ) - I  be  g i v e n  by  ( 4 . 1 2 ) .  W r i t i n g  A - ~ = (A-~ 0) - ( ~ - ~ 0 )  and  

inserting (4.12) we get 

i E °I c D c D 0 z (X-Xo)R i 

Since for all X E n the operator E(~) is invertible, it follows 

from the above identity that I- (A-A0)S is invertible for all 

d ~, while 

S X - ~ o ) R  z o z ,_R v 

and  t h e r e f o r e  



Kaashoek et al. 536 

(4.14) E(X)-I = i S( / - (x-X0)S)- I  ( I - (X -X° )S ) - IQ  l 
R(~ Cx-x0)s)-~ u+(x-x0)R(i-(x-x0)s)-I e 

But according to Theorem 4.1 the r igh t  lower entry of the block 
matrix E(X) -I coincides with w(x), x ~ e, which establishes Eq. 

(4.13). 
Observe that the above argument proves the fo l lowing gene- 

ra l  statement: Let A E L(X), B E L(Y,X), C 6 L(X,Y) and 

D E L(Y) be operators. Then the operator 

is invertible for all X E a if and only if E(X 0) is invertible 

for some X 0 E ~ and I - (X-~0)S is invertible for all X ~ n, 

where S is defined by the equality 

E(XO)-I = i S* ** I 
To conclude this section we remark that an analogue of 

Theorem 4.3 holds for the case when n is a bounded Cauchy do- 

main and W is an analytic operator function with continuous and 

invertible boundary values. 

5. Spectral Linearization and Equivalence 

In this section we show in general that a spectral lineari- 

zation of an analytic operator function is the main operator of 

a spectral node and conversely. Using this result we prove that 

two analytic operator functions have similar spectral lineari- 

zations if and only if they are equivalent after some extension, 

and we specify the extension spaces. 

We recall the definition of a spectral linearization (see, 

Introduction). Given an analytic operator function w: ~ ÷ L(Y) 

with compact spectrum, then an operator A E L(X) is called a 

spectral linearization of W on ~ if a(A) c e and there exist 

Banach spaces Z and u, and invertible operators E(1) E L(XeU, 

Y~ Z) and F(1) E L(Y • Z,X eU) depending analytically on I E ~, 

such that 
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(5.1) W(X)  • I Z = E ( ~ ) [ ( ~ - A )  • I u ] F ( X )  , X ~ a . 

In the previous section (cf. Corollary 4.2) we have shown 

that the main operator of a spectral node for w on ~ is a spec- 

tral linearization of W on ~. The next theorem shows the con- 

verse to be true, and hence by Corollary 4.2 we can always take 

Z = X and U = Y in (5.1). 

THEOREM 5.1. A ~pectral linearization of W on a is the 

main operator of a spectral node for W on fl, and conversely. 

In particular, a spectral linearization of W is uniquely deter- 

mined up to similarity. 

Proof. Let A ~ L(X) be a spectral linearization of W on ~, 

and suppose that the linearization is given by Eq. (5.1). Clear- 

ly, (A,Ix,Ix;X,X) is a spectral node for ~-A on a, because 

o(A) c ~. With the help of Theorem 2.5 it is clear that 

(A,~x,Tx;X,X~U) is a spectral node for (~-A) • I U on Q. Here 

~X: f @ U + X is the projection of X @ U on X along U, and 

TX: X ÷ X @U is the natural embedding of f into x~u. Next, we 

apply Theorem 2.3 and conclude that (A,RE,QF;X,Y~Z) is a spec- 

tral node for W(.) • I Z on Q, where 

R E ( 2 ~ i )  -1 f ( X - A ) - I ~ x E ( X ) - l d X  , 

QF = (2~ i ) -L  ~AF(X)- ITX(X-A)- IdX ' 

and A is a bounded Cauchy domain such that ~(A) c A c ~ c Q. 

Finally, we apply Theorem 2.5 again and infer that (A,B,C;X,Y) 

is a spectral node for W on a. Here 

B = ( 2 ~ i )  -1 ~ A ( X - A ) - I ~ x E ( X ) - l z y d X  , 

C = (2~i)  - I  ~ ~yF(X) - I  A TX(X-A)-Idx ' 

~y: Y~Z ÷ Y is the projection of Y • Z onto Y along Z, and 

~y: Y + Y @ Z is the natural embedding of Y into y @ Z. Hence 

the spectral linearization A is, indeed, the main operator of a 

spectral node for w on ~. 

The converse part of this theorem has been derived in Sec- 

tion 4 as a consequence of Corollary 4.2. The uniqueness up to 
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similarity of a spectral linearization of W on ~ is now clear 

from Theorem 1.2. [] 

The next result describes the similarity referred to in 

Theorem 5.1. 

THEOREM 5.2. Let A 1 and A 2 be operators acting on the 

Banach spaces X 1 and X 2 respectively. Suppose that Z 1 and Z 2 

are Banach spaces such that (I-A I) ~ IZI and (I-A 2) ~ IZ2 are 

equivalent on an open set ~ containing o(Al) U ~(A2) . Then 

A 1 and A 2 are similar. In fact, if the equivalence ia given by 

(~-AI) ~ 7 zz = F(~)[(~-A 2) @ IZ2] E(~), ~ ~ ~ , 

then SA I = A2S , where S : X I ÷ X 2 is an invertible operator 

defined by 

-I -i 
(5.2) S = (2~i) -I (h-A 2) ~2E(k) Tldl , 

A 
its inverse is equal to 

(5.3) S-l = (2~i)-i ~A ~IF(h)-IT2(h-A2)-Idl " 

Here A is some bounded Cauchy domain such that (o(A I ) J a(A2)) 

c A a ~ c ~, the map 7.: X. ~ Z. ÷ X. is the projection of 

X. ~ Z. onto X. and T.: X. ÷ X. @ Z. is the natural embedding of 

X. into X. ~ Z.. 

Proof. Obviously, A I and A 2 are spectral linearizations of 

W(~) = ~ -A I on n. So the similarity of A 1 and A 2 is clear from 

Theorem 5.1. 

Using the construction contained in the proof of Theorem 

5.1 we get a spectral node @2 = (A2,B,C;X2,XI) for W(~) = ~ - A I 

on ~. Another spectral node for W on ~ is @I = (AI,I,I;XI,X1)" 

We now apply Theorem 1.2 to the spectral nodes @I and @2, and 

obtain Eqs. (5.2) and (5.3). D 

In the finite-dimensional case the previous theorem is tri- 

vial, because in that case the equivalence of (h-A l) e IZI and 

(I-A2) ® IZ2 implies that A I and A 2 have the same Jordan form. 

Using spectral factorization it has been proved in [25] that 

(infinite-dimensional) operators A 1 and A 2 are similar if and 

only if ~ -A I and ~ -A 2 are equivalent on an open disk contain- 

ing a(AI) U o(A 2) , which is a particular case of Theorem 5.2. 



Kaashoek et al. 539 

We consider now equivalence of analytic operator functions. 

The next theorem, which may be viewed as a more general version 

of the first part of Theorem 5.2, answers (in terms of spectral 

linearizations) the question when after extension two analytic 

operator functions are equivalent. 

THEOREM 5.3. For i = 1,2 let Wi: ~ ÷ L(Y) be an analytic 

• . ÷ X. be operator function with compact spectrum, and let At: X 

a spectral linearization of W i on ~. Then the following state- 

ments are equivalent: 

(i) there exist Banach spaces Z 1 and Z 2 such that 

Wl(~) @ IZI and W2(~ ) • IZ2 are equivalent on ~; 

(ii) WI(~) ~ IX1 and W2(~ ) ~ Ix2 are equivalent on ~; 

(iii) A 1 and A 2 are similar. 

Proof. From Theorem 5.1 we know that for i = 1,2 the 

• for W. on operator A is the main operator of a spectral node @i 

~. So we may apply Corollary 4.2 and conclude that for i = 1,2 the 

operator functions Wi(~) • Ixi and (~-Ai) • Iy are equivalent 

on ~. 

If (i) holds true, then the operator functions (~-AI) @ Iy 

® IX2 @ IZI and (l-A2) ~ Iy • IX1 @ IZ2 are equivalent on ~. 

By Theorem 5.2, (iii) follows. 

Next, suppose (iii) is true• Then the operator functions 

(h-A I) • Iy and (l-A2) @ Iy are equivalent on ~, and (ii) fol- 

lows. 

Obviously, (ii) implies (i). a 

In Theorem 5.3 we assume that the values of the operator 

functions W I and W 2 act on one and the same space y. If we drop 

this condition, then with appropriate modification the theorem 

.: ~ ÷ L ), then Theorem 5.3 holds remains true. In fact, if W (Yi 

provided statement (ii) is replaced by 

(ii)' WI(~) • IXI ~IY2 and W2~ ) ~ Ix2 ~IYl are equivalent 

on ~. 

The next example (taken from [I0], Example 1.2) shows that 

in general similarity of spectral linearizations does not imply 

equivalence of the original operator functions. 
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EXAMPLE 5.4. Let Y = Z 2 and ~ the unit disk. Then we de- 

fine analytic operator functions Wi,W2: ~ + L(Z2) by 

W I ( ~ ) ( X o , X l , X  2 . . . .  ) = ( x 0 , ( 1 - 2 ~ ) X l , ( 1 - 2 ~ ) x 2  . . . .  ) ;  

W 2 ( ~ ) ( X o , X l , X  2 . . . .  ) = ( ( 1 - 2 ~ ) x o , ( 1 - 2 ~ ) x l , ( 1 - 2 ~ ) x  ~ . . . .  ) .  

Then Z(W 1) = Z(W2) = {½} and  a s p e c t r a l  l i n e a r i z a t i o n  o f  W 1 and  

W 2 on ~ is given by 

A ( x  o , x l , x 2  . . . .  ) = (½x o ,%x 1 , ~ x  2 . . . .  ) 

H o w e v e r ,  s i n c e  Wl(%) # 0 and W2(½) = 0, t h e  o p e r a t o r  f u n c t i o n s  

W 1 and  W2 c a n n o t  be  e q u i v a l e n t  on ~.  

As we h a v e  n o t i c e d  i n  t h e  i n t r o d u c t i o n ,  t h e  c o m p a n i o n  o p e r a -  

t o r  a L o f  a m o n i c  o p e r a t o r  p o l y n o m i a l  L(X) i s  a s p e c t r a l  l i n e -  

a r i z a t i o n  o f  L on ¢,  a n d  h e n c e ,  by  Theorem 5 . 1 ,  i s  t h e  m a i n  

o p e r a t o r  o f  a s p e c t r a l  n o d e  f o r  L (~)  on any  o p e n  s e t  c o n t a i n i n g  

Z ( L ) .  S i n c e  t h e  m a i n  o p e r a t o r  o f  a s p e c t r a l  node  d o e s  n o t  

change  i f  t h e  o p e r a t o r  f u n c t i o n  i s  r e p l a c e d  by  an e q u i v a l e n t  

o p e r a t o r  f u n c t i o n  ( c f .  Theorem 2 . 3 ) ,  we o b t a i n  t h e  f o l l o w i n g  

c o r o l l a r y  ( c f .  [ 2 5 ] ,  Theorem 1, f o r  a w e a k e r  v e r s i o n ) :  

COROLLARY 5.5. TWO monic operator polynomials LI (X  ) and 

L2(X ) with coefficients acting on Y have similar companion 

operators if and only if there exist Banach spaces Z 1 and Z 2 

such that LI(~ ) @ IZI and L2(h ) • IZ2 are equivalent on ~ . 

Next we make a few remarks about Theorem 5.3. Let WI,W2: 

÷ L(Y) be analytic operator functions with compact spectrum. 

If W l and W 2 have the same spectral linearization, then accord- 

ing to Theorem 5.3, the functions W1(1) • I X and W2(~ ) ~ I X 

are equivalent on ~, where X is the space on which the spectral 

linearization acts. However, in certain cases Wl(X) e I Z and 

W2(~) • I z are equivalent on ~ for "smaller" spaces Z. For 

instance, if dim y < ~, then Wl(~) and W2(h ) are equivalent 

(this follows from the fact that analytic matrix functions are 

equivalent if and only if they have the same spectra and equal 

partial multiplicities at each spectral point (see [17], Theorem 

3.3)). Another example is the case when W I and W 2 are monic 

operator polynomials of degree ~. Indeed, if W I and W 2 have 
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similar companion operators (which act on Y£), then WI(~) SI 
y£-I 

is equivalent to Wl(1) @ Iy£_l on # (see [12], Section 2.1), 

while the spaces y£-I and Y£ are not necessarily isomorphic 

(even if Y is infinite dimensional; see, for instance, [8]). 

Returning to Example 5.4 note that in this example 

Wl(~ ) • I~k is not equivalent to W2(X ) • I~k for any positive 

integer k. As the next theorem shows, this is always the case 

when W 1 and W 2 are not equivalent on ~. 

THEOREM 5.6. Let Wi: ~ + L(Y), i = 1,2 be analytic opera- 

tor functions (not necessarily with compact spectra). Assume 

that WI(k) • I~k and W2(k ) @ I¢k are equivalent on ~. Then 

Wl(k) and W2(k) are equivalent on ~ as well. 

Proof. Apparently, it suffices to assume k = i; omitting 

the variable k, 

(5.4) [ °i i °Ii • E21 0 1 0 1 F21 f 

where Eli,F11: ~ ÷ L(Y); EI2,FI2: ~ ÷ L(~,Y); 

E21,F21: ~ + L(Y,#); e,f: ~ ÷ L(E) are analytic, and the values 

of 

i Ell EI~ and i El 1 ~ ~i 

E21 e F21 

are invertible operators for every I E ~ (e and f will be con- 

sidered as scalar analytic functions; in fact, e = f). 

First consider the case when e(k) ~ 0 for all k ~ n. Mul- 

tiplying (5.4) from the left and from the right by 

i °I a n d  , 
0 1 1E2 1 1 

r e s p e c t i v e l y ,  we o b t a i n :  

I1-EI2e-IE21 W 1 - El2e 1 W2 - F1 

_ E21 -f-iF21 

In particular, (EII-EI2e-IE21)W 1 = W2(FII-FI2f'IF21 ) . As 
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EII-EI2e-IE21 and FII-FI2f-IF21 are invertible for all k 6 ~, 

the equivalence of W 1 and Y 2 follows. 

Consider now the general case. We can assume El2(k) ~ 0 

(otherwise the invertibility of 

-El 1 El2 I 

_ E21 e _ 

for all k 6 ~ would imply that e(k) ~ 0 for all k E e, the case 

considered above). Regard El2(k ) as an analytic Y-valued func- 

tion ,and let kl,12,...be all the zeros of EI2(X ) in ~ with 

multiplicities ~l,v2,..., respectively (if EI2(I) has no zeros, 

the changes in the subsequent reasoning are obvious). Let ~Cl) 

be a scalar analytic (in R) function with zeros kl,k2,.., and 

corresponding multiplicities ~1,u2, .... Then ~(k)-lEl2(k) is 

analytic Y-valued function with no zeros. By Allah's theorem 

[I] there exists an analytic function x: ~ + LCY,~) such that 

X(k)[~Ck)-IEl2(k)) ~ i; in other words, 

(5.5) xE~e = 

Observe that the set of zeros of E12 (which is exactly the 

set of zeros of ¢) and the set of zeros of e are disjoint; as 

proved in [6] (see also S. Friedland, Spectral theory of 

matrices. I. General matrices, Research report, Mathematics Re- 

search Center, University of Wisconsin, Madison, 1980), there 

exists an analytic (in e) scalar function ~ such that the func- 

tion ~ + e has no zeros in ~. Now multiply (5.4) from the left 

by 

In view of (5.5) we have: 

~X 1 

~XW 2 1 F2 1 f 

i 11  1211wl o I i w2 ol  xw2 o 1 = 

@XE1 I+E2 i ,~+e 0 1 ~XW 2 1 _ 1 



Kaashoek et al. 543 

0 1 ~XW2FII+F21 ~XW2FI2+f 

Using this equality in place of (5.4), we reduce the proof to 

the case when e(k) ~ 0 for all ~ £ ~, which has been considered 

already. [] 

Results analogous to Theorem 5.6 have been proved in [6] 

in different contexts; for example, for analytic matrix valued 

functions with finite number of essential singularities. For 

operator functions Theorem 5.6 seems to be new. 

If in Example 5.4 we allow different extension spaces, 

then one can make equivalence with finite-dimensional exten- 

sions. In fact, W1(k) is equivalent to W2(k) ~ I~ in this 

example. Hence it is natural to consider the following notion 

of minimal space extension. 

Let W.: ~ ~ L(Y), i = 1,2 be analytic (with compact spec- 

trum), and suppose that WI(~) • Iz1 is equivalent to W2(~) ~Iz2 

on ~, for some Banach spaces Z I and Z 2 (by Theorem 5.3 this 

means similarity of the spectral linearizations of W I and W2). 

The pair (Zl,Z 2) will be called a minimal space extension for 

' and ' are W I and W2, if the following property holds: If Z l Z 2 

Banach spaces such that Z! is isomorphic to a subspace in Zi, 

i = 1,2, and W1(~ ) @ IZ{ and W2(h ) e Iz~ are equivalent on e, 

then Z~ is isomorphic to Zi, i = 1,2. Above we have seen that 

(0,0) is always the minimal space extension in the case when 

dim Y < ®. In Example 5.4 the pair (0,¢) is obviously a minimal 

space extension. 

In case when Y is the infinite dimensional separable Hi~ert 

space, a minimal space extension for given w I and W 2 exists al- 

ways. In the following theorem we list all the possibilities 

that may occur in this case. 

THEOREM 5.7. Let Y be the infinite dimensional separable 

Hilbert space, and let Wi: ~ ÷ L(Y), i = 1,2, be analytic opera- 

tor functions with compact spectra. Assume that the spectral 

linearizations of W l and W 2 are similar. Then one of the fol- 

lowing pairs of spaces is a minimal space extension for W 1 and 
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W2: (Y ,Y) ;  ( 0 , Y ) ;  ( Y , 0 ] ;  ( 0 , ¢ k ) ,  k = 1 , 2 , . . . ;  ( ¢ k , 0 ] ,  k = 1 , 2 ,  

. . . ;  (0,0) .  
P r o o f .  Let  A.:~ X + X be a s p e c t r a l  l i n e a r i z a t i o n  f o r  Wi(~)  , 

i : 1 , 2 .  As Y i s  a s e p a r a b l e  H i l b e r t  s p a c e ,  we may as sume  X i s  

a s e p a r a b l e  H i l b e r t  s p a c e  t o o ,  and  t h e r e f o r e ,  s i n c e  dim Y : ~ ,  

we may assume t h a t  X i s  a s u b s p a c e  o f  %. F u r t h e r ,  by Theorem 

5 . 3 ,  W l ( ~ )  • I X and  w2(~) • I X a r e  e q u i v a l e n t .  Now t h e  t h e o r e m  

follows easily from Theorem 5.6. [] 

Note that all possibilities in Theorem 5.7 can be realized. 

Indeed, put W2(1) = (l-2X)I, and 

i" °l w1(~ ) = i 
0 (I-21)Iz2 

where Y = g I • Z 2 with dim Z 2 = - (cf. Example 5.4). Then (O,Y) 

or (0,~ k) is a minimal space extension for W l and w 2 according 

if dim Z 1 = ~ or dim Z I = k. Interchanging the roles of W 1 and 

w2 we obtain examples of minimal space extensions (y,0) and 

(¢k,0). The following is an example where (y,Y) is a minimal 

space extension. 

EXAMPLE 5.8. Let Xl p 12 be complex numbers, and put 

i (1-11) (l-12)ly 0 I 

w~(~) : o (~-~1)Zz 

w2(~) = 0 (x-x2); z 

It is easily seen that WI(X) @ Iy and W2(~) ~ Iy are equivalent 

on ~ (this follows form the equality 

I -(x-x2) I_0 1 ~-x z -~(x-xl)-i 

= 

0 t - ~  2 

where ~ = (11-12)-I) . On the other hand, if WI(~ ) @ IZI and 
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W2(~) • I z are equivalent, then 
2 

dim Z 1 = dim Im [Wl(~ I) • IZI] = dim Im [W2(% I) @ Iz2] = ~ , 

and analogously dim Z 2 = ~. So indeed (y,y) is a minimal space 

extension for W 1 and W 2. 
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