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SPECTRAL ANALYSIS OF THE TRANSPORT EQUATION 

ii. STABILITY AND APPLICATION TO THE MiLNE PROBLEM 

C.V.M. van der Mee 

0. INTRODUCTION 

In this article a study is made of the integro-differen- 

tial equation 

d_~(x,~) + ~(x,~) = 
dx 

+I 2~ 

-1 0 
( - 1 ~ + 1 ,  O<x<~g+~) 

where T is either finite or infinite. In astrophysics this 

equation describes the stationary transfer of unpolarized ra- 

diation through a homogeneous stellar or planetary atmosphere 

(see [5,24,13]). In neutron physics Eq.(0.1) describes the 

stationary transport of mutually non-interacting, undelayed 

neutrons with uniform speed through a homogeneous plane-paral- 

lel fuel plate of a nuclear reactor (see [6]). In both cases 

the function ~ is given and describes the scattering properties 

of the medium; in astrophysics ~ is called the phase function. 

(Here the albedo has been included as a factor). The problem 

is to determine the unknown function ~ under suitable boundary 

conditions. In astrophysics (resp. neutron physics) ~ represents 

the azimuth-averaged intensity of the radiation (resp. the angu- 

lar neutron density). The variable x is a position coordinate 

and w is the direction cosine of the propagation vector. In 
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astrophysics (resp. neutron physics) the parameter ~ is the 

optical thickness (resp. the thickness of the fuel plate in 

units of neutron mean free path); there are no internal radia- 

tive (resp. neutron) sources. 

If the parameter T is finite, one imposes the boundary 

conditions 

(0.2a) ¢(0,V) = ¢(p) (0~p~l), ~(~,p) = ¢(~) (-l~p<0), 

and calls the problem (0.1)-(0.2a) the finite-slab problem. If T 

is infinite, one imposes the boundary conditions 

(0.2b) : : 0 ( 1 )  

and the problem ( 0 . 1 ) - ( 0 . 2 b )  is  ca l l ed  the half-spaae problem. 
Both problems are presently investigated, both in astrophysics and 

neutron physics (see [24,13]; [6]). In astrophysics for infinite 

T one also imposes the boundary conditions 

(0 .2c)  9 (0 ,~)  = 0 ( 0 ~ 1 ) ;  3n~0: _ l f + l l ¢ ( x , ~ ) 1 2 d ~  O(X 2n ) (x÷+~); 
x%%~ -1 [ + l ~ ¢ ( x ' ~ ) d ~  = -½F; 

the problem (0.1)-(0.2c) is known as the Milne problem (see 

[13,5]). The functions ¢ and ¢+ appearing in (0.2) describe the 

radiative or neutron fluxes incident on the surface; F denotes the 

radiative flux coming from the stellar interior (see [5], Eq.(86) 

of Chapter I). 

For physical reasons the phase function ~ must be nonnegative 

_if+l~(t)dt < +=. In this article we solely consider the and C 

case 0~c~l, which in astrophysics always occurs and in neutron 

physics occurs for non-multiplying media (see [24,13]; [6]). For 

c=l (resp. 0~c<l) the term "conservative" (resp. "non-conservati- 

ve" case is customary. 

In this paper we continue the research leading to [18] by 

investigating the stability of the solutions of the finite-slab 

and half-space problems under perturbations of the phase function 

~. One of the perturbations of the phase function g, for which 

the stability is established, is the truncation of its Legendre 

series expansion. The method we employ has been inspired by some 

work of Feldman [7] on a related stability problem. 

Another stability result of this article is the stability of 

the bounded solutions of the half-space problem in the conserva- 
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tive case under perturbation from the non-conservative case. This 

result will enable us to derive analytic expressions for the solu- 

tion of the Milne problem as we did in Section VI.5 of [18] for 

isotropic scattering. A result derived differently in a not com- 

pletely rigorous way by Pahor [2i] and by Busbridge and Orchard 

(cf. [4]) is reproduced. 

Next we give a short description of the present mathematical 

approach to the Transport Equation (see also [17,i8]). To study 

Eq.(0.1) in the Hilbert space L2[-I,+1] one puts ~(x)(~) = ~(x,~) 

(0<X<T, -l~p~+l) and one defines the operators T and B on 

L2[-i,+1] by 

(Th)(~) : ~h(~), 
(0.3) 

(Bh)(~) : _if+i(2~)-10/2w~(~'+ i~-~2 i/~-~'2cosa)d~h(~')d~ ' 

Now Eq.(0.i) is rewritten as an operator differential equation of 

the form 

(0.4) (T~)'(x) : -(I-B)9(x), 0<x<T, 

with suitable boundary conditions. An equivalent form of the ope- 

rator differential equation (0.4) with boundary conditions appears 

to be a vector-valued convolution equation of the form 

(0.5) ¢(x) - 0f~H(x-y)B~(y)dy : ~(x), 0<x<T. 

The ~o called propagator function H(.) is given by 

[ +~-le-t/P h(~); 0<t<+~, O~p~l; 

[H(t)h](~) = I -p-le-t/~ h(~); -~<t<O, -l~p<O; 

L 0 ; tp<0. 

The existence and uniqueness of the solution of finite-slab and 

half-space problems can be established by applying semigroup 

theory to Eq.(0.4) and factorization methods to Eq.(0.5) (see 

[18], Chapters IV and V). Problems of stability are studied by 

establishing the stability of the kernel H(.)B of the convolution 

equation (0.5) in a certain operator norm. 

In Section i we review the main elements of the theory of 

semi-definite admissible pairs. By means of such pairs, of which 

the pair (T,B) in (0.3) is just an example, the half-space, finite- 

slab and Milne problems can be studied in an abstract framework. 

In Section 2 the stability of the solution of the convolution 

equation (0.5) under perturbation of the operator B in the semi- 
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definite pair (T,B) is established. By specifying the results for 

the case of the Transport Equation (0.1) in Section 3 we obtain 

stability statements in Transport Theory. In Section 4 an analytic 

expression for the bounded solution of the half-space problem in 

the conservative case is derived by means of a stability argument. 

In Section VI.3 in [i8] such an expression has been given for the 

non-conservative case only. Finally in Section 5 the solution of 

the Milne problem is obtained. 

As to notation, by <.,.> we denote the inner product of a 

complex Hilbert space. The kernel or null space of a linear opera- 

tor T is denoted by Ker T and the image or range of T by Im T. The 

Banach algebra of bounded linear operators on a Banach space X is 

referred to as [(X). The identity operator on X is denoted by I X 

(or by I, if no confusion is possible). The spectrum of an opera- 

tor T on X is denoted by ~(T). For the orthogonal complement of a 

subset M of a Hilbert space we write M ±. 

ACKNOWLEDGEMENT. I am greatly indebted to Andr& Ran, because 

he improved Theorem 2.4 considerably by pointing out that 
- + 

IN<0<IN for N large enough. 

i. PRELIMINARIES 

Throughout this section H is a complex Hilbert space with in- 

ner product <.,.>. By a semi-definite admissible pair on H we mean 

a pair (T,B) of bounded linear operators on H such that 

(C.I) T is self-adjoint and has a trivial kernel; 

(C.2) B is compact and A = I-B is (non-strictly) positive (i.e., 

<Ah,h> ~ 0 for every h~H); 

(C.3) there exist 0<~<i and a bounded linear operator D on H such 

that 

B : ITr D. 

If A is strictly positive (i.e., <Ah,h> > 0 for every 0#h~H), the 

pair (T,B) is called positive definite. If A has a non-trivial 

kernel and thus A is non-strictly positive, the pair (T,B) is 

called ~ingular. 

In Chapter III of [18] a theory of semi-definite admissible 
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pairs has been developed. Positive definite pairs have been intro- 

duced earlier in [17] under the name of self'adjoint admissible 

pairs. Here we review the main elements of this theory. Consider 

the pencil 

(1.1) L(1) = A - IT. 

If the pair (T,B) is singular, the point at I=0 is an isolated 

point of the spectrum Z(L) = {lee: L(1) is not invertible} of 

L(1). If F is a positively oriented circle with centre 0 that se- 

parates the point at I=0 from the remaining part of Z(L), then 

the operators 

I + = -(2~i)-II TL(1)-Idl P0 = -(2~i)-I L(1)-ITdI' P0 
r £ 

are projections of the same finite rank. Denoting H 0 = Im P0~ 

+ + + = Ker + H 0 = Im P0' HI = Ker P0 and H i P0' one has 

+ i + ± T[H~] = + T~ 1 ] + (1.2) H0 = HI' H1 = H0' H0' = Hi; 

Ker A c H0, A[H1] = H i- 
+ 

It appears that A acts as an invertible operator from H 1 onto H 1 

and T acts as an invertible operator from the so-called 8{nyular 
+ 

subspace H 0 onto H 0. Thus H 0 is contained in the domain of the 

possibly unbounded operator T-IA. Moreover, 

(i.3) (T-IA)2x = 0, x~H 0. 

, : H + If the pair (T,B) is positive definite then H 0 0 = {0}, 
+ + 

H i = H i = H and P0 = P0 = 0. 

On H i the sesquilinear form 

(1.4) <x,y> A : <Ax,y> (x,y~H I) 

is an inner product equivalent to the one inherited from H. Since 
+ + 

A acts as an invertible operator from H 1 onto H 1 and T[H I] c H1, 

there exist unique bounded linear operators S: H 1 + H 1 and 

S+: + + H 1 ÷ H i such that 

(1.5) AS : S+A : T. 

It appears that S is self-adjoint with respect to the inner product 

(1.4) on H i . We call S the associate operator of the pair (T,B). 

One has 

L(1) : U[(I - IS) @ (T-IA - I)IH] , leC, 
0 

where U : A(I - P0 ) + TP 0 is invertible. Hence, 

~(S) = {I-I: 0~I~Z(L)} c ~; 
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further, ~(S)\~(T) consists of isolated eigenvalues of finite mul- 

tiplicity only. If the pair (T,B) is positive definite, then S and 

S + : TA- are defined on the whole of H and S = A-IT and S + I 

Let F be the resolution of the identity of S([(H 1) (as a 

self-adjoint operator with respect to the inner product (1.4)). 

Analogously, let F + be the resolution of the identity of S+{L(H~) 

(note that, by (1.5), S and S + are similar). For X{H put 

PpX = F((0,+~))(I - P0)x, P+pX : F +((0,+~))(I - P0+)x; 

Pm x F((-~,0))(I + : - P o ) X ,  P J x :  F + ( ( - ~ , O ) ) ( I  - P ~ ) x .  
+ m + 

Denoting Hp Im Pp, H +p = Im Pp, H m :Im Pm and H m : !m P+m one has 

(1.6a) H : H m @ Hp ~ H0, H = H+m ~ H+p ~ H0;+ 

; = ~ = P+A, APm = P~A; (1.6b) TPp : P T, TP m P T, APp P 

(1.6c) T[Hp] : H + T[H m] : H + A[Hp] : H + A[H m] : H +" p' m' p' m' 

(l.6d) P+ = P* P+ : P* H + : (H m ~ H0 )± H + : (Hp ~ H0 )± p p' m m' p ' m 

Finally,the operator T is self-adjoint and Ker T = {0}. So if 

P+ (P_) denotes the spectral projection of T corresponding to the 

positive (negative) part of its spectrum and H+ (H_) refers to 

the range of P+ (P_), then 

H = H_ @ H+. 

The next decomposition theorems play an important role in 
establishing the existence and uniqueness of a bounded solution 

of the half-space problem. The second one of these theorems ap- 

peared in [18] under the extra condition of inversion symmetry 

and will therefore be proved here without using this condition. 

THEOREM i.i. (cf. Th. 111.5.1 of [18]). Let (T,B) be a posi- 

tive definite admissible pair on H. Then 

(1.7)  Hp @ H_ : H m ¢ H+ = H. 

THEOREM 1.2. (cfl. Section 111.8 in [18]). Let (T,B) be a 

semi-definite admissible pair on H. Then there exist subspaces N 
+ 

and N_ of Ker A such that 

(1.8) Hp ~ N+ ~ H_ = H m ~ N_ ~ H+ = H. 

Moreover, if the finite-dimensional operator T-~AIH has Jordan 

blocks of order 2 only (i.e. if T-IA[H0 ] = Ker A), ~hen in (1.8) 

one may take N~ = N_ = Ker A. 
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Proof. On H 0 one considers the indefinite inner product 

(1.9) <x,y> T = <Tx,y> (x,y~H0). 

According to Proposition 111.5.3 of [18] the space H 0 endowed 

with this inner product is a Krein space (see [2] for the defini- 

tion and main properties of Krein spaces) and [Hp ~ H_] n H 0 

(resp. [H m ~ H+] n H 0) is a maximal strictly negative (resp. 

positive) subspace of H 0. For x = T-IAy ~ T-IA[H0 ] and z c Ker A 

one has 

(i.i0) <Sy,z> T = <Ay,z> = <y,Az> = 0, 

T-IA[H0 ] of Ker A (cf. (1.3) to see this) and thus the subspace 

is a neutral subspace of H 0. Let M denote a complement of T-IA[H0 ] 

in Ker A. Then the indefinite inner product space M (endowed with 

(1.9)) has a maximal positive subspace N+ and a maximal negative 

subspace N (c.f. [2]). Using (1.10) one sees that T-IA[H 0] ~ N+ 

(resp. T-IA[H0 ] ~ N ) is a maximal positive (resp. maximal nega- 

tive) subspace of H 0 that is Contained in Ker A. Since 

[Hp ~ H_] n H 0 (resp. [H m @ H+] n H 0) is maximal strictly negative 

(resp. positive), one has 

([Hp @ H_] n H 0) ~ (T-1A[H 0] ~ N+) : 

([H m ~ H+] n H 0) ~ (T-1A[H 0] ~ N_) = H 0. 

From this identity the decompositions (1.8) are clear. The second 

part of the theorem is straightforward. D 

To study stability properties we now introduce uniform col- 

lections. A collection {(T,Bi)}i~ I of semi-definite admissible 

pairs on H is said to be uniform if in Condition (C.3) there exist 

one and the same 0<a<i and a bounded set of bounded linear opera- 

tors D i on H such that 

: ITr~Di , i~l. B i 
If the index set I is countable, we shall often use the term 

"uniform sequence". 

For the non-conservative isotropic case of the Transport 

Equation (and later for the degenerate anisotropic case too) 

Hangelbroek [11] introduced the projections Pp, Pm' P+ and P_, 

and the subspaces Hp, Hm, H+ and H_, and proved (1.7). His work 

has been extended by Lekkerkerker [15] to the conservative iso- 

tropic case; in [15] a singular subspace is introduced and de- 
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compositions like (1.8) are derived. 

With a semi-definite admissible pair (T,B) on H an operator 

differential equation with boundary conditions and a vector-valued 

convolution equation are connected. Their equivalence is the con- 

tent of the following 

THEOREM 1.3. (= Th. V.2.1 of [18]). Let (T,B) be a semi- 

definite admissible pair on H. Let O<T<+~, and let ~:[0,T] ÷ H 

be a continuous vector function such that T~ is differentiable on 

(O,T). Then an essentially bounded (strongly measurable) vector 

function ~:(O,T) + H is a solution of the operator differential 

equation 

(i.iia) (T~)'(t) : -(I - B)¢(t) + (T¢)'(t) + ¢(t) (0<t<T) 

with boundar~ conditions 

(1.11b) lim P+~(t) : P+~(0), lim P_@(t) : P_~(T), 
t+0 t+T 

if and only if ~ i8 a solution of the vector-valued convolution 

equation 

(I.~2) ¢(t) - 0f~H(t-s)B$(s)ds : ~(t) (0<t<T). 

Here, in terms of the resolution of the identity E of T, the 

propagator function H(.) is given by 

[+T -le -tT-IP+ : + I+~ -le-t/~E(d~), 0<t<+~; 

(1.13) H(t) : I 010 -I 
_T-le-tT-Ip_ : [~ ~ e-t/~E(d~), -~<t<0. 

For T=+~ an analogous theorem holds (cf. [18], Th. V.3.i). !n that 

case one requires that m:[0,+~) + H is a bounded continuous vec- 

tor function such that T~ is differentiable. Then an essentially 

bounded .(strongly measurable) vector function @:(0,+~) ÷ H is a 

solution of the operator differential equation (l.lla) on the 

half-line (0,+ ~) with boundary condition 

(1.14) lim P+¢(t) : P+~(0), 
t+0 

if and only if @ is a solution of the convolution equation (1.12) 

(with T=+~). For finite T the system of equations (1.11) is called 

an (abstract) finite-slab problem; its analogue for T:+ ~ is re- 
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ferred to as an (abstract) half-space problem. Concrete versions 

of these two problems are studied and applied in neutron physics 

and astrophysics (see [6]; [13,5,24]). 

The next two results express the existence and uniqueness 

of (bounded) solutions of the finite-slab and half-space problems. 

THEOREM 1.4. (: Th. IV.2.i of [18]). Let (T,B) be a semi- 

definite admissible pair on H, and let O<T<+~. Then for every ~H 

there is a unique solution of the operator differential equation 

(1.15a) (T~)'(t) : -(I - B)@(t) (0<t<T) 

with boundary conditions 

(1.15b) lim P+¢(t) = P+¢, lim P_@(t) = P_¢, 
t+0 t+T 

namely 

(1.16) @(t) = e-tT-IAppV~I* + e(T-t)T-IAPm V-IT * + (!-tT-IA)PoV~I¢' 

where the invertible operator V is given by 

(1.17) VT = P+[Pp +e+TT-IAPm ] ~+~ P-[Pm+e-TT-~App ] + P0 - TP_T-IAP0 . 

Note that Eq.(1.15a) with boundary conditions (1.15b) is 

equivalent to the convolution equation (1.12) with right-hand side 

(1.18) ~(t) = e -tT-1 (T-t)T -I 
P+¢ + e P ¢, 0~t~T. 

A statement of the finite-slab problem by Hangelbroek [12] 

stimulated the author to investigate this problem. For a case when 

the pair (T,B) is positive definite and parallel to the research 

leading to [18] Hangelbroek proved the invertibility of V T- 

THEOREM 1.5. (= Th. IV.3.1 of [18]). Let (T,B) be a positive 

definite admissible pair on H. Then for every ¢+~H+ there is a 

unique bounded solution of the operator differential equation 

(1.19a) (T@)'(t) = -(I - B)~(t) (0<t<+~) 

with boundary condition 

(1.19b) lim P+¢(t) = ¢+, 
t+0 

namely 

(1.20) @(t) : e-tT-IAP@+ (0<t<+~). 

Here P denotes the projection of H onto H alony H • 
P - 

The existence of the projection P is clear from Theorem 1.1. 

If the pair (T,B) is only assumed to be semi-definite, then still 

the half-space problem (1.19) has at least one bounded solution 



van der Mee 582 

for every ¢~H. Uniqueness holds if and only iT the finite-dimen- 

slonal operator T AIH has Jordan blocks of order 2 only. Assum- 
0 . ing inversion symmetry thls has been shown in [18] (see Th. IV.3.4 

there). With the help of Theorem 1.2 this additional hypothesis 

can be dropped. 

Finally, to deal with the Milne problem we need the following 

THEOREM 1.6. (= Th. IV.3.5 of [18]). Let (T,B) be a semi- 

definite admissible pair on H. Then under the boundary conditions 

lim P+~(t) = 0; 3n~0: ]l~(t)I] : 0(t n) (t÷+~) 
t+0 

the complete solution of the operator differential equation 

(1.19a) is given by 
-I 

: + (I - tT-IA)x 0 (0<t<+~), (i. 21) ¢(t) e -tT Axp 

where x0e[H p ~ H_] n H 0 and x0+xp~H _. The vector x 0 is uniquely 

determined by Xp, and conversely. 

A concrete version of this (abstract) Milne problem appears 

in astrophysics (see [5,13,3]). 

In the next section we shall need certain Banach spaces of 

strongly measurable functions on (0,T). Given 0<Ts+~, l~p~+~ and 

a Banach space H, by [p((0,T);H) we denote the Banach space of 

all strongly measurable functions ~:(0,T) ÷ H that are bounded 

with respect to the norm 

Ildt , l~p<+~; 

II II : |ess sup 71 (t)fl, 
[ 0<t<< 

By strong measurability we mean measurability with respect to 

Lebesgue measure as treated in Section VI.31 of [26]. Finally, by 

BC((0,T);H) we mean the closed subspace of [ ((0,T);H) consisting 

of all bounded continuous functions ~:(0,T) ÷ H. 

2. STABILITY PROPERTIES: SEMI-DEFINITE ADMISSIBLE PAIRS 

In this section a detailed study is made of the stability of 

the solution of the convolution equation 

(2.1) ¢(t) - H(t-s)B~(s)ds = m(t) (0<t<T), 
0 

where H(t) is the propagator function of the semi-definite ad- 

missible pair (T,B) on the Hilbert space H. Using the equivalence 
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of Eq.(2.1) to a finite-slab problem (for finite T) or to a half- 

space problem (for m=+~) (see Theorem 1.3 and the paragraph fol- 

lowing its statement), one gets the stability of the solution of 

these two problems. 

THEOREM 2.1. Let (T,B) be a semi-definite admissible pair on 

H, and let {(T,BN)}N= 0 be a uniform sequence of semi-definite ad- 

missible pairs on H such that lim IIB-BNI I = 0. Fix 0<m<+~ and 
N~ +~ 

l~p~+~. Then for every right-hand side ~k ((0,T);H) the unique 
P 

solution ~ of Eq.(2.1) in the space kp((0,m);H) is the limit in 

the norm of kp((0,m);H) of the unique solution ~NCLp((0,T);H) of 

the convolution equation 

(2.2) @N(t) - H(t-S)BN@N(S)ds = ~(t) (0<t<+~) 
0 

as N÷+~. The convergence is uniform in ~ on bounded subsets of 

ip((0,m);H). 

Proof. For N : 0,I,2,... consider the operators K and K N 

given by 

(2.3) (K¢)(t) = H(t-s)B¢(s)ds, (KN@)(t) = 0fmH(t-s) BN@(S)dS. 
0 

Then the operators K and K N are bounded on ip((0,m);H) and 

(2.4) NK-KNiI ~ -T ~jI+~IIH(t)(B-BN) II dt ~ ]ID~-D~N_T[+TI[ I T ]~H(t)Hdt.j 

Here 0<a<l is some constant with the property that for certain 

in /(H) the identities B : ITIaD a and operators D ~ and D N 

B N = ITI~D Na hold true (N = 0,i,2,....) Such a exists because of 
+~ 

the uniformity of the sequence {(T,BN)}N_0, and a can be chosen in 
~ +~- . 

such a way that the sequence {lID -DNII}N= 0 is bounded. 

Note that for 0<Bsa one has B = ITIBD B and B N = ITiBD~, where 
~-$~ : .... D 6 : IT la -BD m and D~ = ITI -N (N 0 , i , 2 ,  ) 

Le t  E d e n o t e  t h e  r e s o l u t i o n  o f  t h e  i d e n t i t y  o f  t h e  s e l f -  

a d j o i n t  o p e r a t o r  T, and l e t  0<B<a and xEH. A s t r a i g h t f o r w a r d  

a p p l i c a t i o n  o f  H61de r s  i n e q u a l i t y  y i e l d s  

111TI -B II 2 : It 12(a-S)iIE(dt)xi] ~ _ < 

] f ] I t l  2~ I IE(dt )x l l  2 +~l lZ(dt)x l l  2 ~1~ 

= II lml%ll2( -S/ )ll ll 2e/ . 



van der Mee 584 

With the help of the estimate (2.4) (with a replaced by B) one 

gets 
a ~/a [+ 

(2.5) IIK-KNI I ~ IIB-BNIII-6/aIID -DNII _ j TII ITlSH(t)lldt" 
T 

Since {If a a +~ D -DNII}N= 0 is a bounded sequence, one obtains 

lim IIK-KN! I (O,z);H) = 0 
N÷+~ [p(  " 

By Theorem V.4.1 (valid for positive definite pairs only) 

and the remark at the end of Section V.4 of [18] the operator I-K 

is invertible on Lp((0,T);H). Thus 

]I~-~N N = If[I-K) -I - (I-KN)-I]~II ÷ 0 (N÷+~), 

uniformly in ~ on bounded subsets of [p((O,T);H).D 

THEOREM 2.2. Let (T,B) be a positive definite admissible pair 

on H, and let {(T,BN)}N= 0 be a uniform sequence of positive de- 

finite admissible pairs on H such that lim IIB-BNI I = 0. Fix l~p~+ ~. 

Then for every right-hand side ~ e [p((0,+=);H) the unique solu- 

tion ~ of Eq.(2.1) (with T=+ ~) in the space kp((0,+~);H) is the 

limit in the norm of Ip((0,+~);H) of the unique solution 

~N ~ [p((0,+~);H) of the convolution equation ;+ 
,N(t) - ~(t-S)BN,N(S)dS : ~(t) (O<t<+~) 

0 
as N++~. The convergence is uniform in ~ on bounded subsets of 

[p((0,+~);H). 
The proof of this theorem is the same as the proof of Theorem 

2.1 and is therefore omitted. The restriction to positive definite 

pairs is needed for the application of Theorem V.5.1 of [18], ac- 

cording to which the operator I-K (defined analogously to (2.3)) 

is invertible on Lp((0,+~);H)for l~p~+~. 

COROLLARY 2.3. Let (T,B) be a positive definite admissible 

pair on H, and let {(T,BN)}N: 0 be a uniform sequence of positive 

definite pairs on H such that lim NB-BNI I = O. Then the following 
N++~ 

identities hold true: 

(2.6a) lim gap(Hp,H~)~ = 0, 

(2.6b) lim IIP-PNN = 0, 
N÷+~ 

(2.6c) lim I[v-vNII = 0, 

In these expressions the superschript 

lim gap(Hm,H ~ ) m = 0; 
N÷+~ 
lim IIQ-QNI] = 0; 

lim IIV T -VNII = 0. 
N++~ T 

N refers to subspaces and 
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operators connected to the pair (T,B N) (N = 0,i,2,...). I 

Proof. Apply Theorem 2.2 for p=+~ and m(t) = e -tT- ~+ 

(0<t<+~), where ~+ c H+. In the norm of [ ((0,+~);H) one has 

II~II = II~+II. According to the equivalence of Eq.(2.i) to an opera- 

tor differential equation (see the paragraph following the state- 

ment of Th. 1.3; see also Th. V.3.1 of [18]) and Theorem 1.5 one 

has 
~(t) : e -tT-IA IANpN¢+ PC+, ~N(t) = e -tT- (0<t<+~), 

where A N= I-B N. Therefore, for 0<t<+~ one has 

(2.7) [e-tT-1Ap - e-tT-1ANpN]@+ g ) + o, 

uniformly in ¢+ on bounded subsets of H+. Inserting t:0 one gets 

the first one of the identities (2.6b). The second one follows by 

considering the pair (-T,B) and.the uniform sequence {(-T,BN)}N: 0 

rather than (T,B) and the uniform sequence {(T,BN)}N: 0. 

Since~ IIP-PNII + 0 as N÷+~, Hp : Im P and H N : !m pN, one has • p 
gap(Hp,H~)~ + 0 as N++~ (cf. [14,9], where the gap between sub- 

spaces was introduced). The second one of the inequalities (2.6a) 

is proved likewise. From (2.6a) one derives, with the aid of 

[14,9], 

(2.8) l ira [[Pp-pN[[v = 0, l im [Iem-e~ll~ = o. 
N++~ N++= 

From (2.8) and (2.7) (with ¢+ replaced by P+Pp¢) one obtains 

[ IAp -tT-IANp~] 
(2.9a) lim e -tT- - e ¢ : 0 0~t<+~, 

N÷+~ P " 
uniformly in ¢ on bounded subsets of H. This is clear from the 

identities Pp¢ = P(P+Pp)¢ and pN.p@ = pN(p+p~)¢, @~H. Considering 
+~ 

the pair (-T,B) and the uniform sequence {(-T,BN)}N= 0 one gets 

(2.9b) lim ~ " t ~J [e+tT-IAPm- e+tT-IANp~[¢ = 0, 0~t<+=, 
N÷+~ 

uniformly in ¢ on bounded subsets of H. Since 

+ e+TT-IAPml - + P [ + e TT-IAppl - J V : P+ I P J -L Pm 
and V N admits a similar representation, the second part of (2.6c) 

T 
is clear. D 

Next a stability theorem is derived for solutions of Eq.(2.1) 

on the half-line in case (T,B) is only assumed to be a semi-defi- 

nite pair. This theorem will play an essential role in the solu- 

tion of the half-space problem in the conservative case (cf. Sec- 
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tion 4). 

THEOREM 2.4. Let (T,B) be a semi-definite admissible pair on 

H, and let A = I-B, dim Ker A = 1 and dim H 0 = 2, where H 0 denotes 

the singular subspace of (T,B). Suppose that {(T,BN)}N= 0 is a uni- 

form sequence of positive definite admissible pairs on H such that 

IIB-BNN = 0. Then for N large enough the operator T-I(I-B N) lira 

+ 
has exactly two eigenvalues hN and h N tending to zero, where 

X < 0 < X N. Further, 

(2 io) limgap(~p H ~ Ker A) = lim gap(H~ H m ~ ~er A) = 0 
N++~ P N~+~ 

Here HN(H~)- denotes the spectral subspace of T-I(I-BN ) correspond- 
P 

in@ to the positive (negative) part of its spectrum• 

Proof. According to Theorem 1.2 one has 

Hp @ Ker A @ H_ = H m ~ Ker A ~ H+ = H, ~ 

indeed. Consider the operator polynomials 

L(1) = A - IT, LN(I) = (I - B N) - IT. 

Then lim llL(h) - mN(h)ll = 0, uniformly in h~, and I=0 is an iso- 
N÷+~ 

fated point of the spectrum of L(1). Let F be a positively orient- 

ed circle with centre 0 such that the point at l=0 is separated 

by F from the remaining part of the spectrum of L(X). By a result 

of Gohberg and Sigal (cf. [i0]) there exists M~0 such that for 

N~M the sum of the algebraic multiplicities of the eigenvalues of 

the pencil LN(1) within F equals the algebraic multiplicity of the 

eigenvalue of L(1) at l=0 (which coincides with dim H 0 = 2). More 

precisely, one chooses M in such a way that for N~M 

( 2 . 1 1 )  max I I L ( t ) - I E L ( t )  - L N ( t ) ] I I  < 1.  

For NzM put 

R =-(2~i) -I ]L(~)-~d~, R N =-(2~i) -~ ]~N(~)-~d~ 
F F 

then R and R N are self-adjoint and lim IIR-RN[ I : 0. It is straight- 
N++- 

forward to prove that for N~M the operators TR, TRN, RT and RNT 

are projections. By definition, H 0 = Im RT, and thus dim RT = 2. 

But then (2.11) yields that for NaM all these four projections 

have rank two. Putting H0'N: = Im RNT and HI'N:= Ker RNT one gets 

im TR N : (HI'N) ± , Ker TR N : (H0'N)±; N~M. 
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Put 

W N = P0(RN T) + (! - P0)(I - RNT), N~M, 

where P0 = RT. Then W N is invertible, maps H 0'N onto H 0 and H i'N 

onto H 1 and satisfies lim iIwN-III = 0. For N~M put 

(2.12a) S 0'N : wNT-I(I-BN ) H 0 (wN) -I, S O : T-IAIH0 , 
,N 

defined as operators on H 0. Then in the norm of H 0 one has 

(2.i2b) lim IIs0'N-s011 : O; 
N÷+~ 

further, ~(S 0) : {0} and S O has one Jordan block at ~:0 of order 

2. However,ANIT is similar to a self-aMoint oDerator. (Note that 

A N is strictly positive and ANIT A~( _i _i i s0,N - = AN~TAN~)A~). So can be 

diagonalized for N large enough and S 0'N has two different eigen- 

+ ~N (with ~N " values, to be denoted by IN and + > IN) Thus S 0'N has 

exactly two non-trivial (one-dimensional) invariant subspaces, 

namely Ker (S 0'N - I F) and Ker (S 0'N - I~). As an application of 

Theorem 8.2 of Eli one finds 

(2.13) lim gap(Ker (S 0'N ± - IN) , Ker A) = 0. 
N÷+~ 

Let us prove that ~ < 0 < IN for N large enough. Since 

dim H 0 = 2 and dim Ker A : i, there exist vectors 0~ P0 and Pl in 

H 0 such that T-IApl P0' T-I : AP0 : 0. Then <TP0,P0 > : <Apl,p0 > : 

<Pi,AP0 > = 0, ~:: <TP0,pl> = <Api,pi> > 0 (because A a 0 and 

Pl £ Ker A) and y:: <Tpl,pl>c]R. A straightforward calculation 

yields that <T(pi+[p0),(pi+[P0)> is strictly positive (resp. 

strictly negative) for ~>-y/2~ (resp. [<-y/2~). Therefore, the 

two-dimensional vector space H 0 endowed with the inner product 

(1.9) is a Krein space with a maximal positive and a maximal ne- 

gative subspace of dimension one (see [2] for the terminology). 

For N large enough the operator S 0,N in (2.12a) is strictly posi- 

tive in the inner product 

(2.14) {x,y} N : <T(WN)-Ix,(W~)-~y> 

on H0, while HS 0'N - s°ll ÷ 0 and IIW N- Ill ÷ 0 as N ÷ +~. 

Therefore, for N large enough the space H 0 with inner product 

(2.i4) is a Krein space with a maximal positive and a maximal ne- 
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gative subspace of dimension one. Using Theorem Vll.l.2 of [2] 

one easily sees that X < 0 < 1 N for N large enough. 

Next, put 

~N : BN(I - RNT) + (I + T)RNT; ~ = B(I - P0 ) + (I + T)P0. 

As in the proof of Theorem III.6.5 of [18] one shows that (T,~N) 

and (T,~) are positive definite admissible pairs on H and that 

the spectral subspaces of their associate operators corresponding 

to the positive part of their spectrum coincide with H N n H I'N 
P 

and Hp, respectively. Further, {(T,BN)}N= 0 is a uniform sequence 

and lira I1Z-~NI t : 0. From (2.6a) it is clear that 

lim gap(H~ n HI 'N ,Hp)  = 0. 

With t h e  h e l p  o f  ( 2 .13 )  ( f o r  X~>0) one o b t a i n s  t h e  first identity 

in (2.10). The second part of (2.10) is proved likewise, g 

In [7] Feldman investigated the stability of discrete eigen- 

values and eigenfunctions of the operator polynomial L(1) : A-~T. 

The similarity of his approach to the present one consists of 

showing the stability of the operator K in (2.3) (for ~=+~) in 

the norm of [p((0,+~);H) under perturbations of B in the operator 

norm. 

3. STABILITY PROPERTIES: SPECIFICATION FOR THE TRANSPORT 

EQUATION 

In this section the stability theorems 2.1 and 2.2 are ap- 

plied to the linear Transport Equation 

~ d ¢  ( x , ~ )  + ¢ ( x , ~ )  : 
dx +1 2w 

-1 0 
+ f(x,p); 0<x<T, -I~+i. 

On this integro-differential equation one imposes the boundary 

conditions (0.2a) (for finite T) or (0.2b) (for infinite T). It 

is assumed that the phase function ~ is real-valued, belongs to 

[r[-l,+l] for some r>l and satisfies a n = (n+½) _if+l~(t)Pn(t) ~ i 

-Idn (n = 0,1,2,...). Here Pn(~) = (2n'nl) (~) (~2-1)n is the usual 

Legendre polynomial of degree n. As to the inhomogeneous term 

f(x,p), which in astrophysics (resp. neutron physics) describes 
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internal radiative (resp. neutron) sources, one supposes that f 

acts as a bounded continuous vector function from (0,T) into 

ip[-1,+l] for some p>2. 

If one defines the operators T and B on L2[-1,+I] by 

( T h ) ( p )  = p h ( ~ ) ,  
÷1 2~ 

(3.2) 

- 1  0 
then (T,B) is a semi-definite admissible pair on L2[-1,+1] (cf. 

[18], Theorem VI.1.1). In fact, B is an integral operator on 

L2[-1,+1] with the property that 
_~ f + l  

BP n = anPn, a n = (n+~) 2_1 ] ~(t)Pn(t)dt ; n = 0,1,2,... 

(see [25], Appendix XII.8). So the pair (T,B) is positive definite 

if and only if all coefficients a n are strictly less than +1. 

Putting 

~(x)(p) : ¢(x,~), f(x)(~) = f(x,~) (0<x<~, -i~+i), 

Eq.(3.1) is easily rewritten as an operator differential equation 

on [2[-1,+1] of the form 

(3.3) (T~)'(x) : -(I - S)~(x) + f(x) (0<x<T). 

As a consequence of the condition on f, for finite T (resp. 

for T=+~) one can find a unique continuous function 

~:[0,T] + [2[-i,+I] (resp. a unique bounded continuous function 

~:[0,+~) ÷ fi2[-1,+1]) such that T~ is differentiable on (0,x) and 

satisfies the system of equations 

(3.4a) (T~)'(t) + ~(t) = f(t) (0<t<x); 

[ P+~(0) : P+~, P_~(T) = P_~; 0<T<+~; 

(3.4b) P+~(0) = ~+; T=+~. 

This unique vector function ~ is given by 

e-tT-Ip+~ + e(T-t)T-Ip_~ + H(t-s)f(s)ds, O < t < T ;  

(3.5) ~(t) = 0 

- t T - 1  + H ( t - s ) f ( s ) d s ,  ~=+~° 
e ~ +  0 

F o r  t h e  p r o o f  we r e f e r  t o  S e c t i o n s  V .2  a n d  V .3  a n d  t o  T h e o r e m  

V ! . l . 2  o f  [ 1 8 ] .  (The  u n i q u e n e s s  o f  ~ h a s  n o t  b e e n  shown  t h e r e ,  b u t  

this is easily derived from Theorems 1.4 and 1.5 applied to the 
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pair (T,0) on L2[-1,+1]). In (3.5) the vectors ¢ and ¢+ are arbi- 

trary vectors of L2[-I,+1] and L2[0,1] , respectively. 

The expression (3.5) makes sense (i.e., contains the abso- 

lutely convergent Bochner integral 0fTH(t-s)f(s)ds), if f is only 

assumed to be an element of L ((0,T) ; Lp[-1,+l]) for some p>2. 

Further, with the aid of the parts of [18] mentioned in the pre- 

ceding paragraph one easily shows that the operator mapping (¢,f) 

into ~ acts as bounded linear operator from L2[-I,+I] ¢ 

L ((0,~);Lp[-1,+l]) into L ((0,~);L2[-1,+1]) (p>2 fixed, 0<T<+~; 

an analogous statement holds true for T=+~). 

The next two theorems specify Theorems 2.1 and 2.2 for the 

pair (T,B) in (3.2) and amount to the stability of the finite- 

slab and half-space Problems. 
+m 

THEOREM 3.1. For r>l let (gN)N=0 be a sequence of real-val- 

ued functions in Lr[-1,+l] whose expansion coefficients a~ = 
-! f+l 

(n+½) _Zl] ~N(t)Pn(t)dt do not exceed +1 (N,n = 0,1,2,...). Let 

be a function in Lr[-1,+l] such that fig - gNllr ÷ 0 as N÷+~. Fix 

O<T<+~ and ¢ ~ L2[-1,+1], and let f:(0,T) ÷ Lp[-1,+l] be a bounded 

continuous vector function for some p>2. Then for N÷+~ the unique 

solution ~N:(0,T) ÷ L2[-I,+1] of the integro-differential equation 

V d~N(x,P) + ~N(x,~) = 
dx +1 2~ 

- 1  0 
+ f(x,~); O<x<~, -I~v~+I, 

with boundary conditions 

~N(o,v) = ¢(v) ( o ~ + 1 ) ,  ~ ( ~ , ~ )  = ¢(v) ( - 1 ~ < o ) ,  
converges to the unique s o l u t i o n  ~ : ( 0 , T )  ÷ L 2 [ - 1 , + l ]  o f  E q . ( 3 . 1 )  

with boundary conditions (0.2a). In fact, 

lim sup [@(x,p) - ,N(x,p)12d~ = o 
N++~ O<X<T -i 

and the convergenae is uniform in ¢ on bounded subsets of 

L2[-1,+1] and in f on bounded subsets of BC((0,T);Lp[-1,+I]). 

Proof. Introduce the pair (T,B) by (3.2) and the pair (T,B N) 

by an analogous set of formulas in terms of gN" Then for 

N = 0,1,2,... the pair (T,B N) is a semi-definite admissible pair 
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on L2[-1,+I]. It is well-known that there is a constant c (not 

depending on N) such that for N = 0,i,2,... 

(3.6) IIBII ~ cll~llr,  IIB-BNtl ~ cl l~-~NIIr ,  IIBNII ~ cll~NIIr. 
Using the proof of Theorem VI.I.I in [18] one sees that for a fix- 

ed 0<a<(2r)-1(r-1) there exist bounded operators D and D N such 

that B = ITI~D, B N = ITI~D N and IIDNII ~ dlI~NNr (N = 0,i,2,...). 
+~ 

Here d is a constant not depending on N. Hence, {(T,BN)}N= 0 is a 

uniform sequence of semi-definite admissible pairs on L2[-1,+1] 

such that IIB-BNI I ÷ 0 as N÷+~. Thus the stability theorem 2.1 may 

be applied. 

With the help of Theorem 1.3 it is clear that the present 

theorem merely is an application of Theorem 2.1 with ~ taken as 

in (3.5). The statement on uniform convergence is clear from the 

corresponding statement in Theorem 2.1, because the operator map- 

ping (¢,f) into the right-hand side of (3.5) is a bounded linear 

operator from L2[-I,+1] @ L ((0,T);Lp[-i,+l]) into 

L ~ ( ( 0 , T ) ; L 2 [ - 1 , + I ] ) .  D 

THEOREM 3.2. For r>l let (gN)N:0 be a sequence of real-val- 

ued functions in Lr[-1,+l] whose expansion coefficients a N = 

(n+~) -~ i+1 n 
~N(t)Pn(t)dt are strictly less than +1 (N,n = 0,1,2, ) 

-1 "'" " 

Let ~ be a function in L r [ - 1 , + l  ] such that II - NIIr + o N++~. 

Fix ¢+ e L2[0,1] , and let f:(O,+~) + Lp[-1,+l] be a bounded con- 

tinuous vector function for some p>2. Then for N++~ the unique 

solution ~N:(0,+~) + L2[-1,+1] of the intedro-differential equa- 

tion 

d__~N(x,~) + @N(x,~) : 
dx 

+i 2w 

- 1  0 

+ f(x,~); O<x<+~, -1~+1, 
with boundary conditions 

i N ( 0 , ~ )  : ¢+(~) ( 0 ~ + l ) ,  I¢(x,~)12d~ : o(1) (x÷+~) 

converges to the unique s o l u t i o n  @:(0,+~) ÷ L 2 [ - 1 , + l  ] of  Eq. (3 .1 )  
wi th  boundary cond i t i ons  (0 .2b) .  In f a c t ,  
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f+l 
lim sup 19(x,~) - 9N(x,~)12du : 0 
N÷+~ O<x<+~-i 

and the convergence is uniform in ~ on bounded subsets of L2~1,+1] 

and in f on bounded subsets of BC((O,+~);Lp[-1,+I]). 

This theorem follows from Theorem 2.2 in the same way as 

Theorem 3.1 follows from Theorem 2.1. Therefore, the proof is 

omitted. 

The situation that !I~-~NII r + 0 as N÷+~, occurs in several 

instances. Feldman studied a general nonnegative phase function 

in [r[-1,+1] such that _if+l~(t)dt s 1 (see [7]), and approxi- 

mated it by the nonnegative degenerate phase functions 
N n n p 

~N(~) : ~(n+~)(1-N-~)(1-N-~)a n n(~) (N = 0,1,2,...) 
n=0 

in the Jr-norm. The second instance is the case when ~c [2[-i,+i]. 

In this case the condition that II~-~NII r ÷ 0 as N÷+~ for some r>l 

is satisfied, if 
+~ 

a N 2 
lim ~ la n- nl = 0. 
N÷+~ n=0 N a N ,2 

To see this, note that II~-~NII ~ = [ lien - n = IIB-BNI I~, where 
n=0 

IIB-BNII2 denotes the Hilbert-Sohmidt norm of B-B N. The third exam- 

ple is provided by the cut-off of the Legendre series expansion 

of the phase function, an approximation often implicitly used by 

physicists (see [13], Section 6.4.2). For this cut-off the approx- 

imants gN of ~ are given by 
N 

~N(Z ) = [ an(n+½)Pn(~) ; N = 0,1,2,..., -isus+l. 
n:0 

By a well-known result of Pollard [22] one has II~-~NII r ÷ 0 as 

N÷+~, provided r > ~. For l~r~ this need not be true (cf. [20]). 

To generalize the approximation by truncatin~_~the Legendre 

series expansion to phase functions in ir[-l,+l] (l<r~) we in- 

troduce the orthogonal projections pN of 62[-1,+1] onto the (N+I)- 

dimensional subspace spanned by the Legendre polynomials P0,...PN. 

Defining B by (3.2) and B N analogously in terms of gN' one has 

B N : BP N. However, for some 0<~<(2r)-1(r-1) one has B = ITI~D, 

where D is a bounded operator ([18], Theorem VI.I.1). So 
+~ 

B N : ITIaDP N (N = 0,1,2,...). Now it is clear that {(T,BN)}N= 0 

is a uniform sequence of semi-definite admissible pairs on 
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L 2 [ - 1 , + 1 ]  such that lim HB-BNI ] = O. The conclusions of Theorem 3.1 
N++~ 

(for the case an~+l) and Theorem 3.2 (for the case an<+1) appear 

to be straightforward applications of Theorems 2.1 and 2.2, res- 

pectively. Hence, the approximation by cutting off the Legendre 

series expansion of the phase function has been mathematically 

justified. 

We conclude this section by pointing out two other applica- 

tions of the stability theorems for semi-definite admissible 

pairs. One of these applications is the stability of the solution 

of the symmetric multigroup Transport Equation in a non-multi- 

plying medium. This equation may be described by a semi-definite 

admissible pair on [2((-I,+I);~N), where N is the number of groups 

considered (see [18], Section VI.7). For the physical aspects of 

the multigroup Transport Equation we refer to [6]. 

In astrophysics Eq.(3.1) is obtained from the more general 

integro-differential equation 

-I J_ (cos 8)d_~@(x,~) + ~(x,~) : (2w) g(~.~')~(x,~')d~' + 

(3.7) dx 
+ f(x,~); 0<X<T, ~ ~ ~, 

by averaging the solution ~ over azimuth (see [5,24,13]). In the 

above equation ~ denotes the unit sphere inIR 3 and ~ is a point 

of ~ with spherical coordinates e and ¢. It is easy to see that 

Theorems 3.1 and 3.2 also hold true for Eq.(3.7) under analogous 

hypotheses on the phase function ~. 

4. THE CONSERVATIVE CASE 

In this section we compute the unique solution @:(0,+~) + 

L2[-i,+I] of the integro-differential equation 

d__~(x,~) + ~(x,~) = 

dx 
(4. la ) +1 2w 

-1 0 (O<x<+~; -1~+1) 

under the boundary conditions 

1.1 (4.1b) , ( 0 ,~ )=¢+(~)  ( 0 ~ 1 ) ,  I ,(x,~)12d~ = 0(1) (x*+~). 

The phase  f u n c t i o n  ~ i s  n o n n e g a t i v e ,  d e g e n e r a t e  and c o n s e r v a t i v e ,  
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i.e,, 
N 

(4.2) ~(~) = ~ an(n+½)Pn(~ ; a 0 = 1, -l~an<+l (n= 1,2,...,N). 
n=0 

Note that the situation that for some I~M~N the coefficients a n 

satisfy a n = +1 (n = 0,1,...,M) and -l~an<+l (n = M+I,...,N), 

is excluded. 

First we introduce some functions and terminology. No matter 

possible restrictions on the expansion coefficients of a phase 

Kuscer polynomials (Hn)~0, function ~ one associates with ~ its vv 

which are given by the recurrence relation 

(4.3a) (2n+l)(1-an)~Hn(~) = (n+l)Hn+l(V) + nHn_l(~); 

(4.3b) H_I(~) ~ 0, H0(#) = 1, HI(P) = (1-a0)P. 

In case a # 1 (n = 0,1,2,...), in the non-conservative case, for 
n 

instance, the Ku~er polynomial has degree n (n = 0,1,2,...). In 

case ~ satisfies (4.2), one has 

(4.4) H0(~) = 1, HI(~) ~ 0, H2(~) _ = _! 2, deg H n = n-2 

(n = 2,3,4,...), 

where deg H n denotes the degree of H n. Moreover, comparing (4.3a) 

with the recurrence relation of the Legendre polynomials one sees 

that Hn(0) = Pn(0) (n = 0,1,2,...). 

By ~(v,~) one denotes the characteristic binomial, which is 

given by 
N 

(4.5a) ~(v,V) = [ an(n+½)Hn(V)Pn(V); 
n:0 

by Y(~ we mean the characteristic function, i.e., 

N 
(4.5b) ~(P) = ~(P,~) = [ a (n+½)H (~)P (p) 

n=0 n n n " 

In te#ms of Y(~) (or ~(v,~)) one defines the dispersion function 

A by 
il ÷1 

(4.5C) A(X) = i + X (~-X)-I~(~)dD, X ~ ~\[-1,+1]. 

All these functions have appeared in literature (see [23]). 

The term "dispersion function" and its notation by A are custo- 

mary in neutron physics; in astrophysics A is usually denoted by 

T and the equation T(z) = 0 is called the characteristic equation 

and its roots characteristic roots. If (4.2) holds, A has a double 

zero at infinity and the other zeros of A outside [-1,+1] are 
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real-valued and simple. This follows by writing A(~) as the deter- 

minant 

A(h) = det[! - h(~-T)-IB], 

where T and B are given by (3.2) (cf. [12], for instance). 

In the non-conservative case (i.e., if an<+1 for n= 0,1,...,N 

and an=0 for n~N+l) the ~ispersion function A is uniformly H~ider 

continuous on the extended imaginary line and there exists a 

unique, so-called H-function H that is continuous and non-zero on 

the closed right half-plane and analytic on the open right half- 

plane, satisfies H(0) = 1 and the factorization formula 

(4.6) A(~) = ~(~)-IH(-~)-I Re ~ = 0 

(cf. [58], Th.2.1 and Eq.(2.10)). Factorization results like (4.6) 

have appeared in literature several times; for the references we 

refer to Section VI.2 of [18]. 

PROPOSITION 4.1. Let the phase function ~ satisfy (4.2), and 

for 0<c<l let H denote the H-function associated with the phase 
C 

function c~. Then there exists a unique function H, defined, con- 

tinuous and non-zero on the closed right half-plane with the 

exception of the point at infinity, and analytic on the open 

right half-plane, such that the factorization formula (4.6) holds. 

The function H satisfies 

(4.7) lim Hc(h) = H(h), 
c+1 

uniformly in ~ on bounded subsets of the closed right half-plane, 

and is a solution of the H-equation 

Ii~(v)H(V)dv; Re ~ > 0. 1 
(4.8) ~ = I - ~ ~ v+~ 

0 
Proof. Let F be the positively oriented circle with centre 0 

and radius R>I. Then there exists 0<c0<l such that for c0sc<l the 

dispersion function A associated with the phase function c~ has 
c 

>R and -v <-R This is precisely two zeros outside F, namely v c c " 

clear, because lim Ac(~) = A(£), uniformly in £ on compact subsets 
c+l 

of ¢~\[-i,+1], and A has a double zero at infinity. 

From Theorem 2.1 of [183 it follows that for 0<c<l and 0<~<~ 

the dispersion function A is H61der continuous of exponent a on 
C 

the extended imaginary line; the same is true for A itself. Fur- 

ther, A c and A are strictly positive for imaginary ~. Hence, for 
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and 0<~<~ the functions Vc2(V~-k2)-1(l-k2)Ac(k)_ and C0<c<l 

(l-12)A(1) are H~ider continuous of exponent e and strictly posi- 

tive on the extended imaginairy line, while 

lim sup Vc 2(I-~2) I 
2_~2 AC(~) - (I-~2)A(~)I = 0. c÷i Rek:0 v c • 

By Theorem III.4.1 of [23] the function (I-k2)A(k) has a canonical 

factorization with respect to the imaginary line, namely 

( l - k z ) A ( k )  : H ( k ) - I H ( - X ) - I  Re ~ = O; 

here H is continuous and non-zero on the closed right half-plane 

and analytic on the open right half-plane. Put H(I) = (I+k)H(k), 

Re ~ z 0. Then H has all the properties described in the statement 

of the present proposition and is unique in this respect. Using 

the Stability of a canonical factorization (cf. [8]; Section 1.5) 

one sees that 

lim Vc(l+~) I 
c+i ~ YT Hc(k)-I - (I+X)H(k) -I : 0, 

C 
uniformly in ~ on the closed right half-plane. Since lim v = +~, 

c+1 c 
formula (4.7) is clear. The H-equation (4.8) is clear from (4.7) 

ant its analogue for the non-conservative case (cf. [18], Section 

VI.2). D 

The H-equation (4.8) is frequently employed (see [5,13], for 

instance); its rigorous derivation is due to Busbridge [3], also 

for the conservative case. Here (4.8) is mentioned to link up the 

function H to the H-function studied by Chandrasekhar E5]. 

Next we compute the bounded solutions of the half-space pro- 

blem for phase functions of the form (4.2). For such phase func- 

tions the pair (T,B) (defined by (3.2)) is semi-definite and sin- 

gular. It has the property that K er A = span {P0}; its singular 

subspace H 0 is two-dimensional and is given by H 0 = span {P0,PI} 

(cf. [16]). According to Theorem 1.2 one has 

Hp @ span {P0 } @ H_ = H m e span {P0 } $ H÷ = /2[-l,+i]. 

For the conservative isotropic case these decompositions have been 

found by Lekkerkerker [15]. 

THEOREM 4.2. Let the phase function ~ satisfy (4.2). Then the 

projection P of L2[-1,+i] onto H @ span {P0 } along H is 2iven by 
p 
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fN i 'a (n+~)(-l~q_(-~)H(-~) v(v-~)-lqn(v)H(v)h(v~v; 
(4 9) (PhX~) ~n=O n n 

• = 0 (-1~<0) 
| 
[ h(~), 0~+1. 

For N : 0,i one has q0(~) : i and ql(~) ~ 0. For N ~ 2 the func- 

tion ql vanishes and q0,q2,q3,...qN are certain polynomials of 

degree ~ N-l, which are the unique polynomial solutions of the 

equations 

[ l~(l,~)qn(~)-~(~,~)qn(1) (4.10a) qn(l) : Hn(1) + ~ H(~)d~, 

0 ~ P-~ i ~ [0,I]; 

(4.10b) qn(~)H(u)d~ : 26n0 (n : 0,2,3,...,N). 
0 

Proof. For 0<c<l to the phase function c~ there corresponds 

the positive definite admissible pair (T,cB), with T and B defined 

by (3.2). Obviously, {(T,cB)}0<c< i is a uniform collection of po- 

sitive definite admissible pairs on [2[-1,+1] and lim IIB-cBII = 0; 
c¢I 

further, one has dim Ker A = i and dim H 0 = 2. So the conditions 

of Theorem 2.4 are fulfilled. 

Let us apply Theorem 2.4. If H c (resp. H~) is the spectral 
P 

subspace of (I-cB)-IT corresponding to the positive (resp. nega- 

tive) part of its spectrum, one has 

H c (4.11) lim gap( p,Hp@ span {P0 )) = lim gap(H~,H m~ span (P0)) = 0. 
c+1 c+l 

Tc (H~) along If pC (QC) denotes the projection of [2[-1,+i] onto Hp 

H_ (H+) (which exists; see Th.l.l), then (4.11) implies that 

(4.12) lira lIP c - PII = lim IIQ c - QII : o 
c+1 c+1 

(the implication (4.11) ~ (4.12) follows from results on the gap 

between subspaees of a Banach space; see [14,9]). 

If H c denotes the H-fuction corresponding to the phase func- 

tion c~, then (4.7) holds uniformly in I on [0,1]. A formula for 

pC is provided by Theorem VI.3.1 of [18] (applied for c~). In this 

formula (i.e., formula (VI 3.2) of [18]) there appear the H-func- 
C tion H c and certain polynomials q~'''''qN of degree ~ N that sa- 

tisfy the equations 
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I 
i ~ c ( ~ , ~ ) q ~ ( ~ ) _ ~ o ( ~ , ~ ) q ~ ( ~ )  

( 4 . 1 3 )  q~ (~ )  = H~(~) + ~ H ( ~ ) d ~ ;  
0 ~-k c 

£ [0,1]. 

Here H c is the Ku~er polynomial of degree n and ~c(v,~) the ohar- 
n 

acteristic binomial, both of them corresponding to c~. By Proposi- 

tion VI.3.3 of [18] one has 

q~(~)  : H e ( ~ ) - I [ ( P c ) * P n ] ( ~ )  ; 0 s z ~ + l ,  n : 0 , 1 , . . . , N .  

Us ing  ( 4 . 7 )  and ( 4 . 1 2 )  one s e e s  t h a t  t h e r e  e x i s t  p o l y n o m i a l s  

q 0 , . . . , q  N o f  d e g r e e  ~ N such  t h a t  

( 4 . 1 4 )  l im  max I q n ( ~ ) - q ~ ( ~ )  I : 0,  q n (~ )  = H ( ~ ) - I [ P * P n ] ( ~ ) .  
c+l 0~i 

Using (4.13) formula (4.10a) is clear. From Eq.(VI 3.2) of [18] 

and (4 12) one obtains (4.9). 

In general, Ker P* = (Im P)~ = H i p n Im A = A[H m] @ span {P1 } 

(see (1.2)). So, by (4.14), ql(~) e 0. Further, in the usual inner 

product of L2[-1,+1] one has 

011qn(~)H(~)d~'. = <p*Pn,P0 > = <Pn,PP0 > = <Pn,P0 > = 2~n0, 

and thus (4.10b) is clear. It remains to prove that for N = 0,i 

one has q0(u) = 1, and that for N ~ 2 the functions q0,q2,...,qN 

are the unique polynomial solutions of the system of equations 

(4.10). 

For N : 0,1 one has ~(~) = ~a 0 + al(1-a0)~ 2 : (see (4.5b) 

& (4.5b)). Using (4.8) for ~÷+~, one gets 0[1H(~)d~ = 

20[I~(~)H(u)du = 2. Now q0 satisfies (4.10a), and thus q0(0) = 

H0(0) = 1. Since q0 is a polynomial of degree at most i, it has 

the form q0(u) = AU + i..By (4.10b) one has AoS~H(~)du = 

0[lq0(u)H(~)d~ - 0[1H(~)du = 2 - 2 = 0. Since the integrand of 

0[l~H(~)d~ is strictly positive, one has A = 0. Hence, q0(u) = 1. 

Let us consider the case N ~ 2, and let Pn denote the (n+i)- 

dimensional space of polynomials of degree s n. On the polynomials 

one defines the linear map V by 

[ I~(x,~)p(~)-~(~'~)p(k) H(~)d~; ( V p ) ( t )  = p ( k )  - 1 
O: ~-k  k £ [0,1] 

Note that ~qn = Hn (n~0). Rewriting (~p)(k) in the form 
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(Vp)(1) : p(k) - k (k,~)-~(~,~) 0 u-k p(u)H(~)d~ - 

- k [ Ip(X)-p(~) ~(~)H(~)d~ (~ £ [0,13), k-~ 
0 J 

observing-that 1 - 0/l~(~)H(~)du = 0 (employ (4.8) for ~++~), and 

noticing that for nz2 the Ku~er polynomial H n has degree n-2, it 

is clear that 

(4.15) V[Pk] c Pmax(N-2,k-1) ; k = 0,1,2,.... 

Let us first prove the linear independence of q0,q2,...,q n 

(na2). Take constants ~0,T2,...,~n such that T0q0+~2q2+...~nqn = 0. 

Applying V and (4.4) one gets T0+2~2 = ~3 = T4 : "'" : Tn = 0. But 

fl{~0q0(~)+~2q2(u)+ .+Tnqn(~)}H(u)d u : 0 (4.10b) yields T0 : ~ 0 "" " 

Hence, T 0 = T 2 = ... = ~n = 0, and the linear independence of 

q0,q2,...,q n has been established. 

For n~N consider V on Pn" Since V[P n] c Vn_ 1 (cf. (4.15)), 

one has Ker VnP n ~ {0}. However, {q0,q2,...,qn } spans an n-dimen- 

sional subspace of Pn" So Ker VnP n is a one-dimensional subspace 

of V n. Note that q0+2q2 ~ 0 (otherwise q0 and q2 are linear depen- 

dent) and that V(q0+2q 2) = H0+2H 2 = 0. Thus 

(4.16) Ker V : {~(q0+2q2) : ~C} ~ {0}. 

Hence, the functions q0,q2,...qN are the unique polynomial solu- 

tions of the system of equations (4.10). Finally, by (4.16) one 

has V[P n] = Pn-1 for n~N. Thus q0,q2,...,q N are polynomials of 

degree ~ N-1. 0 

For a phase function satisfying (4.2) the Transport Equation 

(4.1a) with boundary conditions (4.1b) has a unique (bounded) so- 

lution @. This follows from Theorem III 3.3 of [18] and the de- 

composition 

_ L ~ +1] Hp ¢ Ker A ~ H : 2L-I, . 

In terms of the projection P of L2[-1,+1] onto Hp @ Ker A along 

H (described by (4.9)) one has ~(0,~) = (P¢)(U) (0~U~I). 

The projection P is connected to the sc~tteging function 

S(v,~) of Chandrasekhar [53 and the brightness coefficient 

P(v,U) of Sobolev [24]. The connection is given by 

I I (4.17) (Ph)(-U) : ~ ~-IS(~,v)h(v)dv : 2 vp(v,~)h(v)dv; 0~+1. 
0 0 
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For the non-conservative case an expression for S(v,~) has been 

provided by Busbridge [3]. This expression has been improved and 

generalized to the conservative case by Pahor [21] (see also [4]). 

Up to the translation (4.17) this expression coincides with (4.9). 

5. THE MILNE PROBLEM 

In this section we derive the solution of the integro-dif- 

ferential equation (4.1a) with boundary conditions 
+i 

(5.1a) ~(0,~) = 0 (-l~p~0); -1 | r J l¢(x,~)i2d ~ = 0(i) (x÷+~); 

I ÷1 ( 5 . 1b )  l i m  p ¢ ( x , ~ ) d ~  = -~F,  
x÷+~ -1 

f o r  phase  f u n c t i o n s  ~ o f  t h e  form ( 4 . 2 ) .  E q . ( 4 . 1 a )  w i t h  b o u n d a r y  

c o n d i t i o n s  ( 5 . 1 )  i s  u s u a l l y  c a l l e d  t h e  MiZne problem. 

A c c o r d i n g  t o  Theorem 1.6 t h e  s o l u t i o n s  o f  t h e  Milne  p r o b l e m 

( w i t h  t h e  c o n s t a n t  P i n  ( 5 . 1b )  u n s p e c i f i e d )  a l l  have  t h e  form 

(5 .2 )  ¢ (x )  = e-XT-1Axp + ( I -xT-1A)x0  , 0~x<+~, 

where Xp e Hp, x 0 e [Hp ~ H_] n H 0 and Xp+X 0 ~ H_. Here [Hp ~ H_] 

n H 0 is a one-dimensional subspace of H 0 (note that dim H 0 = 2, 

and use Theorem 111.7.1 of [18]). If P denotes the projection of 

L2r~l,+l] onto Hp $ ker A along H_ (which is described in detail 

in Section 4), then Xp = -Px 0 and ~(0) = Xp+X 0 = (l-P)x 0. But for 

e(u) ~ i one has [,1 
-~F : lim ~¢(x,~)d~ : lim <T~(x),e> : 

x÷+= -i ; T- I x÷+~ 
: lim {<Te -x Axp,e> + < T ( I - x T - 1 A ) x 0 , e  >} = 

X ~ + ~  

: <Tx0,e> - lim x<Ax0,e> : <Tx0,e>, 
X÷+~ 

because e ~ Ker A; here we have used (1.6c) - (l.6d). Writing 

x 0 = ~P0+nPI (i.e., x0(~) : ~-~) for certain constants ~,q ~ ~, 

= ~<TP0,e> + q<TPi,e> = ~q, and thus q = -~F. So one gets 

~(0) = (l-P)x 0 = (I-P)(~P0-~FP I) = -~F(I-P)P i. Hence, 

(5.3) ¢(0,~) : -~F[(I-P)Pi](p), -i~p~+i. 

One way to find an expression for ¢(0,p) is to apply Theorem 

4.2. For N = 0,i one finds 

¢(0,~) : -~F{u-~H(-p) " []v2(v-1~)-IH(v)dv} : 
0 ~ 
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lvH(v)dv_~H(_p) 11 [ v (v-~)- IH(v)dv). = -~F{~-½H(-~) . 

0 j 0 
Substituting (4.8) for ~(v) -= [ one gets 

11 
0J ' - " 

However, the H-function H is the same as the H-function in the 

conservative isotropic case (note that W(v) --- [ does not depend 
2 

on al). So 0~lvH(v)dv = -~/3 (cf. [3], Eq.(12.15); see also [18], 

the paragraph preceding Th.VI.5.2). Hence, for N = 0,i one has 

(5.4) ~(o,~) : ¼/3 H(-~), 

Another way to find ~(0,p) rests upon the intertwining prop- 

erty 

(5.5) T(I-P) = Q T, 

where Q is the projection of L2[-1,+1] onto H m @ Ker A along H+. 

For the non-conservative case an analogous property is due to 

Hangelbroek. To prove (5.5), take h ~ L2[-i,+1]. Then h = hp+h0+h - 

for unique vectors h E Hp, h 0 ~ Ker A = span {P0 ) and h_ c H_. So 

T(I-P)h = Th_. On the other hand, Im Q* = (Ker Q)± = H and Ker Q* 

[Hp + H + = (!m Q)± = H i n Im A = + @ H 0] n !m A = ~ A[H 0] = m p 
H + ~ T[Ker A]; here we employed (1.6d) and A[H 0] = T[Ker A] = 
P 

span {P1 ). So Q*Th = Q*(Thp+Th0) + Q*(Th_) = Q*(Th_) = Th_. Thus 

the intertwining property (5.5) is clear. 

THEOREM 5.1. Let the phase function ~ satisfy (4.2) with N~2. 

Then the integro-differential equation (4.1a) with boundary con- 

ditions (5.1) has a unique solution ~ and 

(5.6) ~(0,-~) : ~F ~-1[q0(p) . 2q2(~) ]H(~) (0~I), 

where ~ = q0+2q2 is the unique polynomial solution of the system 

of equations 

I I ~ ( ~ , ~ ) ~ ( ~ ) _ ~ ( U , U ) ~ ( X )  H(g)d~  k £ [ 0 , 1 ] ;  (5.7a) ~(~) = 
0 ~-I ' 

( 5 . 7 b )  ~ ( p ) H ( ; ) d ~  = 2. 
0 

P r o o f .  For  n = 0 , 1 , 2 , . . .  one d e f i n e s  a f u n c t i o n  r by 
n 

[ ( I - Q ) P n ] ( ~ )  = r n ( ~ ) H ( v )  ( 0 ~ + 1 ) .  

S i n c e  ( 2 n ÷ I ) T P  n = ( n + l ) P n + l + n P n _  1 (which  i s  t h e  r e c u r r e n c e  r e l a -  

t i o n  f o r  t h e  L e g e n d r e  p o l y n o m i a l s ) ,  one e a s i l y  s e e s  t h a t  
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n+l n 1 
~rn(~)H(~) = ~2-n-~ qn+l (~) + ~-n-TT qn_l(~)jHC~), 0~1 

(see (4.14)), and thus r n is a polynomial of degree ~ max(N,n). 

So 

[(I-P)P1](-P) = -[(I-Q)P1](p) = -rl(~)H(p) , 0~p~+l. 

So for 0~gl one gets 

and (5.6) is clear. From the proof of Theorem 4.2 it is clear that 

= q0+2q2 is the unique solution of the system of equations 

(5.7). I 

The first results on the solution of the isotropic Milne 

problem are due to Milne [19], who reduced it to a convolution 

equation; formula (5.4) has been found by Chandrasekhar [5]. The 

expression (5.6) for the anisotropic case is due to Pahor [21]. 

(Note the difference in Condition (5.1b)). Another derivation of 

(5.6) has been given by Busbridge and Orchard [4]. Here we present 

a mathematical justification of these results. 
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