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ANALYTIC OPERATOR FUNCTIONS WITH COMPACT SPECTRUM.
II. SPECTRAL PAIRS AND FACTORIZATION

1)

M.A. Kaashoek, C.V.M. van der Mee ", L. Rodmanz)

Using the technique introduced in the first part of this
paper, various problems concerning factorization and divisibility
of analytic operator functions with compact spectrum are studied
in terms of spectral pairs of operators. The basic properties of
such pairs are derived. Using these properties, stability of
spectral divisors is proved and necessary and sufficient condit-
ions (in terms of moments of the inverse function) are given in
order that an analytic operator function with compact spectrum
admits a generalized Wiener-Hopf factorization.

INTRODUCTION

In the study of matrix and operator polynomials divisibility
and factorization problems can be handled successfully by
employing pairs of operators which are constructed in such a
manner that they epitomize in a convenient way the spectral data
of polynomials concerned. For matrix polynomials and analytic
matrix functions such pairs, which we shall call spectral pairs
here, may be defined in terms of eigenvectors and generalized
eigenvectors (see [11,18]). To define spectral pairs for
(infinite dimensional) operator polynomials the companion oper-
ator matrix can be used. For arbitrary analytic operator funct-
ions these methods are not available and one has to find other
ways to define spectral pairs. Here we solve this problem by
employing the notion of spectral linearization, which has been

introduced in [20].

1)

Research supported by the Netherlands Organization for the

Advancement of Pure Research (Z.W.0.).

2 . . . . .
)Thls paper was written while the third author was a senior

visiting fellow at the Vrije Universiteit at Amsterdam.



Kaashoek, van der Mee and Rodman 792

Let Q@ < ¢ be an open set, and let W be an analytic operator
function on Q with values in the Banach algebra L(Y) of all
(bounded linear) operators on the complex Banach space Y. We
assume that the spectrum of W, i.e., the set
(0.1) (W) = {x e q|w(X) not invertible}
is compact in Q. Recall (see [20]) that an operator 4 : X » X
is a spectral linearization for W on  if its spectrum o(4) is
a subset of @ and the function wW(i) & I, is equivalent on @ to
the linear function (AIX -4) 8T
that
(0.2) W) 8 Iy = EQO[(A, - 4) 8 I,]JF(X) , X eq,

v - The latter condition means

where E(A) : X ®# Y > Y & X and F(x) : Y8 X ~ X & Y are in-
vertible operators which depend analytically on * ¢ 2. The sym-
bols IX and I, denote the identity operators on X and Y, respect-
ively. Now define ¢ : X + Y by setting

1 -1 - -1
FrT JFWF(X) T(A=4)""4ax.

Here 7 : Y & ¥ + ¥ is the canonical projection onto ¥, the map

¢ =

T : X > X ® Y is the canonical embedding of X and T is a suitable
curve in @ around the spectrum Z(W). We call the pair (C,4) a
right spectral pair for W on Q. Left spectral pairs may be
defined in an analogous way.

A more abstract, axiomatic definition of spectral pairs will
be given later in this paper. For a given W right spectral pairs
exist and are uniquely determined up to eimilartty, i.e., if
(C¢,,4,) and (CZ,AZ) are right spectral pairs for W, then there
exists an invertible operator S such that
(0.3) €, = C,8 , A, = 87'4,58

We show that with respect to divisibility the spectral pairs
introduced here have the desired properties. Namely, if (Cl’Al)
and (C,,4,) are right spectral pairs on @ for W, and W,,
respectively, then W, is a right divisor of W, on @, i.e., there
exists an analytic operator function @ : @ » L(Y) such that

w () = @UOIW,(A) , A e q,
if and only if 4, has an invariant subspace N such that the pair
of restricted operators (CllN’AllN) is similar to the pair
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(c,>4,), i.e., formula (0.3) holds true with (¢ ,4,) replaced by
(CllN’AllN)' In that case N is called a supporting subspace of W,
with respect to the pair (c, ,4,).

" In this paper we prove that for a right spectral pair (c¢,4}

the finite column operator

c
CA
(0.4) . T X > ¥

.

m-1

CA

is left invertible for some positive integer m, which is one of
our main results. For matrix and operator polynomials this
property is not difficult to prove; in fact in that case one can
take m to be the degree of the polynomial. But for arbitrary
analytic operator functions with compact spectrum the left
invertibility of the finite column is quite unexpected and this
property does not hold when the operator function has a non-
compact spectrum. Here we prove the left invertibility of the
finite column by using the cocycle theory from [15] (see also
[41). In fact, using the cocycle theory we first show that a
spectral pair of an analytic operator function on Q is also a
spectral pair for an entire operator function, and on the basis
of this extension property we prove that the finite column (0.4)
is left invertible for some m > 0.

In part III of this paper we shall see that for the Hilbert
space case the left invertibility of the finite column (0.4)
characterizes right spectral pairs, i.e., if ¢ and 4 are Hilbert
space operators for which the operator (0.4) is left invertible
for some m > 0, then there exists an analytic operator function
which has (C,4) as its spectral pair. We do not know whether
this property holds in the general Banach space setting. In the
Hilbert space case it is also possible to give a more direct
proof of the left invertibility of the finite column (0.4) not
using the cocycle theory.

The left invertibility of the finite column (0.4) allows us
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to make applications to Wiener-Hopf factorization problems. We
prove that an analytic operator function W : Q =+ L(Y) with con-
tinuous and invertible boundary values admits a right generalized
Wiener-Hopf factorization with respect to the boundary 30 of Q if
and only if there exists a sufficiently large positive integer £
such that all the operators

w1 W)=t L A Tgon-t
AR~ e AWt
1
oni J dX;
20 _
AT O0TY A trooTt L a0
=1, . ,2-1

have generalized inverses (cf. [24], where this is proved for
operator polynomials). We assume here that 30 is a simple closed
rectifiable Jordan curve. A similar theorem may be proved for
left Wiener-Hopf factorization: by using analogous results for
left spectral pairs.

This paper consists of 7 sections. We start with a prelim-
inary section inwhich we recall from [20] the basic properties of
spectral linearizations and spectral nodes. In Section 2 we
introduce spectral pairs and express divisibility in terms of
restrictions of spectral pairs. Intrinsic characterizations of
spectral pairs are given in the third section.

In Section 4 the notion of a supporting subspace is defined.
As a first application of the theory of spectral pairs we identi-
fy the stable factorizations in terms of their corresponding sup-
porting subspaces. A factorization
(0.5) vy = w, (0w (M), A e,
where W; : Q@ » L(Y) , ¢ = 1,2, isanalytic and has compact spec-
trum, is called stable if after a small perturbation of W the new
function still admits a factorization as in (0.5) and, moreover,
the new factors are close to the original ones. We show that the
factorization (0.5) is stable if and only if the corresponding
supporting subspace is a stable invariant subspace (cf. [1]1). As
a corollary we prove the stability of spectral factorizations,
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i.e., of factorizations of the type (0.5) with I(w ) and I(w,)
disjoint.

At the end of Section 4 we make a supplementary remark con-
cerning the description given in [1] of stable invariant subspaces
of finite dimensional operators. We characterize the spectral
subspaces of an operator 4 : X - X acting on a finite dimensional
space X as those A-invariant subspaces N of X that are stable in
the following strong sense: there exist positive constants n and
K such that every operator 4 : X » X with [|[4 - Z|] < n heas an
invariant subspace N such that

gap(N,N) < kx [[4 - Z]|.

In Section 5 we prove that a spectral pair (right or left) of
an analytic operator function on some open set @ is also a spec-
tral pair of an entire operator function. In Section 6 for some
m > 0 the left invertibility of the finite column (0.4) is proved.
In the last section the applications to Wiener-Hopf factorization
are made.

Throughout the paper the letters x and y (with or without
indices) designate complex Banach spaces. By @ we denote an open
set in the complex plane ¢ (if not stated otherwise). The sym-
bol 3A denotes the boundary of a set A < ¢. The Riemann sphere
¢ U {=} 1s denoted ‘.- Given a compact set X « ¢, the Banach
space of all continuous y-valued functions on X with the supremum
norm is denoted C(X,Y).

Acknowledgement: We are grateful to I. Gohberg for several

useful and stimulating discussions on the subject of this paper.

1. PRELIMINARIES
In this section we recall from [20] the definition and some
basic properties of spectral nodes. Let W : Q » L(Y) be an ana-
lytic operator function with compact spectrum Z(W). A quintet
8 = (4,B,C3X,Y) is called a spectral node for W on § if X is a
Banach space,
4 : X >X ,B :Y>X,(C:X~>Y

are bounded linear operators and the following conditions are
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(P1> a(d) € Q

(PZ) W{X)~' = ¢(XI - 4)~'B has an analytic extension to 0
(P)y w)eOr -4 has ar analytic extension to 9

< j R
() n._, Xer ca’ = (0)

A quintet (4,B,C3;X,Y) of spaces and operators as above is a
spectral node for W on @ if and only if (P1)’ (Pz) and the follow-
ing conditions (P!), (P;) are satisfied:

(P!) (AI - 4)7'BwW(X) has an analytic extension to Q;

0
The operator 4 will be referred to as the main operator of the

(P!) span U;= Im 49B = Xx.

spectral node 6.

The following explicit construction of a spectral node ([20],
Theorem 3.1) will be used in the sequel. We assume for simplicity
that zero is inside Q.

THEOREM 1.1 Let W : Q » L(Y) be an analytic operator func-
tion with compact spectrum L(W). Suppose that A s a bounded
Cauchy domain containing 0 such that I(W) € A € A  Q, and let
M be the set of all continuous Y-valued functions f on the bound-
ary 3h which admit an analytic continuation to a Y-valued func-
tion in € _\L(W) vanishing at =, while W(A)f(X) has an analytic
continuation to Q. The set M endowed with the supremum norm is a

Banach space. Put

(1.1) Vil > M, (VF)(2) = 2f(z) - (2m’>—kJM Flw) dw
(1.2) R:Y + M, (Ry)(5) = §%f J Eé%}%i y dw ;
(1.3) Q:M > ¥, af = (2ﬂi)_1! F(0) do .

A

In the definition of R the contour T 18 the boundary of a bounded
Cauchy domain A' such that L(W) € A' « AY © A, Then (V,R,Q;M,Y)
18 a spectral node for W on Q.

The space M of Theorem 1.1 can be described as follows (see
{51; also [20]1, Lemma 3.3). Consider the bounded linear operator
T : C(3A,Y) - ¢(3A,Y) given by the formula
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(7£)(2) = zf(z) + L JaA [W(x) - I1F(x)dx

2mL
Then o(7) = (W) U 3A , and

. 1 - )t
M = Im [2_”_1 JF ()‘I T) d)\] 3

where the contour T is defined as in Theorem 1.1 . Moreover,
v = TIM

For a given analytic operator function ¥ : Q » L(Y) with
compact spectrum spectral nodes exist (as shown in Theorem 1.1)
and are uniquely determined up to similarity (see [20], Theorem
1.2). Here similarity means the following: Two spectral nodes
6 i(Ai,Bi,Ci;Xi,Y) , 1 = 1,2 , are similar 1f there exists an in-
vertible operator § : X, » X, such that 4, = S7'4,5 ,

1
B, = S'IB2 and ¢, = C,8 . In particular the main operator of a

sgectral node for a given W is defined uniquely up to similarity;
moreover, the spectrum of the main operator coincides with I(¥).
The connection between linearization (ef. [5,22,3]) and spectral
nodes is explained and used in’[20] to solve problems concerning
equivalence and similarity of analytic operator functions.

The notion of a spectral node is a natural generalization of
the notions of standard triples and T-spectral triples for oper-
ator polynomials which have been introduced and studied in [11,12,
13,16,24]. On the other hand, spectral nodes are related to real-
izations for analytic operator functions (c¢f. [2], Section 2.3;
also [9], Section III.1).

2. DIVISIBILITY AND SPECTRAL PAIRS

In this section we express divisibility in terms of restrict-
ions of spectral pairs. Particular attention is given to spectral
divisors.

Let W : Q > L(Y) be an analytic operator function with
compact spectrum I(W). A pair (c,4) (resp. (4,B)) of operators
C : X »Yand 4 : X » X (resp. 4 : X~ X and B : Y » X) is called
a right (resp. left) spectral pair for W on Q if there exists an
operator B : ¥ > X (resp. ¢ : X » Y) such that 9 = (4,B,C;X,Y) is
a spectral node for W on Q. The formal definition of a right

spectral pair which is given here coincides with the one employed
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in Introduction, which is evident from the connections between

spectral nodes and spectral linearizations (cf. [20]1, Theorem 5.1).
Two right (resp. left) spectral pairs (¢ ,4,) and (C,,4,)

1) and (Az’Bz)) are called similar 1f €, 8§ = C

4, = 54,87" (resp. SB, = B, A = 57'4,8) for some invertible

operator $. From what we know about spectral nodes it is clear

(resp. (4,,B 5o

that a right (resp. left) spectral pair for W on @ exists and is
unique up to similarity.

To describe divisibility in terms of spectral pairs we need a
notion of restriction. For < = 1,2 let (Ci’Ai) be a pair of
operators 4. : X, > X, and Ci RS Y. The pair (C,,4,) is
called a right restriction of (C,,4,) if there exists a left in-

, = X, such that €,8 = C,5 4,8 = sS4, . Ana-
logously, let (Ai’Bi) be a pair of operators Ai DX, - Xi and

1

B, + ¥ > X, (¢ = 1,2). We call (4,,B,) a left restriction of

(4,,B,) if there exists a right invertible operator 5 : X, * X,

vertible operator § : X

such that §B, = B,, S4, = 4,5. The notion of restriction for pairs
of operators acting between finite dimensional spaces has been
introduced in [7] and further studied in [6].

The next theorems give a full description of the connection
between divisibility and spectral pairs. We adopt the following
definition of divisibility: an analytic function W, ot Q> 5(y)
with compact spectrumis calledaright (left) divisor of ananalytic
function W : Q~+L(Y) onQ if there exists an analytic functiong : @+ L(Y)
such that W(}) = @M)W (1) [resp. W(A) = ¥ (1)@(X)) for all xeaq.
In that case @ necessarily has a compact spectrum.

THEOREM 2.1. For Z = 1,2, let W, ot Q- L(Y) be an analytic
operator function with compact spectrum cnd let (Ci’Ai) be a right
spectral patr for Wi on Q. Then the pair (C,,4,) is a right re-
striction of the pair (C,,A,) if and only <f the operator Ffunction
W, is a right divisor of the operator function W, (on Q).

THEOREM 2.2 For © = 1,2, let W, : Q > L(Y) be an analytic
operator funetion with compact spectum, and let (Ai’Bi) be a left
spectral pair for W. on Q. Then the patir (AZ,Bz)‘is a left re-
striction of the pair (A,,B,) if and only 1f the operator function

W, 28 a left divisor of the operator function W,  (on Q).
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In the context of polynomials results analogous to Theorems
2.1 and 2.2 have been obtained in [16,18,24], and in the context
of analytic matrix functions results of this type were obtained in
[19,23]. Note, however, that spectral pairs for polynomials are
defined not in terms of spectral nodes but intrinsically in terms
of maximality. In the next section we provide an intrinsic charac-
terization of spectral pairs for analytic operator functions.

We shall prove Theorem 2.1 only (Theorem 2.2 can be proved by

an analogous argument).

Proof of Theorem 2.1. Let B, : ¥ > X, be the (unique) oper-
ator such that ei = (Ai’Bi’Ci;Xi’Y) is a spectral node for Wi on 9,
¢ = 1,2. Suppose (C,,4,) is a right restriction of (C ,4,). Then
there exists a left invertible operator § : Xz - X1 such that
(2.1) €, =¢,, A5 =34,
So for A « Q\{Z(Wl)u E(WZ)} we have:
W, (W, (A" =
=W O, (07 -0, (-4,)7 B, ] + W, (M6 (A-4 )71 8B,
By Property (P,) for 6, and Property <Pa) for 6 , it is clear that
WIWZ'1 has an analytic continuation to Q. So W, is a right divisor
of ¥, on Q.
Conversely, let W, be a right divisor of W, on @, and let
= W,W,”', which is an analytic operator funtion on Q. Since
2(W¥,) and I(W,) are compact subsets of Q, clearly L(#) =

1
= {x e Q|E(X) is not invertible} is compact too. Let 6, =

= (4,,B,,C,3%,,Y) be a spectral node for F on Q. Using Theorem 2.2
in [20] we construct a spectral node 6 = (4,B,C;X,Y) for W, = HW

on @ fromthe spectral nodes 60 and 9, . We have:

2

X

it
Bt
«®
Pt
ha
"
————
p=N
N
[se}
N
@
o
[
“
Q
n
—~~
]
N
O
~—
.

where

¢ = (2m)7! J

3"
and A is a bounded Cauchy domain such that (Z(W ) U I(w,)) € A<

© X < Q. Usingthe uniqueness of spectral nodes (Theorem 1.2 in [20]),

{WZ(A)'I —cZ(A—Az)”BZ}CO(A-AO)'1 dr ,

we conclude that the spectral nodes 6 and 8, for ¥, on  are similar.
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So there exists an invertible operator 3 X2 & X0 - X1 such that
54 =45 and ¢ 5 = ¢ . Define 5 : X ~+ X by Sz, = 5(x,,0). Then
S is left invertible and satisfies the identities (2.1). Hence
(C,,4,) 1s a left restriction of (¢, ,4,). O

COROLLARY 2.%. Let WoaW, o Q> L(Y) be analytic operator
functions with compact spectra. Then W and W, have equal right
(resp. left) spectral pairs <If and only if there exists an invert—.
ible operator E(X) € L(Y) depending analytically on A e § such
that W, (X) = EQO)W,(N) (resp. W (X) = W,(AME(N)) for all X e Q.

Proof. If (C,4) is a right spectral pair for both W, and W,
on § , then, in view of Theorem 2.1, the functions W, and W, are
right divisors of each other on Q. Hence, the operator functions
E and F, which are defined on @\ (2(W ) U Z(Wz)) by E = Wlwz"l and
F = W,W,”', have an analytic continuation to Q. But then these
continuations take invertible values on all of Q.0

Let W(x) = W, (M)W, (X)), A € &, where W, ,¥, : @ » L(Y) are ana-
lytic operator functions with compact spectra. The function W2
(resp. W, ) is called a right (resp. left) spectral divisor of W if
Z(w, ) n Z(W,) = ¢. Note that in this case I(¥W) is the union of the
disjoint compact sets Z(Wl) and Z(Wz), and hence Z(WZ) is a com-
pact and relatively open subset of IZ(W). Conversely, if o is a
compact and relatively open subset of Z(W), then there exists a
right spectral divisor W, of W on Q such that Z(Wz) = ¢g. If Q is
simply connected or the group of invertible elements of L(Y) is
connected, this fact follows from the theory developed in [15]; for
an arbitrary open set we prove this statement at the end of Sect-
ion 5.

To describe spectral divisors, we use the notion of a spect-
ral subspace. A subspace M « X is called a spectral subspace for
an operator 4 : X » X, 1f M is the image of a Riesz projection for
4, i1.e.,

M= Im [—17 f (A-4)~1 da
21t T
for some simple rectifiable contour T such that ' n o(4) = ¢ (in
this case we say that the spectral subspace M corresponds to the

part of o(4) which is inside T).
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THEOREM 2.4. Let W,W, : Q » L(Y) be analytic operator func-
tions with compact spectra, and let (C,A) and (CZ,AZ) be right
spectral pairs for W and W, on Q, respectively. Denote by X (resp.
X,) the space on which A (resp. A,) acts. Then W, is a right spect-
ral divisor of W on @ if and only if there exists a left invert-
tble operator S : X, > X such that
(2.2) ¢s =¢,, AS = s4,,
and Im S is a spectral subspace of the operator A.

THEOREM 2.5. Let W,W, : Q » L(Y) be analytic operator func-
tions with compact spectra, and let (A,B) and (Az’Bz) be left
spectral pairs for W and W, on Q, respectively. Denote by X (resp.
X,) the space on which A4 (resp. A,) acts. Then W, is a left spect-
ral divisor of W on @ If and only if there exists a right invert-
tble operator § : X - X, such that SB = B,, S4 = A,5 and Ker S
is a spectral subspace of the operator A.

We prove‘Theorem 2.4 only (the proof of Theorem 2.5 is anal-
ogous ).

Proof of Theorem 2.4. Let W, be a right spectral divisor of W
on @, and let W = WWz_l be the quotient. Let 6, = (4,,8,,C,3X,,Y)
be a spectral node for ¥, on Q. As in the proof of Theorem 2.1, we

construct two spectral nodes for W on Q: one of the form
(4,B,C3X,Y) and the other one of the form (Z,ﬁ,E;Xlexz,y), where

~ Az * ~
(2.3) 4 = , c={c, =)
1

Then these two spectral nodes are similar (Theorem 1.2 in [201]); so

(2.4) s =T , 48 = 32

for some invertible operator S £, & X -+ X. Define 5 : X, » X

by sz = S(xz,O). Then 5 is left invertible and satisfies Egs
(2.2). From (2.3) it is clear that X, ® (0) is the spectral sub-
space of 4 corresponding to G(Az) = I(wW,) (because o(4,) = Z(Wl)).
Hence, ImS is the spectral subspace of 4 corresponding to the same
set o(4,) = T(W,).

The converse statement is proved by reversing this argument. [
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3. CHARACTERIZATIONS OF SPECTRAL PAIRS

Spectral pairs for analytic operator functions with compact
spectrum were defined above via spectral nodes. However, in the
context of polynomials spectral pairs can be defined independently
of the notion of spectral nodes (see [16,24]). In this section we
give such intrinsic characterizations of spectral pairs of analytic
operator functions.

THEOREM 3.1. A pair (C,A) of operators C : X - ¥ and 4 : X > X
is a right spectral pair on § for an analytic function W : Q » L(Y)
with compact spectrum if and only if the following four conditions
are fulfilled:

(@,) o(4) = Q;
(g,) W(AYC(A-4)"" has an analytic continuation to 9
(Qa> for some (and hence every) bounded Cauchy domain A such

that (Z(W) U o(4)) € A « E = Q, the operator
S : X » c(84,Y), defined by
(sx)(z) = C(xz - i) iz (z ¢ 34A),

ig left invertible;

(q,) every other pair of operators satisfying (& ), (9,) and

(q,) is a restriction of (c,4).

More explicitly, condition (Q“) means the following. Let
(CO,AD) be a pair of operators C0 : Xo > Y3 Ao : X0 > X0 with the
following properties: (1) o(4,) = a3 (ii) the function
W(}\)CU(X-—AO)'1 has an analytic continuation to @; (iii) the oper-

ator S, : X, » C(34,,Y) defined by
(3.1)  (5,@)(z)=C,(5-4,) % (5 ¢ 0,)

is left invertible, where 4 is a bounded Cauchy domain such that
(z(W) U o(4,)) € o, « B, = Q. Then there exists a left invertible
operator T : X, + X such that T = C and A7 = T4,

THEOREM 3.2. 4 pair (A,B) of operators A4 : X » X and B: Y > X
is a left spectral pair on Q for some analytic function W :Q » L(Y)
with compact spectrum if and only if the following four conditions

are fulfilled:

(q.) g(4) « Q;

1
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(QZ') {X=4)"'BW(A) has an analytic continuation to Q;

(Q3') for some (and hence every) bounded Cauchy domain A such
that [Z(W) U O(A)) c Ach <, the operator
S : C(3A,Y) » X, defined by

sF = (omi) [ (A=4)"1BF(A) dr ,
A
is right invertible;

(@,") every other pair of operators satisfying (§,), (§,') and
(Qa') 18 a left restriction of (4,B).

Proof of Theorem 3.1. Let (C,A) be a right spectral pair for
W on Q. Choose B : Y = X such that eo = (4,B,C3X,Y) is a spectral
node for ¥ on Q. Then conditions (@,) and (g,) follow from (P)

and (PZ) of the definition of a spectral ncde. To derive (Qz),
consider the spectral node 8, = (V,R,qQ3;M,Y) described in Theorem
1.1 (assuming that zero is inside A). Let J : X » # be the oper-
ator that establishes the similarity between 6 and 8, Then (by
[20]1, Theorem 1.2) we have Jx = Sx for each x ¢ X. So Ker § = {0}
and Im § = M. Since M is a complemented subspace of ¢(3A,Y) (ef.
[20}, Lemma 3.3), the left invertibility of § is evident. This
proves (Qs).

Next we derive (Qu). Let (CO,AO) be a palr of operators
Co * Xy » Yand 4, : X =+ X with the properties (i), (ii), and
(1ii). It is sufficient to show that (C,s4,) is a right restrict-
ion of (Q,V), where ¢ and V are defined by (1.3) and (1.1), re-
spectively (replacing there A byAO). Let § ©be the operator de-
fined by (3.1). According to properties (i) and (ii) we have
Inm 5, = M (= domain of definition of V). Further one easily veri-
fies that @8, = ¢, and V5, = 5 4. 3ince 5, is left invertible
(property (iii)), we may conclude that (CO,AO) is a right restrict-
ion of (@,V), and (Qq) is proved.

Now conversely, let (C,4) be a pair of operators ¢ : X - ¥
and 4 : X » X which satisfies the conditions (g,), (@,), (g,) and
(@,). From the first part of the proof we know.that the operator
S X > M, defined by (Sz)(z) = ¢(z-4)"'x (zedAr), is left invert-
ible and @S = ¢ and VS = SA. Because of property (QH) for the pair
(C,A), the pair (g,V) is a right restriction of the pair (C,4).
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Hence there exists a left invertible T : M » X such that ¢ = ST
and TV = AT. But then

n n

gvi(sr) = cA"r = qv" , n=0,1,2,

From property (P,) of the spectral node 6, = (V,9,R3;M,Y) we con-
clude that ST = I, and thus T is invertible. Now define B : Y »~ X
by B = TR. Then the node (4,B,C;X,Y) is similar to 8,, and hence
(¢,4) is a right spectral pair. O

Proof of Theorem 3.2. Let (4,B) be a left spectral pair for W
on Q. Let ¢ ¢ X - Y be such that 6 = (4,B,0;X,Y) is a spectral node
for W on Q. Then conditions <Q1) and (Qz') follow from the pro-

perties (P ) and (P,') for 6. To derive (Qa') consider the oper-
ator 7 : C(3A,Y) » X, defined by

(3.2) Tf = L J (A=4)T1BR(A)F()dA

2M1

9A

Since W(X) 1is invertible for all X ¢ 34, it suffices to show that
T is right invertible. Let 6 = (V,R,g3;M,Y) be the spectral node
for Wwon § constructed in Theorem 1.1 (assuming 0 to be inside 4),
and let J : X + M be the operator that establishes the similarity
between 6 and & . Then (by [20], Theorem 1.2)

(Jz)(z) = C(z-4) 'z, z e 3N,

for each z ¢ X. But then we canapply Corollary 1.3 in [20] to show
that Tdx = ¢ (xe X), whichimplies that T is right invertible.
Next, we deduce (Qu'). Let (AD,BD) be a pair of operators
Ayt X, » X, and B : Y »~ X, with the following properties:
(1) o(4,) = 0 3 (ii") (A-AO)‘lBDW(A) has an analytic continuation
to Q3 (iii') for some bounded Cauchy domain A  such that
(2(w) U o(4))) € oy =B = Q, the operator 5, : C(3A,,¥) ~ X , de-
fined by
S,f = (2mi)~} J (=4 )7'B F(X)ax ,
34,
is right invertible. We have to show that (AO,BO) is a left re-
striction of (4,B). Define T, : c(8b,,¥) »~ X, by

1 -
i JaA (A=4 )7'B W(X)F(X)dA
¢
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Property (iii') and the invertibility of the operator W(i) for
each A € 34, imply that T, is right invertible. Consider the oper-
ator G : X » X defined by G = TOJ. Clearly, G is bounded and one
easily checks that G4 = A, G and GB = B . It remains to prove that
¢ is right invertible. To this end we compute GT, where T is de-
fined by (3.2) replacing A by A - We have

142 - -
GTf = (EE?) JaA (A-4 2718 W(L)C(A-4)7 1.
0

-[ J (2-4)"1Bi(z)f(2)dz]| ar
3A0

In the first integral we replace AO by a somewhat smaller Cauchy

domain AO' such that {o(4) U O(AO)} = AO' < AO' < Ao' Further,

using the resolvent identity, we can write GTf as a - B , where

a = (——T]Z J [ J (2=2) 7 (A=A ) TIB H(A)C(A=4) " e
an,t U laa

-BW(z)f(z)dz] axr ,

g = (——7)2 J { J (2=0)7 1 (A=4 )7 B W(A)C(z-4)7
3a,! 34,

-BW(z)f(z)dz] ai
In the expression for a we replace C(A-4)"'B by W(X)"! - H()N),
where H()) depends analytically on X in Q. Next we interchange the
order of integration and use property (ii'). In this way one finds
that o = Tof. Similarly, using Fubini's theorem and property (ii'),
one sees that B = 0. Thus GT = T,- Since T, is right invertible,
the same is true for G and property (@,') is verified.

Conversely, let (4,B) be a pair of operators 4 : X » X and
B : Y » X that satisfy conditions (Ql), (Qz'), (Qa') and (Qu')'
Again consider the spectral node 6§ 6 = (V,R,@3M,Y) for W on Q,
which we have constructed in Theorem 1.1. Since (V,R) is a left
spectral pair, we know from the first part of the proof that the
operator # : M > X defined by

1

= 5 Ja (A=4)"1BW(A)@(x-V)"tda

is right invertible, AH = HV and HR = B. It suffices to show that
H has a left inverse too. Because of property (Qq') for the pair
(4,B) the pair (V,R) is a right restriction of the pair (4,B).
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Hence, there exists a right invertible F : X > M such that F4 = VF
and FB = R. But then

FH = 51? f (A=) RW(M)Q(A-V)~1dA
kIR 3A

Applying Corollary 1.3 in [20], one sees that FH = I, and the
proof is complete. 0O

Let 8 = (V,R,Q;M,Y) be the spectral node fdpw on @ construct-
ed in Theorem 1.1. From the proof of Theorem 3.2 it is not diffi-
cult to see that the operator T : ¢(34,¥Y) » C(3A,Y) defined by

if = E%? JBA (A=V)"1RW(A) £(X)dA

is a projection operator whose image is equal to M. It can be
proved that Ker I is the closure in C(3A,Y) of the linear subspace
N of all f ¢ €(3A,Y) such that

FOA) = g(h)y + WE()R(N) , A e 3A,

where g has an analytic continuation to A and % has an analytic
continuation to £_\A with k(=) = 0

4, STABILITY OF ANALYTIC RiGHT DIVISORS

In this section, as a first application of the theory ot
spectral pairs, we describe the stable analytic right divisors in
terms of certain stable invariant subspaces. As a corollary the
stability of spectral divisors is obtained. Let W : Q@ - L(Y) be an
analytic operator function with compact spectrum, and let (C,4) be
a right spectral pair for W on Q. The space on which 4 acts is
denoted by X. A closed complemented subspace N of X is called a
supporting subspace of the pair (C,4) if ¥ is invariant under 4
and the pair of restricted operators (G|N,A|N) is a right spectral
pair on @ for some analytic operator function W, o+ 8~ L(Y) with
compact spectrum. Since N is complemented, the pair (C|N,A|N) is a
right restriction of the pair (C,A) and hence W, is a right divis-
or of W onq (¢f. Theorem 2.1). The next proposition concerns fthe
converse statement.

PROPOSITION 4.1. Let (C,A) be a right speetral pair for W on
Q, and let W, : Q » L(Y) be a right divisor of W on Q. Then there
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extsts a unique supporting subspace N of the pair (C,4) such
that the pair (CIN,AlN) is a right spectral pair for W, oon Q. This
subspace N is given by

(4.1) N =In1{§%z JBA (=2)71BR(M)C, (A-4)"tar] .

Here (CI,AI) 18 a right spectral pair for W, on Q, the map

B : Y > X is an operator such that (A,B,C;X,Y) is a spectral node
for W on Q,and A is a bounded Cauchy domain such that
{o(a)vo(a)} e b ch e a,

Proof. Let X, be the space on which 4, acts. Since W, is a
right divisor of W, the pair (Cl’Al) is a right restriction of
the pair (¢,4), and so there exists a left invertible map
§ 1 X, » X such that

(4.2) ¢s = ¢, , A5 = SA, .

Obviously, Im S is a supporting subspace of ¥ with respect to

(C,4),and (CILnS’AlhnS) 1s a right spectral pair for ¥, on Q.
Next, let N be a supporting subspace such that (C,N’A(N) is

a right spectral pair for W, on §. Then there exists an invertible

operator 7T : X1 + N such that

(4.3) CTxe = Ciz , ATx = TA,x (x e X)) .

From (4.2) and (4.3) it is clear that ca'sz :‘ClAlnx = ca7x for
each =z e¢ X and n = 0,1,2,... . So, by property (P,) of a spect-
ral node, we have Tx = Sx for z « X . Hence N = Im S, and the
uniqueness of the supporting subspace 1s proved.

Finally, note that ¢, (A-4 )" = ¢(A-4)"'5 , because of (h.2).
But then we can apply [20], Corollary 1.3,to show that

1

g = 2TT

f (A~A>‘IBW(A)CI(A-A1)“dA
A

It follows that N = Im S is given by formula (4,1). O

Note that the previous proposition allows us to speak about
the supporting subspace of (C,4) associated with a given right
divisor.

It will be convenient to state the main results of this
section for funetions with continuous boundary values. So 1in the

remaining part of this section @ stands for a bounded Cauchy domain.
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By F(§) we denote the class of functions { » L(Y) which are ana-
lytic in @, continuous on T and have invertible values on 3. On
F(Q) there is a natural distance, namely

v, = w Il s= max w0 = w0

Ae dfd

Let # ¢ F(Q), and let W, e F(Q) be a right divisor of ¥ on Q.
The right divisor W1 is called stable if for each € > 0 there
exists a § > 0 with the following property: every operator func-
tion ¥ ¢ F(R) with |||W - #,||| <6 has a right divisor ﬁl e F(Q)
such that |||#, - #,|]| < e. Since the map (W,k,) b W(.)W,(.)7" is
continucus with respect to the distance on F(Q), it is clear that
a right divisor W, of ¥ is stable if and only if the factorization
W = W W, is stable in the following sense: given ¢ > 0 there
exists n > 0 such that every operator function ¥ ¢ F(Q) with
I|% - w||| < n admits a factorization W = ¥,#, with factors W,,

i, in F(Q) and

N, = w,lll <es M, - Wl <e

For monic matrix polynomials (see [1], cf. [14]) and for rational
matrix functions (see [2]) stable factorizations have been de-
scribed in terms of so-called stable invariant subspaces. The main
result of this section shows that a similar description also holds
true for analytic operator functions with compact spectrum.

Let 4 be a bounded linear operator on a Banach space X.
Recall (see [1]1) that a closed 4-invariant subspace N of X 1is
called stgble if given & > 0 there exists § > 0 such that every
operator 4 : ¥ + X with ||4 - 4] < & has a closed invariant sub-
space N with gap(ﬁ,N) < ¢. Here gap(N,N) denotes the gap or max-
imal opening between N and N (see [17,211).

For the finite dimensional case (n = dim X < «) the descript-
ion of all stable A-invariant subspaces is given in [2], Section
8.1, and reads as follows. Let A,, ... ,\y be the different eigen-
values of 4 and let X¥,, ... ,Xy be the corresponding spectral

subspaces, i.e.,

X, = {ze X](A—AiI)nx =0}, £ =1, «.. ,T.

An g-invariant subspace N is stable if and only if



Kaashoek, van der Mee and Rodman 809

N=N & ... & N. , where Nj is an arbitrary A-invariant subspace
of Xj whenever dim Ker (A—AjI) = 1, while otherwise Nj = (C) or
Nj = Xj .

THEOREM L.2. Let (C,A4) be a right spectral pair for W e F(Q),
and let W, e F(Q) be a right divisor of W on Q. Then W 1is a
stable right divisor of W if and only if the supporting subspace
N of (C,A) associated with W, is a stable A-invariant subspace.

The proof of Theorem 4.2 is based on the description of divis-
ibility in terms of spectral pairs (Section 2), as well as on some
stability properties of analytic operator functions and their
spectral nodes, which are of independent interest. Namely, small
changes in a spectral node (resp. in an analytic function) imply
small changes in the corresponding function (resp. in the cor-
responding spectral node). We make this statement precise in
Theorems 4.3 and 4.5 below.

THEOREM 4.3. Let (4,B,C;X,Y) be a spectral node fbr W e F(Q).
Then there exist positive constants n and K with the following
property: for every triple of operators i:x-~ X, B:y~ X,
C : X > Y such that

lla - 4l + [lB - Bl + lle=Cll <n,
the quintet (4,B,0;X,Y) is a spectral node for some W e F(Q) and
(4.4) Nw - #lll < x(lla -4 + |8 -Ell + lle-Cll) .

Proof. By Theorem 4.1 in [20] (which holds alsc for analytic
operator functions with continuous boundary values) there exists a

continuous function Z : © - L(¥), which is analytic in @, such

o8]

E(A) =
{ ¢ H(N)

that the operator

o =+ L(X & Y)

is invertible for all A ¢ 2, and

E- () = [ } s Ao«
* W{x)

=l

Clearly, the operator
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20y - [Z-x B }

| ¢ 2(X)
is also invertible for all X e Q provided n is small enough and
(4.5) sup [|E72 () BT 0 = k([ |1A-4] + |IB-8]] + [lIC-cl] ),
Aef
where the positive constant X does not depend on 2,5,5. Define
W(A) by the equality

* *
E(a)"Y = { N I , e q

* W{x)
Again by Theorem 4,1 in [20], (Z,E,E;X,Y) is a spectral node for
(1) on 9; the estimate (4.4) follows from (4.5). O

COROLLARY 4.4. Let (C,4) (resp. (4,B)) be a right (resp.

left) spectral pair for some analytic operator function W e F(Q),
where A : X » X, C : X > Y (resp. 4 + X » X, B+ Y > X), Then a
pair of operators (E,Z) with L 1 X » X, T x -+ Y (resp.(z,g) with
Z:X>X, B : Y~ X)is a right (resp. left) spectral pair for
some analytic operator function ¥ oe F(Q) whenever ||C-c||+ HZ - 4]l

A-all +||B-Bll ) ©s emall enough. In this case W can be

(resp.

chosen so that

lieaxdll k([T=-cli+ IZ-4ll)

IA

(resp.
k(NB-8ll+Z-all) ).,

IA

w = wlll

where the positive constant K is independent of (C,4) (resp. of
(4,8)).

In a certain sense the following result is the converse of
Theorem 4.3. It shows that spectral nodes for close analytic
functions can be chosen close as well.

THEOREM 4.5. Let ) be a bounded Cauchy domain, and let
W, € F(Q) with spectral node (A,,BysCy3X,Y). Then there exist
positive constants n and K with the following property: for
every function W, e F(Q) with [|[W, - W lll < n , there exists
a speetral node (A,,B,,C,3X,Y) of W, with the same state space X
and with the property that

IA

(4.6 Nay-a i+ lE, -5 N+ lie, ol < klilw, - w
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Proof. For simplicity it will be assumed that zero is inside
Q. We shall employ the construction of spectral nodes given in
Theorem 1.1 (which holds alsc for the functions from F(Q), when 3A
is replaced by 23Q).

Let W ,W ¢ F(Q). For k¥ = 0,1 , define the operator

T, ¢ L{c(30,¥)) as follows:
1
(4.7) (1 £)(s) = 2fla) + 5oz jm (v, 00 - 1) p(0aA
£oe c(3n,7) .
As proved in [5] (Theorem 2.3), O(Tk) = Z(Wk) U 3Q
Introduce the Riesz projections
g (A -T,)"1dx k= 0,1
211 k ? 2T 2
k r
where FO is a sultable contour in £ around Z(Wo). Observe that Fo
is also a contour around I(# ) if |[||w, - ¥ ||| is small enough; from
these formulas we obtain (for [[|W, - WJH small enough):
(4.8) Nz, =z Wl +llpy -2 1} = & Mllw, =Wl

where the constant KO does not depend on W1‘ It follows that for
[{|w, -#,||| sufficiently small

(4.9) c(3Q,Y) = KerP, ® ImP, = KerP & ImP .

Let R be the angular operator (see [2],Section 5.1) of ImP,
with respect to P,, that is, R is an operator from tho into
Ker PO such that

Im P, = {Rm-&xix e Im Po}

Define § : ImP » ImP Dby Sz = P x . From (4.9) we see that for
llw, = w, ||l sufficiently small the map 5is invertible and its
inverse is given by S7!'xz = Rx + = . Note that (cf. Lemma I.3.1
in [101)

(4.10a) s~} < (1 - |lp,-p || )"
(4.100) IRl < P, -p il (2 - (iR =P ] )7

In view of Theorem 1.1 and the similarity of spectral nodes for
a given function, we may assume that X = ImP, and that the
operators 4, : Im P, » Im P, , B, + Y > Im P, and CO: Im P, » Y
are given by

0
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(4.11) Ao B To|ImZ% >

1 - -
(4.12) (Boy)(z) = mj (z -w) IWO(w) lydw ,
94
where A is a bounded Cauchy domain such that Z(W ) < A < A cQ;

_ 1
(4.13) Cof = —2—77—1- J f(w)dw .
90
Now replace in the right-hand sides of (4.41), (4.12) and (4.13)
, and 51,

respectively. Then (ZI,EI,EI;ImEE ,Y) is a spectral node for W1 on

the index 0 by 1 and denote these new operators by Zl, B

2 (by Theorem 1.1). Next assume that [[|¥ -W ||| is sufficiently
small, and define

A, = S4,87Y , B, =8B, , ¢

M a=1
1 1 1 - Cls 2

1
where S is as in the previous paragraph. By similarity
(AI,BI,CI;ImZ% »Y) is a spectral node for ¥ . Since both § and
57! are uniformly bounded for |[[|¥ -# ||| sufficiently small, the
inequality (4.6) is easily derived from (4.8), (4.10b) and the
particular form the operators have. [

A closer inspection of the proof of Theorem 4.5 yields ex-
plicit bounds for the numbers n and X, but we shall not go into
this here (ef. [2], Chapter VII).

Proof of Theorem 4.2. Let W, be a stable right divisor of ¥

on Q. Choose spectral nodes 8 = (4,B,0;X,Y) and

8, = (A,B,0;X,Y)for ¥ and W,, respectively. Put
= L -4)-1 4 )-1
§ = 5 fag (A=)~ BW(A)C, (A=4,) 7 dA .

From Proposition 4.1 we know that N = ImS 1is the supporting sub-
space of (C,A) associated with the right divisor W¥,. We have to
prove that N is a stable A-invariant subspace. Take €>0 . Let

4 : ¥ >~ X be a bounded linear operator. By Theorem 4.3 there
exist positive constants n,k such that ||4-Z4]| < n implies that
(1,B,C3X,7Y) is a spectral node for some W ¢ F(Q) with

Ww-wiil < xlld-all .

Now recall that W, is a stable right divisor. So there exists
0<68<e such that ||Z-4]|] <& implies that the corresponding W has
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a right divisor Wl with Hlﬁl— W, lll < e . Next we apply Theorem 4.5.
Assuming that € > 0 has been chosen sufficiently small, there ex-
ists a spectral node 51 = (Zl,EI,EI;X,Y) for ﬁl such that

”A1 _Alll + I[Bl -BIH + ||Cl -CIH s Kllllwl —WIIH’

where K, is a positive constant independent of ﬁl. Put N = ImS R
where

¥ . 1 VBN OOE (aeF 3=t
R Jan (A=Z)T'BW(A)C (A=A )" dx

Then N is the supporting subspace of the pair (C,Z) corresponding
to the right divisor ¥ . In particular, N is a closed A-invariant
subspace. Since § is left invertible, there exists a positive
constant Yy such that gap(N,N) < y||s-3]| for ||s-5| suffic-
iently small. So gap(N,N) can be made as small as we want, and
thus N is a stable 4-invariant subspace.

To prove the converse, assume that N is a stable A-invariant
subspace. Let (A;B,C;X,Y) be a spectral node for W. By Theorem 4.5
there exist n>0 and K> 0 such that [||W=-W]]|] < n implies that W
has a spectral node 8 = (Z,E,E;X,Y) with

(4.14) Na-Zll+llB-Bl +|lc-Cll < xlllw-¥lI| .

We assume that |||W-W||| < n, and we take 8 as above. Take € > 0.
Since N is stable, we can choose n sufficiently small such that

the operator 4 has a closed invariant subspace N with -
(4.15) gap(N,N) < ¢ .

Recall that N is complemented in X. So there exists a projection
P of X onto N. Assuming € to be sufficiently small we may conclude
from (4.15) that

(4.16) ¥ = KerP ® N = KerP & N

In particular, N is complemented in X, and hence the pair
(E|N:Z|ﬁ) is a right restriction of the pair (C,4). Define

S : N > N by setting Sx = Px. According to (4.16) the operator §
is invertible. For n and ¢ sufficiently small the pair
(Cs-1,845"!) is close to the pair (C[N,A|N). To see this one uses
(4.14) and similar arguments as in the proof of Theorem 4.5. By
Corollary 4.4, there exists W e F(Q) so that H|;l— Wl is small
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and the pair (C87',545"!) is a right spectral pair of ﬁl. But then
ﬁl must be a right divisor of ¥ and the proof is complete. O

There is a somewhat other version of Theorem 4.2, which is
useful in connection with spectral divisors. Let ¥ ¢ F(Q), and
let W, ¢ F(Q) be a right divisor of ¥ on Q. We call W, Lipschitz-
stable 1f there exist positive constants n and X with the follow-
ing property: every operator function W ¢ F(Q) with |||W-w|]| < n
has a right divisor W, ¢ F(Q) such that

Mo, - < xlll7-wll -

Similarly, a closed invariant subspace N of the operator 4 : ¥ + X
is called Lipschitz—stable 1if there exist positivé constants n
and XK with the following property: for every operator 4 on X with
[|1Z - 4]] < n there exists a closed A-invariant subspace N of X
such that

gap(N,N) < & [|Z - 4]

Using the same arguments as in the proof of Theorem 4.2 one can
show that Theorem 4.2 remains true if in the statement of this
theorem the words "stable' are replaced by "Lipschitz-stable".

The remark made in the previous paragraph is useful in applic-
ations to spectral divisors. Let (C,4) be a right spectral pair of
W e F(R), and 1let W, e F(9) be a right divisor of ¥ on Q. Accord-
ing to Proposition 2.4 the function ¥, is a spectral divisor if
and only if the supporting subspace N of (C,4) associated with the
divisor W, is a spectral subspace of 4, i.e.,

_ 1 -
(4.17) N = Im {2_76: Jr (A=4)"tdxa| ,

where I' is a suitable contour in @ such that T' 0 o(4) = &
From (U4.17) it is clear that spectral subspaces are Lipschitz-
stable. So we have the following corollary.

COROLLARY 4.6. 4 right spectral divisor of W € F(Q) is
Lipschitz-stable.

It turns out that in the finite dimensional case (i.e.,
dim ¥ < =) the only Lipschitz-stable right divisors of W ¢ F(Q)
are the spectral divisors. To prove this fact note that in this
case one can make a spectral node (4,B,C3;X,Y) for W on Q such that
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dim X < =, But then one can apply the next theorem to get the
desired result.

THEOREM 4.7. Let 4 : X » X be an operatcr acting on a finite
dimensional space X. An A-invariant subspace of X is Lipschitz-
stable if and only if it is a spectral subspace of A.

Proof. In view of the description of the stable invariant
subspaces in the finite dimensional case (given before Theorem
4.2), we have to check that the only Lipschitz-stable invariant
subspaces of the Jordan block

fo 1 0 0
0 0 1 0
J = A
1
0 0 0 0

are the trivial spaces (0) and ¢"*. Here ¢" is considered as a Hil-
bert space with the usual inner product. For € > 0 let

0 1 0 0
¢ 0 1 0
J_ = .
€ ‘.
1

Then the operator Js has n different eigenvalues €15 oo 5 E_

n—l)T ,

which are the n different roots of the equation 2t -e =0

The corresponding eigenvectors are y; = (1’Ei’ cee €S
<z =1, ... ,n. The only Je—invariant subspaces are those spanned
by any subset of {y,, ... ,yn}. For ¥k = 1, ... ,n-1 the only
k-dimensional J-invariant subspace Nk is spanned by the first k
unit coordinate vectors. Denote by Pktheorthogonalprojectiononto

Nk’ and let Pk e denote the orthogonalprojection ontoa k-dimens-
E

ional Je—invariant subspace Nk c (1<k<n-1). For some % we have

E

y; € Nk,e . So

gap (Nk’Nk,e) = 112y - Illlpky Py e ¥ z[

§le"|2}}1.

k k e” =

1K
{(z=7/

H
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n
Now use that lei] = VY& . One finds that for € sufficiently small
gap(Ny, Ny ) = peT
3
On the other hand, HJ-—JEII = ¢. But then it is clear that for

1<ks<n-1 the space Nk is not a Lipschitz-stable invariant sub-
space of J, and thus J does not have any non-trivial Lipschitz-

stable invariant subspaces. [

5. EXTENSION OF DOMAINS

Let W : @ - L(Y) be an analytic operator function with
compact spectrum. Assume Q, is an open set containing Q@ as a sub-
set. For example, if Q is not simply connected, one could take Q,
to be the union of O and all its "holes". In this section we deal
with the following question: Is it true that a spectral pair
{right or left)for W on Q is alsoc a spectral pair for some analytic
operator function on the larger set Q ?

The next theorem shows that the answer is yes.

THEOREM 5.1. If (C,A) (resp. (A,B)) is a right (resp. left)
spectral pair on § for an analytic function W : Q > L(Y) with
compact spectrum, then (C,4) (resp. (4,B)) is also a right (resp.
left) spectral patr on € for an entire function Z : L + L(Y) (also
with compact spectrum).

We have no explicit formula for the entire operator function
appearing in the above theorem. However, in the Hilbert space case
for extensions to bounded and certain unbounded domains @, ex-
plicit formulas for the new operator function with the same
spectral pair may bé given. This will be shown in Part III of the
paper. In its present form Theorem 5.1 is proved by using a result
concerning the triviality of certain analytic cocycles. For the
sake ofcompletenesswe shall state this result (without proof) in
the form it will be needed.

Let GL(Y) be the group of all invertible operators acting in
Y, and let U = {Uj}jeJ
analytic U-coeycele 1s a collection of functions f = (fjk)j,keJ R
where fjk : UjrﬁUk > GL(Y) is analytic and satisfies the follow-

be an open cover of the complex plane ¢. An

ing conditions:
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= fd N

The analytic U-cocycle f is called trivial if there exist analytic
functions g+ Ug > GL(Y) such that fjk(k) = gj(A)(gk(A))",
Ae U.0U

J k

THEOREM 5.2. Let U be an open cover of €. Then every analytic
U-cocycle is trivial.

More general versions of Theorem 5.2 are stated and proved in
[15]; they can be deduced also from general results on infinite
dimensional fibre bundles {(see [4]).

Proof of Theorem 5.1. Let (C,A) be a right spectral pair for

W on Q. Consider the open cover U = {U, ,U,} of ¢, where U, = @
and U, = ¢\Z(W). For <,j = 1,2 define an analytic operator
function fi i : UiIWUj + L(Y) by setting fll(x) = I,
3
- - -1 -
F120) = W), F,, (A) = w(A)7! and f,,(X) = I . For \eU,NU,
the value of fij(x) e GL(Y). Obviously, (f..)

i5°1,4=1,2
ic cocycle. By Theorem 5.2 this cocycle is trivial. So there exist

is an analyt-

analytic functions g, : U, » GL(Y) and g, : U, » GL(Y) such that
fi, = 9192_1 and f, = gzgl_1 Define the entire operator func-
tion Zz : ¢ + L{Y) by setting z()) = gz“(x) for » e U, and

z2(x) = g,~*(M)W(X) for A e Q. Then
(5.1) W(x) = g, (M)z(x) , A e @

Since the operator function gl(k) has invertible wvalues for X ¢ Q,
we may conclude from (5.1) (see Corollary 2.3) that (C,4) is a
right spectral pair for Z on . But since Z(A) is invertible for
all A e ¢\Z(W), it is easily seen that (C,4) is a right spectral
pair for Z on the entire complex plane. The statement about left
spectral pairs is proved analogously. O

COROLLARY 5.3. Let (C,4) be aright spectral pair for an anal-
ytie operator function W : Q -~ L(Y) with compact spectrum. Then
any spectral subspace of A is a supporting subspace of (C,A) on Q.

Proof. Let o be a compact and relatively open subset of the
spectrum of A, and let N be the corresponding spectral subspace.
Let Qu be an open subset of @ such that o < £, and
(Z(w)\a) n @, = 6 . Then (C|ys4]y) is a right spectral pair for W
on &,. Now apply Theorem 5.1. So there exists an entire operator
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function z : ¢ -~ L(Y) such thatv(c L N) is a right spectral pair
for Z on ¢. Put W,(X) = Z(X) for A e Q. Then (CIN,A.N) is also a
spectral pair for W, on Q, and the corollary is proved. [

We do not know whether Corollary 5.3 holds for any comple-~
mented A-invariant subspace N such that o(4 N) c Q@ (and not only
for spectral subspaces, as asserted in Corollary. 5.3). However,
in case Y is a Hilbert space and Q is bounded, this more general
statement holds true indeed. This we shall prove in Part III with-
out using the cocycle theory.

Let W : Q@ » L(Y) be an analytic operator fuention with
compact spectrum. Assume that o is a compact and relatively open
subset of IZ(W). Using Theorems 5.1 and 5.2 one can show that W
has a spectral right‘divisor W, on Q such that Z(WI) = g. Indeed,
according to Theorem 5.1 and Corollary 2.3 the function W admits
the following factorization: '

w(x) = E(X)Z(A) , - X e G,

where E()A) is an invertible operator depending analytically on the
parameter A ¢ Q@ and Z : ¢ » L(Y) is an entire operator function
with Z(w) = £(Z). Put o, = ¢ and g, = L(W)\ o,. Then L(z) is the
disjoint union of the two compact sets o, and o,. Since Z is
entire, Theorem 5.2 implies that there exists a factorization

Z(\) = ZZ(A)ZI(A) for A € Q such that for < = 1,2 the function

Z; ¢ ¢ + L(Y) is an entire operator function with Z(Zi> =0,
It follows that for W we have the following factorization:

(5.2) W) = EOOZ,(MZ,(0) A e Q,

where E, Z_ and Z, are as above. For A e 2 put wl(x) = Zl(k).

Then, obvi;usly, the funection ¥, is a spectral right divisor of
on @ and Z(Wl) = g. On the basis of Theorems 5.1 and 5.2 it is
also possible to obtain factorizations of W(X) that are analogous
to the ones of (5.2), but have E(X) as the middle factor or as the

third factor.

6. THE FINITE CQOLUMN CONDITION
The following theorem is one of the main results of the

present paper.
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THEOREM 6.1. Let (,4 (resp. (4,B)) be a right (resp. left)

spectral pair of an analytic funetion W : @ > L(Y) with compact

spectrum, where A : X + X. Then for m large enough the operator
c
c4

(6.1) PO
CAm—1

i8 left invertible and the operator
(6.2) (8 48 ... A"'B) :¥" - x
is rig