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ANALYTIC OPERATOR FUNCTIONS WITH COMPACT SPECTRUM. 

II. SPECTRAL PAIRS AND FACTORIZATION 

M.A. Kaashoek, C.V.M. van der Mee 1), L. Rodman 2) 

Using the technique introduced in the first part of this 
paper, various problems concerning factorization and divisibility 
of analytic operator functions with compact spectrum are studied 
in terms of spectral pairs of operators. The basic properties of 
such pairs are derived. Using these properties, stability of 
spectral divisors is proved and necessary and sufficient condit- 
ions (in terms of moments of the inverse function) are given in 
order that an analytic operator function with compact spectrum 
admits a generalized Wiener-Hopf factorization. 

INTRODUCTION 

In the study of matrix and operator polynomials divisibility 

and factorization problems can be handled successfully by 

employing pairs of operators which are constructed in such a 

manner that they epitomize in a convenient way the spectral data 

of polynomials concerned. For matrix polynomials and analytic 

matrix functions such pairs, which we shall call spectral pairs 

here, may be defined in terms of eigenvectors and generalized 

eigenvectors (see [ii,18]). To define spectral pairs for 

(infinite dimensional) operator polynomials the companion oper- 

ator matrix can be used. For arbitrary analytic operator funct- 

ions these methods are not available and one has to find other 

ways to define spectral pairs. Here we solve this problem by 

employing the notion of spectral linearization, which has been 

introduced in [20]. 
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2)This paper was written while the third author was a senior 
visiting fellow at the Vrije Universiteit at Amsterdam. 
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Let ~ c ~ be an open set, and let W be an analytic operator 

function on ~ with values in the Banach algebra L(Y) of all 

(bounded linear) operators on the complex Banach space Y. We 

assume that the spectrum of W, i.e., the set 

(0.~) ~(W) = [I ~ ~IW(h) not invertible} 

is compact in ~. Recall (see [20]) that an operator A : X ÷ X 

is a spectral linearization for W on 2 if its spectrum ~(A) is 

a subset of ~ and the function W(I) ~ I X is equivalent on ~ to 

the linear function (hi X - A) ~ Iy The latter condition means 

that 

( 0 . 2 )  W(h) ~ I X  : E ( 1 ) [ ( ~ I X  - A) ~ I y ] F ( ~ )  , I ~ ~ , 

where E(h) : X $ Y + Y ~ X and F(1) : Y ~ X ÷ X ~ Y are in- 

vertible operators which depend analytically on h ( ~, The sym- 

bols I X and I T denote the identity operators on X and Y~ respect- 

ively. Now define C : X ÷ Y by setting 

i [ wF(1)_IT(I _A)-Idk. 
C - 2~i Jr 

Here ~ : Y @ X + Y is the canonical projection onto Y, the map 

T : X ÷ X $ Y is the canonical embedding of X and F is a suitable 

curve in ~ around the spectrum Z(Y). We call the pair (C,A) a 

right spectral pair for W on ~. Left spectral pairs may be 

defined in an analogous way. 

A more abstract, axiomatic definition of spectral pairs will 

be given later in this paper. For a given W right spectral pairs 

exist and are uniquely determined up to similarity, i.e., if 

(CI,A I) and (C2,A 2) are right spectral pairs for W, then there 

exists an invertible operator S such that 

(0.3) O I = CzS , J I : S-IAzS 

We show that with respect to divisibility the spectral pairs 

introduced here have the desired properties. Namely, if (C~,A~) 

and (C2,A 2) are right spectral pairs on g for WI and W2, 

respectively, then W 2 is a right divisor of W~ on ~, i.e., there 

exists an analytic operator function Q : ~ + L(Y) such that 

w~(~) : Q(~)w2(k) , ~ ~ n, 

if and only if A~ has an invariant subspace ~ such that the pair 

of restricted operators (C~I~,A I ~) is similar to the pair 
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(C2,A2) , i.e., formula (0.3) holds true with (CI,A i) replaced by 

(CilN,AIIN). In that case N is called a supporting subspace of W i 

with respect to the pair (Ci,Ai). 

In this paper we prove that for a right spectral pair (C,A~ 
the finite column operator 

C 

CA 
(0.4) . : X ~ ym 

CA m-1 

is left invertible for some positive integer m, which is one of 

our main results. For matrix and operator polynomials this 

property is not difficult to prove; in fact in that case one can 

take m to be the degree of the polynomial. But for arbitrary 

analytic operator functions with compact spectrum the left 

invertibility of the finite column is quite unexpected and this 

property does not hold when the operator function has a non- 

compact spectrum. Here we prove the left invertibility of the 

finite column by using the cocycle theory from [15] (see also 

[4]). In fact, using the cocycle theory we first show that a 

spectral pair of an analytic operator function on ~ is also a 

spectral pair for an entire operator function, and on the basis 

of this extension property we prove that the finite column (0.4) 

is left invertible for some m > 0. 

In part III of this paper we shall see that for the Hilbert 

space case the left invertibility of the finite column (0.4) 

characterizes right spectral pairs, i.e., if C and A are Hilbert 

space operators for which the operator (0.4) is left invertible 

for some m > 0, then there exists an analytic operator function 

which has (C,A) as its spectral pair. We do not know whether 

this property holds in the general Banach space setting. In the 

Hilbert space case it is also possible to give a more direct 

proof of the left invertibility of the finite column (0.4) not 

using the cocycle theory. 

The left invertibility of the finite column (0.4) allows us 
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to make applications to Wiener-Hopf factorization problems. We 

prove that an analytic operator function W : ~ ÷ L(Y) with con- 

tinuous and invertible boundary values admits a right generalized 

Wiener-Hopf factorization with respect to the boundary ~ of ~ if 

and only if there exists a sufficiently large positive integer I 

such that all the operators 

w(x) -I xw(~)-~ 

XW(X) -~ X2W(~) -~ 
i 

2~T i 

hi-iw(k) -i h~W(X) -I 

... ~l-Iw(x)-~ 

... ~lw(~)-~ 

... ~£+i-2w(~)-~ 

dX; 

i = 1, ... ,I-1 

have generalized inverses (cf. [24], where this is proved for 

operator polynomials). We assume here that 3~ is a simple closed 

rectifiable Jordan curve. A similar theorem may be proved for 

left Wiener-Hopf factorization,by using analogous results for 

left spectral pairs. 

This paper consists of 7 sections. We start with a prelim- 

inary section in which we recall from [20] the basic properties of 

spectral linearizations and spectral nodes. In Section 2 we 

introduce spectral pairs and express divisibility in terms of 

restrictions of spectral pairs. Intrinsic characterizations of 

spectral pairs are given in the third section. 

In Section 4 the notion of a supporting subspace is defined. 

As a first application of the theory of spectral pairs we identi- 

fy the stable factorizations in terms of their corresponding sup- 

porting subspaces. A factorization 

(o.5) w(~) = w2(x)w1(x) , x ~ ~ , 

where Yi : ~ ÷ L(Y) , i = 1,2, is analytic and has compact spec- 

trum, is called stable if after a small perturbation of W the new 

function still admits a factorization as in (0.5) and, moreover, 

the new factors are close to the original ones. We show that the 

factorization (0.5) is stable if and only if the corresponding 

supporting subspace is a stable invariant subspace (cf. [i]). As 

a corollary we prove the stability of spectral factorizations, 
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i.e., of factorizations of the type (0.5) with Z(W ) and Z(W 2) 

disjoint. 

At the end of Section 4 we make a supplementary remark con- 

cerning the description given in [I] of stable invariant subspaces 

of finite dimensional operators. We characterize the spectral 

subspaces of an operator A : X ÷ X acting on a finite dimensional 

space X as those A-invariant subspaces N of X that are stable in 

the following strong sense: there exist positive constants ~ and 

K such that every operator A : X ÷ X with IIA - ~II < ~ has an 

invariant subspace N such that 

gap(N,N) s K IIA - ~II" 

In Section 5 we prove that a spectral pair (right or left) of 

an analytic operator function on some open set ~ is also a spec- 

tral pair of an entire operator function. In Section 6 for some 

m > 0 the left invertibility of the finite column (0.4) is proved. 

In the last section the applications to Wiener-Hopf factorization 

are made. 

Throughout the paper the letters X and y (with or without 

indices) designate complex Banach spaces. By ~ we denote an open 

set in the complex plane @ (if not stated otherwise). The sym- 

bol ~A denotes the boundary of a set A c ~. The Riemann sphere 

U {~] is denoted £ . Given a compact set K m ¢, the Banach 

space of all continuous y-valued functions on K with the supremum 

norm is denoted C(K,Y). 

Acknowledgement: We are grateful to I. Gohberg for several 

useful and stimulating discussions on the subject of this paper. 

1. PRELIMINARIES 

In this section we recall from [20] the definition and some 

basic properties of spectral nodes. Let W : ~ ÷ L(Y) be an ana- 

lytic operator function with compact spectrum E(W). A quintet 

0 : (A,B,C;X,Y) is called a spectral node for W on ~ if X is a 

Banach space, 

A : X÷ X , B : Y÷ X , C : X÷ y 

are bounded linear operators and the following conditions are 
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(P) a(A) c 2 ; 
I 

(P2) W(h) -i - C(II - A)-IB has an analytic extension to 2; 

(P3) W(~)C(hI-A) -I has an analytic extension to 2; 

(p4) n ~ j=0 Ker CA j (0) 

A quintet (A~B~O~X,Y) of spaces and operators as above is a 

spectral node for W on ~ if and only if (PI), (P2) and the follow- 

ing conditions (P~), (P~) are satisfied: 

(P~) (II - A)-IBW(1) has an analytic extension to 9; 

(P~) span Uj= 0 Im AJB = X. 

The operator A will be referred to as the main operator of the 

spectral node 0. 

The following explicit construction of a spectral node ([20], 

Theorem 3.1) will be used in the sequel. We assume for simplicity 

that zero is inside 2. 

THEOREM 1.1 Let W : ~ ÷ L(Y) be an analytic operator func- 

tion with compact spectrum Z(W). Suppose that A is a bounded 

Cauchy domain containing 0 such "that Z(W) c A c ~ c 2, and let 

M be the set of all continuous Y-valued functions f on the bound- 

ary ~A which admit an analytic continuation to a Y-valued func- 

tion in ~ \2(W) vanishing at ~, while W(h)f(1) has an analytic 

continuation to 2. The set M endowed with the supremum norm is a 

Banach space. Put 

(1.1) V:: M ÷ M, (Vf)(z) : zf(z) - (2~i)-t[ f(m) d~ 
J ~A 

i I W(w)-~ ( 1 . 2 )  R : Y + M, ( R y ) ( z )  : ~ F z - w y dm ; 

( 1 . 3 )  Q : M ÷ Y ,  Qf = ( 2 ~ i ) - 1 {  f ( ~ )  d~ 
r 

J~A 

In the definition of R the contour F is the boundary of a bounded 

Cauchy domain A' such that Z(W) c A' c -AT c A. Then (V,R,Q;M,Y) 

is a spectral node for W on ~. 

The space M of Theorem 1.1 can be described as follows (see 

[5]; also [20], Lemma 3.3). Consider the bounded linear operator 

T : C(~A,Y) ÷ C(~A,Y) given by the formula 
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1 [ [w(~)  - .r]f(~)d~ ( T f ) ( z )  = z f ( z )  + -~w7 _3A 

Then q(T) : Z(W) U ~A , and 

[ 1 IF ( t i  _ T ) - id ) , ]  :. M : Im 2-~ 

where the contour F is defined as in Theorem i.i . Moreover, 

v : TIM 

For a given analytic operator function W : ~ ÷ L(Y) with 

compact spectrum spectral nodes exist (as shown in Theorem 1.1) 

and are uniquely determined up to similarity (see [20], Theorem 

1.2). Here similarity means the following: Two spectral nodes 

0 i -(Ai,Bi,Ci;Xi,Y) , i = 1,2 , are similar if there exists an in- 

vertible operator S : X I ÷ X 2 such that A I = S-IA2S , 

B I = S-IB2 and C I = C2S . In particular the main operator of a 

spectral node for a given W is defined uniquely up to similarity; 

moreover, the spectrum of the main operator coincides with Z(W). 

The connection between linearization (cf. [5,22,5]) and spectral 
e 

nodes is explained and used in [20] to solve problems concerning 

equivalence and similarity of analytic operator functions. 

The notion of a spectral node is a natural generalization of 

the notions of standard triples and F-spectral triples for oper- 

ator polynomials which have been introduced and studied in [11,12, 

15,16,24]. On the other hand, spectral nodes are related to real- 

izations for analytic operator functions (cf. [2], Section 2.5; 

also [9], Section III.l). 

2. DIVISIBILITY AND SPECTRAL PAIRS 

In this section we express divisibility in terms of restrict- 

ions of spectral pairs. Particular attention isgiven to spectral 

divisors. 

Let W : ~ ÷ L(Y) be an analytic operator function with 

compact spectrum Z(W). A pair (C,A) (resp. (A,B)) of operators 

C : X ÷ Y and A : X ~ X (resp. A : X ÷ X and B : Y + X) is called 

a right (resp. left) spectral pair for W on ~ if there exists an 

operator B : Y + X (resp. C : X ÷ Y) such that @ = (A,B,C;X,Y) is 

a spectral node for W on ~. The formal definition of a right 

spectral pair which is given here coincides with the one employed 
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in Introduction, which is evident from the connections between 

spectral nodes and spectral linearizations (cf. [20], Theorem 5.i). 

Two right (resp• left) spectral pairs (C1,A I) and (Cz,A 2) 

(resp. (Ai,B I) and (A2,B2)) are called similar if CiS : Cz, 

: S-IA S) for some invertible A I = SA2S -I (resp. SB I : B2' AI 2 

operator S. From what we know about spectral nodes it is clear 

that a right (resp. left) spectral pair for W on ~ exists and is 

unique up to similarity. 

To describe divisibility in terms of spectral pairs we need a 

notion of restriction. For i : 1,2 let (Ci,A i) be a pair of 

operators A. : X. + X. and C. : X. ÷ Y. The pair (C2,A z) is 
$ $ $ T $ 

called a right restriction of (CI,A I) if there exists a left in- 

vertible operator S : X z ÷ X I such that CIS = C2, AIS : SA 2. Ana- 

• : X ÷ X• and logously, let (Ai,B i) be a pair of operators A s i 

• : Y ÷ X i (i : 1,2). We call (Az,B 2) a left restriction of B 

(Ai,B i ) if there exists a right invertible operator S : X i ÷ X z 

such that SB I = B2, SA I = A2S. The notion of restriction for pairs 

of operators acting between finite dimensional spaces has been 

introduced in [7] and further studied in [6]. 

The next theorems give a full description of the connection 

between divisibility and spectral pairs. We adopt the following 

definition of divisibility: an analytic function W~ : ~ ÷ L(Y) 

with compact spectrum is calledaright (left) divisor of an analytic 

function W: ~÷L(Y) on~ if there exists an analytic functionQ : ~÷L(Y) 

such that W(1) : Q(h)wi(x) (resp. W(k) : Wi(1)Q(k)] for all I ~ ~. 

In that case Q necessarily has a compact spectrum. 

THEOREM 2.i. For i : 2,2, let W i : ~ ÷ L(Y) be an analytic 

operator function with compact spectrum and let (Ci,A i) be a right 

spectral pair for ~. on ~. Then the pair (C2,A2) is a right re- 

striction of the pair (Ci,A i) if and only if the operator function 

W 2 is a right divisor of the operator function W i (on ~). 

THEOREM 2.2 For i = i, 2, let W i : ~ ÷ L(Y) be an analytic 

operator function with compact spectum, and let (Ai, Bi) be a left 

spectral pair for W i on ~. Then the pair (Az,B2) ,is a left re- 

striction of the pair (A2, B 2) if and only if the operator function 

W 2 is a left divisor of the operator function W i (on ~). 
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In the context of polynomials results analogous to Theorems 

2.1 and 2.2 have been obtained in [16,18,2~], and in the context 

of analytic matrix functions results of this type were obtained in 

[19,23]. Note, however, that spectral pairs for polynomials are 

defined not in terms of spectral nodes but intrinsically in terms 

of maximality. In the next section we provide an intrinsic charac- 

terization of spectral pairs for analytic operator functions. 

We shall prove Theorem 2.1 only (Theorem 2.2 can be proved by 

an analogous argument). 

Proof of Theorem 2.1. Let B. : Y ~ X. be the (unique) oper- 

ator such that 0 i : (Ai,Bi,gi;Xi,Y) is a spectral node for W i on ~, 

i : 1,2. Suppose (Cz,Al) is a right restriction of (C:,AI). Then 

there exists a left invertible operator S : X ÷ X such that 
2 1 

(2.1) C:S = 02, A:S = SA z 

So for h ~ ~\{E(W I) U E(WI)} we have: 

w~(~)wl(~)-: = 

: w:(~)[w~(~)-: - C:(~-AI)-:B ] + W:(~)a:(~-A )-:SB 
By Property (PI) for G 2 and Property (P3) for 8:, it is clear that 

W:Wz-: has an analytic continuation to ~. So W 2 is a right divisor 

of W: on ~. 

Conversely, let W 2 be a right divisor of W l on 9, and let 

H = W:W2 -l, which is an analytic operator funtion on Q. Since 

E(W i) and Z(W 2) are compact subsets of ~, clearly E(H) = 

= {I c ~IH(h) is not invertible} is compact too. Let 8 = 
0 

= (Ao,Bo,Co;Xo,Y) be a spectral node for H on ~. Using Theorem 2.2 

in [20] we construct a spectral node 8 = (A,B,O;X,Y) for W 1 : HW z 

on ~ from the spectral nodes e o and 82 We have: I~z BzC~] 
X : X 2 @ X o ,  A : , C : ( C  2 Q) , 

Ao) 

where 

C 

Q = (2~i)  -1 | {Wl(h)- :  -Cz(h-A )-:Bz}C ( t - A ) - :  dX 
A' 2 0 O ' 

and A is a bounded Cauchy domain such that (Z(W I) U Z(Wz) ] c A c 

c ~ c 2. Usingthe uniqueness of spectral nodes (Theorem 1.2 in [20]), 

we conclu.de thatthe spectral nodes 0 and e 1 for W: on2 are similar. 
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So there exists an invertible operator S : X ~ X ÷ X such that 
2 g i 

+ X by Sx = S(xz,0) Then ~A = AIS and CIS = C Define S : X2 i z " 

S is left invertible and satisfies the identities (2.i). Hence 

(C2,A 2) is a left restriction of (01,AI). 

COROLLARY 2.3. Let W ,W : 9 ÷ L(Y) be analytic operator 
1 2 

functions with compact spectra. Then W I and W 2 have equal right 

(resp. left)spectral pairs if and only if there exists an invert- 

ible operator E(h) ~ L(Y) depending analytically on I ~ ~ such 

that WI(Â) = E(1)Wz(X) (resp. W1(h) : W2(h)E(X) ] for all I c ~. 

Proof. If (C,A) is a right spectral pair for both W I and W z 

on ~ , then, in view of Theorem 2.1, the functions W I and W 2 are 

right divisors of each other on ~. Hence, the operator functions 

E and F, which are defined on ~\(Z(W I) U Z(W2) ) by E : W W--i and 
12 

F = WzVI -l, have an analytic continuation to ~. But then these 

continuations take invertible values on all of ~. 

Let W(h) : WI(X)W2(X) , I ~ ~, where WI,W z : ~ ÷ L(Y) are ana- 

lytic operator functions with compact spectra. The function W 
2 

(resp. W l ) is called a right (resp. left) spectral divisor of W if 

Z(W I) N Z(W z) : ¢. Note that in this case Z(W) is the union of the 

disjoint compact sets Z(W I ) and Z(Wz) , and hence Z(W 2) is a com- 

pact and relatively open subset of Z(W). Conversely, if o is a 

compact and relatively open subset of Z(W), then there exists a 

right spectral divisor W z of W on ~ such that Z(W z) : a. If ~ is 

simply connected or the group of invertible elements of L(Y) is 

connected, this fact follows from the theory developed in [15]; for 

an arbitrary open set we prove this statement at the end of Sect- 

ion 5. 

To describe spectral divisors, we use the notion of a spect- 

ral subspace. A subspace M ~ X is called a spectral subspace for 

an operator A : X ÷ X, if M is the image of a Riesz projection for 

A, i.e., 

M : Im ~ F 

for some simple rectifiable contour F such that F N a(A) = ¢ (in 

this case we say that the spectral subspace M corresponds to the 

part of a(A) which is inside r). 
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THEOREM 2.4. Let W,W 2 : ~ ÷ L(Y) be analytic operator func- 

tions with compact spectra, and let (C,A) and (C2,A 2) be right 

spectral pairs for W and W 2 on ~, respectively. Denote by X (resp. 

X z) the space on which A (resp. A z) acts. Then W 2 is a right spect- 

ral divisor of W on ~ if and only if there exists a left invert- 

ible operator S : X + X such that 
2 

(2.2) CS : C2, AS : SA2, 

and Im S is a spectral subspace of the operator A. 

THEOREM 2.5. Let W,W 2 : ~ ÷ L(Y) be analytic operator func- 

tions with compact spectra, and let (A,B) and (Az,B2) be left 

spectral pairs for W and W 2 on ~, respectively. Denote by X (resp. 

X 2) the space on which A (resp. A 2) acts. Then W 2 is a left spect- 

ral divisor of W on ~ if and only if there exists a right invert- 

ible operator S : X + X z such that SB : B2, SA : AzS and Ker S 

is a spectral subspace of the operator A. 

We prove Theorem 2.4 only (the proof of Theorem 2.5 is anal- 

ogous). 

Proof of Theorem 2.4. Let W 2 be a right spectral divisor of W 

-i be the quotient. Let 8 : (A ,BI,CI;XI,Y) on ~, and let W I : WW 2 i i 

be a spectral node for W I on ~. As in the proof of Theorem 2.i, we 

construct two spectral nodes for W on ~: one of the form 

(A,B,C;X,Y) and the other one of the form (A,B,~;XI@X2,Y), where 

(2.3) 7 : , ? : (c 2 .] 
A I 

Then these two spectral nodes are similar (Theorem 1.2 in [20]); so 

(2.4) a~ : ~ , AZ : Z7 

÷ X Define S : X ÷ X for some invertible operator ~ : X2 ~ XI " 2 

by Sx : ~(x ,0). Then S is left invertible and satisfies Eqs 
z 2 

(2.2). From (2.3) it is clear that X 2 @ (0) is the spectral sub- 

space of ~ corresponding to o(A2) : Z(W2) (because o(A1) : Z(WI) ) . 

Hence, Ims is the spectral subspace of A corresponding to the same 

set ~(A2) : Z(W2). 

The converse statement is proved by reversing this argument. D 
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3. CHARACTERIZATIONS OF SPECTRAL PAIRS 

Spectral pairs for analytic operator functions with compact 

spectrum were defined above via spectral nodes. However, in the 

context of polynomials spectral pairs can be defined independently 

of the notion of spectral nodes (see [16,24]). In this section we 

give such intrinsic characterizations of spectral pairs of analytic 

operator functions. 

THEOREM 3.1. A pair (C,A) of operators C : X ÷ Y and A : X ÷ X 

is a right spectral pair on ~ for an analytic function W : ~ ÷ L(Y) 

with compact spectrum if and only if the following four conditions 

are fulfilled: 

(Q~ o ( A )  c ~; 

(Q2 W(h)C(h-A) -I has an analytic continuation to ~; 

(Q for some (and hence every) bounded Cauchy domain A such 
3 

that (2(W) U q(A) 1 c A c ~ c ~, the operator 

S : X ÷ C(SA, Y), defined by 

<Sx)<z) = a(z-~>-~x (z ~ ~A), 

is left invertible; 

(Q4 every other pair of operators satisfying (Ql), (Q2) and 

(Q3) is a restriction of (a,A). 

More explicitly, condition (Q4) means the following. Let 

÷ Y; A : X ÷ X with the (Co,A o) be a pair of operators C O : X0 o o o 

following properties: (i) o(A 0) c ~; (ii) the function 

W(X)Co(h-Ao) -I has an analytic continuation to ~; (iii) the oper- 

ator S O : X 0 ÷ C(~A0,Y) defined by 

(3.1) (Sox)(z) : Co(Z-Ao)-Ix (z ~ ~o) 

is left invertible, where A 0 is a bounded Cauchy domain such that 

(Z(W) U o(A0) ) c A ° c A-~ c ~. Then there exists a left invertible 

operator T : X 0 ÷ X such that CT = C o and AT = TA o 

THEOREM 3.2. A pair (A,B) of operators A : X ÷ X and B ; Y ÷ X 

is a left spectral pair on ~ for some analytic function W : ~ ÷ L(Y) 

with compact spectrum if and only if the following four conditions 

are fulfilled: 

(QI) ~(A) c ~; 
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(Q2 Y (h-A)-IBW(h) has an analytic continuation to ~; 

(Q3 T for some (and hence every) bounded Cauchy domain A such 

that (E(W) U o(AI 1 c A c ~ c ~, the operator 

S : C(gA,Y) ÷ X, defined by 

= (2zi)-I I (h-A)-iBf(hl dh Sf 
J ~A 

is right invertible; 

(Q 4' every other pair of operators satisfying (QI), (Q2') and 

(Q3') is a left restriction of (A,B). 

Proof of Theorem 3.1. Let (C,A) be a right spectral pair for 

W on ~. Choose B : Y ÷ X such that @0 = (A,B,C;X,Y) is a spectral 

node for W on ~. Then conditions (QI) and (Q2) follow from (PI) 

and (P2) of the definition of a spectral node. To derive (Q3), 

consider the spectral node 00 = (V,R,Q;M,Y) described in Theorem 

1.1 (assuming that zero is inside A). Let J : X + M be the oper- 

ator that establishes the similarity between e and 00. Then (by 

[20], Theorem 1.2) we have Jx = Sx for each x c X. So Ker S = {0} 

and Im S = M. Since M is a complemented subspace of C(gA,Y) (cf. 

[20], Lemma 3.3),the left invertibility of S is evident. This 

proves (Q). 
3 

Next we derive (Q4). Let (C0,A 0) be a pair of operators 

C o : X o ~ Y and A o : X o ÷ X o with the properties (i), (ii), and 

(iii). It is sufficient to show that (Co,A o) is a right restrict- 

ion of (Q,V), where Q and V are defined by (1.3) and (1.1), re- 

spectively (replacing there A by A0). Let S be the operator de- 

fined by (3.1). According to properties (i) and (ii) we have 

Im S O c M (= domain of definition of V). Further one easily veri- 

fies that QS ° = C o and VS o = SeA. Since S 0 is left invertible 

(property (iii)),we may conclude that (Co,A o) is a right restrict- 

ion of (Q,V), and (Q4) is proved. 

Now conversely, let (C,A) be a pair of operators C : X ÷ Y 

and A : X + X which satisfies the conditions (Ql), (Qz), (Q~) and 

(Q4). From the first part of the proof we know, that the operator 

S : X ÷ M, defined by (Sx)(z) = C(z-A)-ix (z ~ ~a), is left invert- 

ible and QS = C and VS = SA. Because of property (Q~) for the pair 

(C,A), the pair (Q,V) is a right restriction of the pair (C,A). 
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Hence there exists a left invertible T : M + X such that Q = ST 

and TV = AT. But then 

Qvn(sT) = CAnT = QV n n = 0,1,2, • .. , 

From property (P4) of the spectral node 0 ° = (V,Q,R;M,Y) we con- 

clude that ST = I, and thus T is invertible. Now define B : Y ÷ X 

by B = TR. Then the node (A,B,C;X,Y) is similar to 80, and hence 

(C,A) is a right spectral pair. 

Proof of Theorem 3.2. Let (A,B) be a left spectral pair for W 

on ~. Let C : X + Y be such that @ = (A,B,C;X,Y) is a spectral node 

for W on ~. Then conditions (QI) and (Q2') follow from the pro- 

perties (P I) and (P3') for @. To derive (Q3') consider the oper- 

ator T : C(~A,Y) + X, defined by 

i I (k-A)-IBW(h)f(h)dh ( 3 . 2 )  Tf = ~ ~A D 

S i n c e  W(h) i s  i n v e r t i b l e  f o r  a l l  k ~ 8&, i t  s u f f i c e s  t o  show t h a t  

T is right invertible. Let @0 = (V,R,Q;M,Y) be the spectral node 

for Won ~ constructed in Theorem 1.1 (assuming 0 to be inside A), 

and let J : X ÷ M be the operator that establishes the similarity 

between 8 and % 0 Then (by [20], Theorem 1.2) 

( J x ) ( z )  = a ( z - A ) - ~ x ,  z ~ ~a , 

for each x c X. But then we can apply Corollary 1.3 in [20] to show 

that TJx : x (x ~ X), which implies that T is right invertible. 

Next, we deduce (Q4'). Let (Ao,B o) be a pair of operators 

A 0 : X o ÷ X 0 and B o : Y + X 0 with the following properties: 

(i) ~(A 0) c ~ ; (ii') (I-Ao)-IBoW(k) has an analytic continuation 

to ~; (iii') for some bounded Cauchy domain A 0 such that 

(Z(W) U q(Ao) ) c A 0 c ~ c ~, the operator S o : C(~A0,%) ÷ X , de- 

fined by 

= (2~ i ) - i  I (k-A Sof )-iS0f(1)dl 
3A ° o 

is right invertible. We have to show that (Ao,B o) is a left re- 

striction of (A,B). Define T o : C(~Ao,Y) ÷ X 0 by 

1 I ( ~ - A  Tof = 2~i .~A o)-iBoW(k)f(h)dh 
0 
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Property (iii') and the invertibility of the operator W(h) for 

each h c 8A 0 imply that T o is right invertible. Consider the oper- 

ator G : X + X defined by G = T J. Clearly, G is bounded and one 
0 0 

easily checks that GA = AoG and GB = B o. It remains to prove that 

G is right invertible. To this end we compute GT, where T is de- 

fined by (3.2) replacing A by A We have 
0 

: ( X - A ) - ' S o W ( X ) C ( X - A ) - ~ .  
8A o 

o . [ ; (z_A)-lBW(z)f(z)dz] dh 

In the first integral we replace A by a somewhat smaller Cauchy 
0 

domain A 0' such that {~(A) U a(A0)} c A 0' c "A0' ~ A0 Further, 

using the resolvent identity, we can write Gff as a - 6 , where 

i 2f If 
3A o ' 8A 

12f f 
~A ' [ ~A 

0 

(z-~) -I h-Ao)-IBoW(h)C(h-A)-I. 

• BW(z)f(z)dz] dl , 

(z-h) -I h-Ao)-IBoW(X)C(z-A)-I. 

• BW(z)f(z)dz] dh . 

In the expression for a we replace C(h-A)-IB by W(h) -I - H(I), 

where H(I) depends analytically on ~ in 9. Next we interchange the 

order of integration and use property (ii'). In this way one finds 

that a = Tof. Similarly, using Fubini's theorem and property (ii'), 

one sees that B = 0. Thus GT = T o . Since T o is right invertible, 

the same is true for G and property (@4') is verified. 

Conversely, let (A,B) be a pair of operators A : X ÷ X and 

') and (@4') B : Y ÷ X that satisfy conditions (@i), (Q2'), (Q3 

Again consider the spectral node e 0 : (V,R,@;M,Y) for W on ~, 

which we have constructed in Theorem i.i. Since (V,R) is a left 

spectral pair, we know from the first part of the proof that the 

operator H : M ÷ X defined by 

i I (X-A)-IBW(X)Q(X-V)-Idh 

is right invertible, AH = HV and HR = B. it suffices to show that 

H has a left inverse too. Because of property (@4') for the pair 

(A,B) the pair (V,R) is a right restriction of the pair (A,B). 
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Hence, there exists a right invertible F : X ÷ M such that FJ : ZF 

and FB : R. But then 

i I (h-V)-IRW(X)Q(X-V)-IdX FH : ~ ~A 

Applying Corollary 1.3 in [20], one sees that FH = I, and the 

proof is complete. D 

Let 80 = (V,R,Q;M,Y) be the spectral node for W on ~ construct- 

ed in Theorem i.i. From the proof of Theorem 3.2 it is not diffi- 

cult to see that the operator H : C(~A,Y) ÷ C(~A,Y) defined by 

i I (h-V)-IRW(k)f(h)dh 
Hf - 2~i ~A 

is a projection operator whose image is equal to M. It can be 

proved that Ker [ is the closure in C(~A,Z) of the linear subspace 

N of all f (C(~A,Y) such that 

f(l) : g(l) + W-l(l)h(l) , h E za , 
i 

where g has an analytic continuation to A and h has an analytic 

continuation to ~ \Z with h(-) : 0 

4. STABILITY OF ANALYTIC RIGHT DIVISORS 

In this section, as a first application of the theory or 

spectral pairs, we describe the stable analytic right divisors in 

terms of certain stable invariant subspaces. As a corollary the 

stability of spectral divisors is obtained. Let W : ~ ÷ L(Y) be an 

analytic operator function with compact spectrum, and let (C,A) be 

a right spectral pair for W on ~. The space on which A acts is 

denoted by X. A closed complemented subspace N of X is called a 

supporting subspace of the pair (C~A) if N is invariant under A 

and the pair of restricted operators (CIN,AIN) is a right spectral 

pair on ~ for some analytic operator function W I : ~ ÷ L(Y) with 

compact spectrum. Since N is complemented, the pair (CIN,AIN) is a 

right restriction of the pair (C,A) and hence W~ is a right divis- 

or of W on~ (cf. Theorem 2.1). The next proposition concerns the 

converse statement. 

PROPOSITION 4.i. Let (C,A) be a r~ght spectral pair for W on 

~, and let W I : ~ ÷ L(Y) be a right divisor of W on ~. Then there 
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exists a unique supporting subspace N of the pair (C,A) such 

that the pair (CIN, AIN ) is a right spectral pair for W I on ~. This 

subspace N is given by 

[ i ; (~-A)-IBW(h)CI(~-AI)-Idh 1 (4.1) N =Im ~ ~A 

Here (CI,AI) is a right spectral pair for W~ on ~, the map 

B : Y ÷ X is an operator such that (A,B,C;X,Y) is a spectral node 

for W on ~, and A is a bounded Cauchy domain such that 

i 

Proof. Let X I be the space on which A I acts. Since W~ is a 

right divisor of W, the pair (CI,AI) is a right restriction of 

the pair (C,A), and so there exists a left invertible map 

S : X~ ÷ X such that 

(4.2) CS = C i , AS = SA I 

Obviously, Im S is a supporting subspace of W with respect to 

(C,A),and (CIlms,AIImS) is a right spectral pair for W~ on ~. 

Next, let N be a supporting subspace such that (CIN,AIM) is 

a right spectral pair for W~ on ~. Then there exists an invertible 

operator T : X ÷ N such that 
1 

(4.3) CTx = CIx , ATx = TAIx (xc XI) 

From (4.2) and (4.3) it is clear that CAnSx = CiAinx = CAnTx for 

each x e X and n = 0,1,2, .... So, by property (P4) of a spect- 

ral node, we have Tx = Sx for x e X Hence N = Im S, and the 

uniqueness of the supporting subspace is proved. 

Finally, note that C1(h-A~)-l = C(h-A)-IS , because of (4.2)° 

But then we can apply [20], Corollary 1.3, to show that 

s : 2~il I~a (~-A)-~BW(~)C~(~-A~)-~d~ 

It follows that N = Im S is given by formula (4.1). 

Note that the previous proposition allows us to speak about 

the supporting subspace of (C,A) associated with a given right 

divisor. 

It will be convenient to state the main results of this 

section for functions with continuous boundary values. So in the 

remaining part of this section ~ stands for abounded Cauchy domain. 



Kaashoek, van der Mee and Rodman 808 

By F(~) we denote the class of functions ~ ÷ L(Y) which are ana- 

lytic in ~, continuous on ~ and have invertible values on ~. On 

F(~) there is a natural distance, namely 

lllw  - w lll := max llw ( > - w < >ll 

Let W ~ F(~), and let W I c F(~) be a right divisor of W on ~. 

The right divisor W is called stable if for each ~ > 0 there 
i 

exists a ~ > 0 with the following property: every operator func- 

tion W ~ F(~) with Ill ~ - WIIII < ~ has a right divisor WI ~ F(~) 

such that II]WI - WIIII < e. Since the map (W,W I) ~ W(.)WI(.) -I is 

continuous with respect to the distance on F(~), it is clear that 

a right divisor W I of W is stable if and only if the factorization 

W = WIW 2 is stable in the following sense: given ~ > 0 there 

exists n > 0 such that every operator function W c F(~) with 

IIIW - WIII < q admits a factorization W = W2W I with factors WI, 

W2 in F(~) and 

lll 2 - w2111 < , - w lll < 

For monic matrix polynomials (see [i], cf. [14]) and for rational 

matrix functions (see [2]) stable factorizations have been de- 

scribed in terms of so-called stable invariant subspaces. The main 

result of this section shows that a similar description also holds 

true for analytic operator functions with compact spectrum. 

Let A be a bounded linear operator on a Banach space X. 

Recall (see [i]) that a closed A-invariant subspace N of X is 

called stable if given e > 0 there exists ~ > 0 such that every 

operator ~ : X ÷ X with II~ - All < 6 has a closed invariant sub- 

space N with gap(N,N) < ~. Here gap(N,N) denotes the gap or max- 

imal opening between N and N (see [17,21]). 

For the finite dimensional case (n = dim X < ~) the descript- 

ion of all stable A-invariant subspaces is given in [2], Section 

8.l, and reads as follows. Let ~I, "'" ,hr be the different eigen- 

values of A and let X~, .... ,X r be the corresponding spectral 

subspaces, i.e., 

• = {x ~ XI(A-hiI)nx = 0} , i = 1, .... r . X t 

An A-invariant subspace N is stable if and only if 
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• is an arbitrary A-invariant subspace N : N I ~ ... ~ N r , where N O 

of Xj whenever dim Ker (A-IjI) = i, while otherwise Nj = (0) or 

N. = X. 
J J 

THEOREM 4.2. Let (C,A) be a right spectral pair for W ~ F(~), 

and let W I ~ F(a) be a right divisor of W on ~. Then W is a 

stable right divisor of W if and only if the supporting subspace 

N of (C,A) associated with W I is a stable A-invariant subspace. 

The proof of Theorem 4.2 is based on the description of divis- 

ibility in terms of spectral pairs (Section 2), as well as on some 

stability properties of analytic operator functions and their 

spectral nodes, which are of independent interest. Namely, small 

changes in a spectral node (resp. in an analytic function) imply 

small changes in the corresponding function (resp. in the cor- 

responding spectral node). We make this statement precise in 

Theorems 4.3 and 4.5 below. 

THEOREM 4.3. Let (A,B,C;X,Y) be a spectral node for W ~ F(~). 

Then there exist positive constants n and K with the following 

property: for every triple of operators ~ • X ÷ X, B • Y ÷ X, 

: X + Y such that 

II A -311 + II B -BII + II C -Eli < q , 

the quintet (A,B,C;X,Y) is a spectral node for some W ~ F(~) and 

(4.4) III W - will < K( IIA - All + II B - BII + II C - ~II ] 

Proof. By Theorem 4.1 in [20] (which holds also for analytic 

operator functions with continuous boundary values) there exists a 

continuous function H : ~ ÷ L(Y), which is analytic in ~, such 

that the operator 

F(x) : [ c s(x) : 

is invertible for all h c [, and 

~ - ~ ( x )  : w ( x )  ' 

~ L ( X  ~ Y) 

Clearly, the operator 
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is also invertible for all h ~ ~ provided n is small enough and 

(4.5) sup II~-~(~)-E-I(~)II < K(II~-LII + II~-BII + li~-cII], 

where the positive constant K does not depend on A~B~C. Define 

W(h) by the equality 

~(X) -~ : , X • a . 
~(~> 

Again by Theorem 4.1 in [20], (A,B,C;X,Y) is a spectral node for 

W(I) on 0; the estimate (4.4) follows from (4.5). E 

COROLLARY 4.4. Let (C,A) (resp. (A,B)) be a right (resp. 

left) spectral pair for some analytic operator function W E F(~), 

where A : X + X, C : x ÷ Y (resp. A : X + X, B : Y + X). Then a 

pair of operators (~,~) with ~ : X ÷ X, ~ : X ÷ Y (resp. (~,B) with 

: X ÷ X, B : Y ÷ X) is a right (resp. left) spectral pair for 

some analytic operator function W ~ F(~) whenever II~-cll + I[~-All 

(resp. II~-AII + IIB-B{I ) is small enough. In this case W can be 

chosen so that 

Iltw-wIII -< K( !i~-C + [ I ~ - A I I  ) 
(resp. 

tll~-wIII -- K ( I I ~ - B  + I I ~ - A I I )  ) , 

where the positive constant K is independent of (C,A) (resp. of 

(A,S)). 
In a certain sense the following result is the converse of 

Theorem 4.3. It shows that spectral nodes for close analytic 

functions can be chosen close as well. 

THEOREM 4.5. Let ~ be a bounded Cauchy domain, and let 

W o e F(~) with spectral node (Ao,Bo,Co;X,Y). Then there exist 

positive constants ~ and K with the following property: for 

every function W ~ F(~) with III wI- W o ill < q , there exists 

a spectral node (AI,BI,CI;X,Y) of W I with the same state space X 

and with the property that 

( 4 . 6 )  IIA~-A ]I + lib - B  II + lla - c o l [  -< Klilw~-Wo!ll 
0 i 0 i 
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Proof. For simplicity it will be assumed that zero is inside 

~. We shall employ the construction of spectral nodes given in 

Theorem i.i (which holds also for the functions from F(~), when ~A 

is replaced by ~). 

Let W ° ,W l c F(~). For k = 0,1 , define the operator 

T k ~ L(C(~,Y)) as follows: 

(4.7) (Tkf)(z) = zf(z) + ~ _~ 

f E C(a~,Y) 

As proved i n  [5 ]  (Theorem 2.3 , o(T k) = S(W k) U ~ 
Introduce theRiesz projections 

P : ~ (h - Tk)-~dl , k : 0,1 , 
k F 

0 

where ?0 is a suitable contour in ~ around E(W0). Observe that F0 

is also a contour around Z(W I) if IIIWI- W0111 is small enough; from 

these formulas we obtain (for IIIW I - W0111 small enough): 

(4 .8)  I I r 0 - T ,  I I + l l e 0 - P ,  ll ~ ~, l l lw,-w011l , 

where the constant K does not depend on W . It follows that for 
0 I 

IIIw1 - w0111 sufficiently small 

(4.9) C(~S,Y) : KerP0 e ImP0 : KerP0 $ ImP1 

Let R be the angular operator (see [2],Section 5.1) of ImP1 

with respect to P0, that is, R is an operator from ImP0 into 

Ker P such that 
0 

Im PI : {Rx + xix EIm P0} 

Define S : ImP1 ÷ ImP0 by Sx = Pox . From (4.9) we see that for 

IIIWI - Wolll sufficiently small the map Sis invertible and its 

inverse is given by S-Ix = Rx + x . Note that (cf. Lemma 1.3.1 

in [10]) 

(4 .10a)  I I s - ' l l  ~ (1 - l i P 1 -  P0tl ) -1 

(4.10b) IIRII ~ I l P l - r 0 { I  ( ~ -  I I P , - P o l I ) - I  . 

In view of Theorem 1.1 and the similarity of spectral nodes for 

a given function, we may assume that X = ImP0 and that the 

: Im P ÷ Yo operators A o : Im P0 ÷ Im Pc , B0 : Y + Im P0 and C ° 0 

are given by 
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(4.11) A ° : TollmP ; 
0 

1 I (z- w)-IW (w)-lydw ( 4 . i 2 )  ( B o Y ) ( z )  : ~ ~ o , 

where A is a bounded Cauchy domain such that Z(W 0) c A c ~ c ~; 

(4.15) c°f : -/-1 I f(w)dw 2~i ~ 

Now replace in the right-hand sides of (4.11), (4.12) and (4.13) 

the index 0 by 1 and denote these new operators by ~i' BI and ~i, 

respectively. Then (AI,BI,CI;ImPI 'Y) is a spectral node for W on 
1 

(by Theorem 1.1). Next assume that IIIWI- W0111 is sufficiently 

small, and define 

A~ : s~s -~ B : s~ c~ : ~ s -~ 
" 1 I" i " 

where S is as in the previous paragraph. By similarity 

(AI'BI'CI ;IMP0 'Y) is a spectral node for W I. Since both S and 

S -I are uniformly bounded for IIIw1- w0111 sufficiently small, the 

inequality (4.6) is easily derived from (4.8), (4.10b) and the 

particular form the operators have. D 

A closer inspection of the proof of Theorem 4.5 yields ex- 

plicit bounds for the numbers q and K, but we shall not go into 

this here (cf. [2], Chapter VII). 

Proof of Theorem 4.2. Let W I be a stable right divisor of W 

on ~. Choose spectral nodes ~ = (A,B,C;X,Y) and 

~l = (AI,B~,CI;X,Y)for W and WI, respectively. Put 

i I (X-A)-IBW(X)CI(X-AI)-idX S = ~ ~ 

From Proposition 4.1 we know that N = ImS is the supporting sub- 

space of (C,A) associated with the right divisor W~. We have to 

prove that N is a stable A-invariant subspace. Take ~ > 0 . Let 

: X ÷ X be a bounded linear operator. By Theorem 4.3 there 

exist positive constants n,K such that II A-~I[ < n implies that 

(~,B,C;X,Y) is a spectral node for some W ~ F(~) with 

lll~-wIII ~ Kill-All 

Now recall that W~ is a stable right divisor. So there exists 

0 < ~ < ~ such that II~-All < 6 implies that the corresponding W has 
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a right divisor WI with lllWl-WIIII < ~ Next we apply Theorem 4.5. 

Assuming that e > 0 has been chosen sufficiently small, there ex- 

ists a spectral node 81 = (AI,BI,CI;X,Y) for Wi such that 

where K i is a positive constant independent of WI Put N : ImS , 

where 

: i I (k-i)-IBW(k)~1(k-~lJ-ldk 
2-~ ~n 

Then N is the supporting subspace of the pair (C,A) corresponding 

to the right divisor W . In particula~ N is a closed ~-invariant 

subspace. Since S is left invertible, there exists a positive 

constant y such that gap(N~N) ~ y IIS-SII for IIs-~ll suffic- 

iently small. So gap(N,N) can be made as small as we want, and 

thus N is a stable A-invariant subspace. 

To prove the converse, assume that N is a stable A-invariant 

subspace. Let (A~B,C;X,Y) be a spectral node for W. By Theorem 4.5 

there exist ~ > 0 and K> 0 such that IIIW- WIII < ~ implies that 

has a spectral node % = (A,B,~;X,Y) with 

(4.14) IIA-~II ÷ IIB-~II ÷ IIc-~ll ~ KIIIw-~III 

We assume that I11 W- will < n, and we take 8 as above. Take e > 0. 

Since N is stable, we can choose ~ sufficiently small such that 

the operator ~ has a closed invariant subspace N with -~ ~ 

(4.15) gap(N,N) < 

Recall that N is complemented in X. So there exists a projection 

P of X onto N. Assuming e to be sufficiently small we may conclude 

from (4.15) that 

(4.16) X = KerP ~ N = Ker P ~ 

In particular, N is complemented in X, and hence the pair 

(~I~,~I~) is a right restriction of the pair (~,~). Define 

S : N ÷ N by setting Sx = Px. According to (4.16) the operator S 

is invertible. For n and ~ sufficiently small the pair 

(~S-I,S~S -l) is close to the pair (CIN,AIN). To see this one uses 

(4.14) and similar arguments as in the proof of Theorem 4.5. By 

Corollary 4.4, there exists WI ~ F(n) so that IIIW i - wiIIl is small 



Kaashoek, van der Mee and Rodman 814 

and the pair (~S-I,S~S -I) is a right spectral pair of WI" But then 

WI must be a right divisor of Y and the proof is complete. D 

There is a somewhat other version of Theorem 4.2, which is 

useful in connection with spectral divisors. Let W ~ F(~), and 

let W I E F(~) be a right divisor of W on ~. We call W I Lipschitz- 

stable if there exist positive constants ~ and K with the follow- 

ing property: every operator function W ~ F(~) with III ~- wil I < 

has a right divisor WI ~ F(~) such that 

[[I I - w ill KIII - will 

Similarly, a closed invariant subspace N of the operator A : X ÷ X 

is called Lipschitz-stable if there exist positive constants 

and K with the following property: for every operator ~ on X with 

II~-All < n there exists a closed ~-invariant subspace N of X 

such that 

Using the same arguments as in the proof of Theorem 4.2 one can 

show that Theorem 4.2 remains true if in the statement of this 

theorem the words "stable" are replaced by "Lipschitz-stable". 

The remark made in the previous paragraph is useful in applic- 

ations to spectral divisors. Let (C,A) be a right spectral pair of 

W ~ F(~), and let W~ ~ F(~) be a right divisor of W on ~. Accord- 

ing to Proposition 2.4 the function W~ is a spectral divisor if 

and only if the supporting subspace N of (C,A) associated with the 

divisor WI is a spectral subspace of A, i.e., 

: 

2w~ F 

where F is a suitable contour in ~ such that F n a(A) = ¢ . 

From (4.17) it is clear that spectral subspaces are Lipschitz- 

stable. So we have the following corollary. 

COROLLARY 4.6. A right spectral divisor of W c F(~) is 

Lipschitz-stable. 

It turns out that in the finite dimensional case (i.e., 

dim Y < ~) the only Lipschitz-stable right divisors of W ~ F(~) 

are the spectral divisors. To prove this fact note that in this 

case one can make a spectral node (A,B,C;X,Y) for W on ~ such that 
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dim X < ~. But then one can apply the next theorem to get the 

desired result. 

THEOREM 4.7. Let A : X ÷ X be an operator acting on a finite 

dimensional space X. An A-invariant subspace of X is Lipschitz- 

stable if and only if it is a spectral subspace of A. 

Proof. In view of the description of the stable invariant 

subspaces in the finite dimensional case (given before Theorem 

4.2), we have to check that the only Lipschitz-stable invariant 

subspaces of the Jordan block 

00 i! 
j = ". : ~n + ~n 

0 0 • 

are the trivial spaces (0) and ~n. Here ~n is considered as a Hil- 

bert space with the usual inner product. For E > 0 let 

2 • 

0 0 

Then the operator Je has n different eigenvalues el, ... ' en ' 

which are the n different roots of the equation x n -e = 0 
n-l)T 

The corresponding eigenvectors are Yi = (i"~i" "'" 'Ei 

i = i, ... ,n. The only J -invariant subspaces are those spanned 

by any subset of {Yl, "'" ,yn ). For k = i, ... ,n-i the only 

k-dimensional J-invariant subspace N k is spanned by the first k 

unit coordinate vectors. Denote by Pkthe orthogonal projection onto 

Nk, and let Pk, E denote the orthogonalprojection onto a k-dimens- 

ional Je-invariant subspace Nk, ~ (i ~ k ~ n-i). For some i we have 

c Nk, ~ So Yi 
i 

gap (Nk,Nk, ~) : llPk-Pk, el I ~ llYil I llPkYi-Pk,eYil I : 

f l  " 
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Now use that Isil = ~ . One finds that for s sufficiently small 

gap(Nk,Nk, ~) ~ ~E k/'n • 

On the other hand, llJ-JcI [ = ~. But then it is clear that for 

i ~ k ~ n- i the space N k is not a Lipschitz-stable invariant sub- 

space of J, and thus J does not have any non-trivial Lipschitz- 

stable invariant subspaces. 

5. EXTENSION OF DOMAINS 

Let W : n + L(Y) be an analytic operator function with 

compact spectrum. Assume n 0 is an open set containing n as a sub- 

set. For example, if ~ is not simply connected, one could take ~0 

to be the union of n and all its "holes". In this section we deal 

with the following question: Is it true that a spectral pair 

~ight or left)for W on ~ is also a spectral pair for some analytic 

operator function on the larger set n0? 

The next theorem shows that the answer is yes. 

THEOREM 5.1. If (C,A) (resp. (A,B)) is a right (resp. left) 

spectral pair on ~ for an analytic function W : n + L(Y) with 

compact spectrum, then (C,A)(resp. (A,B)) is also a right (resp. 

left) spectral pair on @ for an entire function Z : ~ + L(Y) (also 

with compact spectrum). 

We have no explicit formula for the entire operator function 

appearing in the above theorem. However, in the Hilbert space case 

for extensions to bounded and certain unbounded domains ~0 ex- 

plicit formulas for the new operator function with the same 

spectral pair may be given. This will be shown in Part Iii of the 

paper. In its present form Theorem 5.1 is proved by using a result 

concerning the triviality of certain analytic cocycles. For the 

sake of completeness we shall state this result (without proof) in 

the form it will be needed. 

Let GL(Y) be the group of all invertible operators acting in 

Y, and let U : {Uj}j~j be an open cover of the complex plane ~. An 

analytic U-cocycle is a collection of functions f = (fjk)j,k~j , 

where fjk : Uj n U k ÷ GL(Y) is analytic and satisfies the follow- 

ing conditions: 
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f j k ( t ) f k l ( ~ )  = J j l~h)  (h ~ Uj n Uk n ul)  
The analytic U-cocycle f is called trivial if there exist analytic 

functions gj : Uj ÷ GL(Y) such that fjk(~) = gj(1)(gk(1))-1, 

c Uj N U k 

THEOREM 5.2. Let U be an open cover of ~. Then every analytia 

U-cocycle is trivial. 

More general versions of Theorem 5.2 are stated and proved in 

[15]; they can be deduced also from general results on infinite 

dimensional fibre bundles (see [4]). 

Proof of Theorem 5.1. Let (C,A) be a right spectral pair for 

W on n. Consider the open cover U = {UI,U 2} of ~, where U I = 

and U z = @ \ Z(W). For i,j = 1,2 define an analytic operator 

. N U. ÷ L(Y) by setting f11(h) = I , function fi,j : Ut J 

= ~ . = . N U .  f12(l) W(I) fz1(l) = W(h) -I and f22(~) I For h ( U O 

the value of fij(l) ~ GL(Y). Obviously, (fi/)i,j:1,2~ is an analyt- 

ic cocycle. By Theorem 5.2 this cocycle is trivial. So there exist 

analytic functions gl : UI ÷ GL(Y) and gz : U2 ÷ GL(Y) such that 

-i Define the entire operator func- f12 : glgz -I and f21 : g2gl " 

tion Z : ~ + L(Y) by setting Z(h) ~ g2 I(I) for I ~ U 2 and 

Z(1) : g1-1(h)W(1) for ~ ~ n. Then 

(5.1) w(~) = g1(~)z(~) , ~ ~ 

Since the operator function g1(h) has invertible values for h ~ n, 

we may conclude from (5.i) (see Corollary 2.3) that (C,A) is a 

right spectral pair for Z on n. But since Z(h) is invertible for 

all h ~ @ \ Z(W), it is easily seen that (C,A) is a right spectral 

pair for Z on the entire complex plane. The statement about left 

spectral pairs is proved analogously. 

COROLLARY 5.3. Let (C,A) be a right spectral pair for an anal- 

ytic operator function W : n ÷ L(Y) with compact spectrum. Then 

any spectral subspace of A is a supporting subspace of (C,A) on n. 

Proof. Let o be a compact and relatively open subset of the 

spectrum of A, and let N be the corresponding spectral subspace. 

Let n 0 be an open subset of n such that o c n 0 and 

(Z(W)\o) N n 0 = ¢ . Then (CIN,AIN) is a right spectral pair for W 

on n 0. Now apply Theorem 5.1. So there exists an entire operator 
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function Z : @ ÷ L(Y) such that (C N,A N ) is a right spectral pair 

for Z on ~. Put W~(~) = Z(~) for h ~ ~. Then (C N,A N ) is also a 

spectral pair for W I on ~, and the corollary is proved. 

We do not know whether Corollary 5.3 holds for any comple- 

mentedA-invariant subspace N such that ~(A N ) c ~ (and not only 

for spectral subspaces, as asserted in Corollary 5.3). However, 

in case Y is a Hilbert space and ~ is bounded, this more general 

statement holds true indeed. This we shall prove in Part III with- 

out using the cocycle theory. 

Let W : ~ ÷ L(Y) be an analytic operator fucntion with 

compact spectrum. Assume that ~ is a compact and relatively open 

subset of Z(W) Using Theorems 5.1 and 5.2 one can show that W 

has a spectral right divisor W I on ~ such that Z(W~) = ~. Indeed, 

according to Theorem 5.1 and Corollary 2.3 the function W admits 

the following factorization: 

w(~) : E(~)Z(~) ,. ~ ~ ~, 

where E(h) is an invertible operator depending analytically on the 

parameter h ~ ~ and Z : @ ÷ L(Y) is an entire operator function 

with Z(W) = Z(Z). Put ~i = ~ and ~2 = Z(W)\ ~I" Then Z(Z) is the 

disjoint union of the two compact sets el and ~2" Since Z is 

entire, Theorem 5.2 implies that there exists a factorization 

Z(X) : Z (X)Z (k) for ~ ~ ~ such that for i = 1,2 the function 
2 1 

Zg : C + L(Y) is an entire operator function with Z(Zi) = ~i" 

It follows that for W we have the following factorization: 

(5.2) W(X) : E(~)Z2(~)Z~(~) , ~ ~ n, 

where E, Z~ and Z 2 are as above. For k ~ ~ put W1(h) = ZI(h). 

Then, obviously, the function W I is a spectral right divisor of 

on ~ and Z(W I) = e. On the basis of Theorems 5.1 and 5.2 it is 

also possible to obtain factorizations of W(h) that are analogous 

to the ones of (5.2), but have E(X) as the middle factor or as the 

third factor. 

6. THE FINITE COLUMN CONDITION 

The following theorem is one of the main results of the 

present paper. 
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THEOREM 6.1. Let C,A (resp. (A,B)) be a right (resp. left) 

spectral pair of an analytic function W : ~ ÷ L(Y) with compact 

spectrum, where A : X ÷ X. Then for m large enough the operator 

C A  , 

( 6 . 1 )  . I : x + ym 

• t 

• I 
, CA m- I j 

is left invertible and the operator 

(6.2) (B AB ... Am-IB] : ym + X 

is right invertible. 

Proof. By Theorem 5.1 we may assume that for some r > 0 

(6.3) ~(A) ~ {I I lll<r) c {I I lh[<_r} c 

Choose B such that (A,B,C;X,Y) is a spectral node for W on ~. 

Put U(1) = (h - A)-IBW(h) . We know that U(1) is analytic one, and so 

U(1) = E~ hnu for I~I ~ r . By Corollary 1.3 in [20] 
j :O  n 

f i (X - A)-~BW(X)C(X -A)-IdX : E U.CA j 
I : 2~i llI:r j:0 J 

It follows that xm U.CA j is invertible for m sufficiently 
j :O  J 

large. So the operator (6.1) is left invertible for m large 

enough. The right invertibility of (6.2) for some m > 0 can be 

proved in a similar way. 

In part III we shall prove that for X and Y Hilbert spaces 

the converse of Theorem 6.1 holds true. 

Let m I be the smallest non-negative integer m such that the 

operator (6.1) is left invertible, and let m be the smallest 
2 

non-negative integer m such that the operator (6.2) is right in- 

vertible. The numbers m I and m 2 are uniquely determined by the 

operator function W and they do not depend on the particular 

choice of the pairs (C,A) and (A,B). We call m I ~resp. m 2) the 

right (resp. left) degree of W on ~. If W(1) = Ej= 0 hJAj is an 

operator polynomial, then both m I and m 2 are less than or equal 

to 1. The numbers m and m 2 will pl&y a role in Section 7. 
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Theorem 6.1 can be used to give a somewhat simplified version 

of Theorem 3.1. For brevity let us use the symbol Qm(C,A) to denote 

the operator defined by (6.1). If for some m the operator Qm(C,A) 

is left invertible, then the same is true for the operator S 

appearing in the statement (Q3) of Theorem 3.1. More precisely, let 

C : X+ Y and A : X÷X be operators, and assume that o(A) c ~, where 

is an open set in @. Consider the operator S : X + C(~A,Y) 

defined by 

(Sx)(z) a(z-A)-Ix = , Z c ~ . 

Here A is a bounded Cauchy domain such that o(A) c A c ~ c ~. Now 

assume that for some m > 0 the operator Qm(G,A) is left invertible. 

Choose $! ~ ... S + : Y + X, j=0 ... ,m-i, such that (S ) is a left 
J ' m-I 

inverse of the operator Qm(C,A). Define S + : C(~A,Y) + X by setting 

S+f = X k J f ( k ) d k  
j = o  j 2 - ~  ~A 

Then S + is a well-defined bounded operator and S + is a left in- 

verse of S. 

The observation made above can be employed to combine 

Theorems 6.1 and 3.1 into the following characterization of right 

spectral pairs. 

THEOREM 6.2. A pair of operators C : X ÷ Y and A : X ÷ X 

is a right spectral pair on ~ for an analytic function W : ~ ÷ L(Y) 

with compact spectrum if and only if the following four conditions 

are fulfilled: 

( a )  a(A)  c ~; 
1 

(~2) W(X)C(h-A) -1 has an analytic continuation to ~; 

(~3) for some m > 0 the operator Qm(a,A) is left invertible; 

(~) every other pair of operators satisfying (~i), (a 2) and 

(~3) {s a right restriction of (G,A). 

Proof. Let (C,A) be a spectral pair for W on ~. Then (a l) 

and (a2) hold by definition. Further, because of Theorem 6.1, 

statement (~3) is true. To prove (a~), let (Co,A o) be a pair of 

operators with the properties (al), (a2) and (~3). Then, by the 

observations made in the paragraphs preceding the present theorem, 



Kaashoek, van der Mee and Rodman 821 

the pair (Co,A o) satisfies the conditions (QI), (Q2) and (Q3) of 

Theorem 3.1. So (Co,A o) is a right restriction of the pair (C,A). 

Now conversely, let (C,A) be a pair of operators C : X + Y 

and A : X + X which satisfies the conditions (~i), (~2), (~) and 

(~). Consider the operators Q and V defined by formulas (1.3) and 

(l.i), respectively. We know that the pair (Q,V) is a right spect- 

ral pair for W on ~. So, by the first part of the proof, the pair 

(Q,V) has the properties (~i), (~2), (a3) and (a4). So, using 

(a~) for (C,A), the pair (@,V) is a right restriction of the pair 

(C~A). On the other hand, by (a~) for (Q,V), the pair (C,A) is a 

right restriction of (Q,V). But then the two pairs are similar, 

and hence (C,A) is a right spectral pair for W on ~. E 

In an analogous way one can prove that Theorem 3.2 remains 

true if in Theorem 3.2 the condition (Q3') is replaced by : for 

some m > 0 the operator 

(B AB ... AraB) : ym ÷ X 

is right invertible. 

The left invertibi!ity of the finite column operator Qm(C,A) 

has as a consequence that any analytic operator function 

W : ~ ÷ L(Y) with compact spectrum appears as a right divisor of 

a monic operator polynomial, in the following sense: there exists 

an analytic operator function V : ~ + L(Y) (not necessarily with 

compact spectrum) such that the product V(h)W(~) is an operator 

polynomial with leading coefficient I. To prove this assertion, 

first observe that in view of Theorem 5.1 and Corollary 2.3 it is 

sufficient to consider the case when W is entire (i.e., ~ = $}. 

Let (C,A) be a be a right spectral pair of W on @. Choose 

Uj : Y + X, j=0, ... , m-i , such that the operator (U 0 ... Um_1) 

is a left inverse of the operator Qm(C,A). Put 

L(~) : hmI - CAm(U 0 + hU I + ... + ~m-Iu ) 
m-1 

By [8], Theorem 7.i, the pair (C,A) is a right restriction of 

aright spectral pair (C,A) of L on ¢. By Theorem 2.1 this implies 

that W is a right divisor of L on @. 
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7. APPLICATIONS TO WIENER-HOPF FACTORIZATION 

In this section the left invertibility of the finite column 

Qm(C,A) is used to derive necessary and sufficient conditions in 

order that an analytic operator function with compact spectrum 

admits a generalized Wiener-Hopf factorization (cf. [16,24]). 

Let F be a domain bounded by the simple closed rectifiable 

contour A, and such that 0 ~ A An operator valued function 

W : F ÷ L(Y) with invertible values is said to admit a left 

(generalized) Wiener-Hopf factorization (with respect to F) if 

the following representation holds: 

I ] ( 7 . L )  W(h) = E_(A)  Z t ~ P i  E+(Â) , h ~ F , 
i=1 

where t h e  c o n t i n u o u s  o p e r a t o r  f u n c t i o n  E_ : @ \A ÷ L(Y) i s  a n a -  

l y t i c  on @ \A and all its values are invertible, the continuous 

operator function E+ : ~ ÷ L(Y) is analytic in A and all its 

values are invertible, Pi, "'" 'Pr are projections with 

PiPj. = P.P. =j ~ 0 for i ~ j and Pi + "'" + Pr = I, the numbers 

v < v < ... < v are integers (positive, negative or zero). 
i 2 r 

Interchanging E+ and E_ in (7.1), we obtain a right (generalized) 

Wiener-Hopf factorization. 

An analytic operator function W on A with continuous and in- 

vertible boundary values does not always admit a Wiener-Hopf 

factorization with respect to F = ~A (see [L6] and the references 

given there). Here we present criteria (cf.[16,24]) for the poss- 

ibility of Wiener-Hopf factorization in terms of the moments of 

W(h) -i with respect to F. For a continuous function V : F ~ L(Y) 

we define the operators of moments to be: 

V(~) hV(t)  ... hq- lv (~)  

~V(~) ~2V(~) . . .  ~qv(~) 

Mpq (V) = 1 I 
r 

dh : Yq ÷ YP. 

~P-Iv(h) hPv(1) ... kP+q-2v(h) 

Let W : ~ ÷ L(Y) be a continuous operator function which is 

analytic on A and has invertible values on F = 9A, and let 

(A,B,C;X,Z) be a spectral node for W on £. Then the operators of 
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moments can be expressed in terms of A, B and C in the following 

way: 

W -1) Qp(C,A)(B AB ~ Aq-lB). (7.2) Mpq( = ... 

To see this, note that W(1) -l - C(h-A)-IB has an analytic extension 

to A, and hence 

i I xJw(x)-~dX CAJB = ~ P 

Recall that Qp(C,A) is left invertible whenever p a ml, where m I 

is the right degree of W on ~ (see the previous section). Similar- 

ly, (B AB ... Aq-IB] is right invertible whenever q >- m2, 

where m 2 is the left degree of W on ~. It follows that Mpq(W -I) 

has a generalized inverse (i.e., M (W -I) has a closed and com- 
Pq 

plemented range and a complemented kernel) for p ~ m and q z m 
1 2 

THEOREM 7.1. Let W : ~ ÷ L(Y) be a continuous operator func- 

tion which is analytic on A and has invertible values on r = ~A. 

Denote by m I and m 2 the right and left degree of W on A, resp- 

ectively. Then W admits a left Wiener-Hopf factorization with 

respect to r if and only if the operators 

(7.5) M (W -I) , ... , M (W -I) 
ml, ] mlJm2-] 

have generalized inverses, and W admits a right Wiener-Hopf fact- 

orization with respect to F if and only of the operators 

(7.4) M1,mz(W -I ) , ... , Mml_1,mz(W-1) 

have generalized inverses. 

For the case when W is a polynomial an analogous version of 

Theorem 7.1 has been proved in [24]. The proof of Theorem 7.1 will 

be based on the following result obtained in [9], Section 111.3.3. 

THEOREM 7.2. Let W : ~ + L(Y) be a continuous operator function 

which is analytic on A and has invertible values on P = 9A, and 

let (A,B,C;X,Y) be a spectral node for W on A. Then W admits a 

left Wiener-Hopf factorization with respect to F if and only if 

there exists a positive integer m such that the operator 

(B AB ... AJ-IB) : YJ + X has a generalized inverse for 

j = i, ... ,m-i and is right invertible for j = m. The function W 

admits a right Wiener-Hopf factorization with respect to r if and 
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only if there exists a positive integer n such that the operator 

C 

CA 

yj 
Qj(C,A) = i : X ÷ 

CA j- l 

has a generalized inverse for j = i, ..., n-i and is left invert- 

ible for j = n. 

Proof of Theorem 7.1. Assume that W admits a left Wiener-Hopf 

factorization. Let (A,B,C;X,Y) be a spectral node for W on A. 

By Theorem 7.2 all operators (B AB ... AJ-IBI, j = 1,2,...,m-l, 

have generalized inverses. Since Qm (C,A) is left invertible, it 

follows from (7 2) that all operators W -l) j 1,2, • Mml,j( , . . . .  
\ 

have general~zed inverses. 

Conversely, assume that the operators (7.3) have generalized 

inverses. Since Qm (C,A) is left invertible, we may conclude from 

(7.2) that the operators (B AB ... AJ-IB] , j : 1 , ... , m2-1 , 

have generalized inverses. We know already that the operator 

(B AB ... Am2-1B]is right invertible. So Theorem 7.2 implies 

that W admits a left Wiener-Hopf factorization. 

For the right Wiener-Hopf factorization the proof is analogous. 

We conclude with a few remarks about Theorem 7.1. 

Let W be as in Theorem 7.1. From (7.2) and the left invertibility 

of Qm (C,A) it is clear that for I ~ m I the operator Mli(W -~) has 

a generalized inverse if and only if Mm~i(W-1) has a generalized 

inverse (i = 1,2,...). Analogously for ~ ~ m 2 the operator Mil(W -I] 

has a generalized inverse if and only if Mim (W -I) has a general- 
2 

ized inverse. It follows that the necessary and sufficient condit- 

ion for W to admit a left Wiener-Hopf factorization can be stated 

also in the following way: for some I ~ max{ml,m 2} all the oper- 

ators 

(7.5) MI~(W-~) , ... , Mll_1(W-~) 

have generalized inverses. Similarly, W admits a right Wiener- 

Hopf factorization if and only if for some 1 ~ max(ml,m 2) all 

the operators 
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( 7 . 6 )  M l l ( W - 1 )  , . . .  , Ml_ I l ( w  - 1 )  

have generalized inverses. For the case when W is an operator 

polynomial one can take the number I in (7.5) and (7.6) to be 

equal to the degree of the polynomial (cf.[24]). 
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