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TRANSPORT THEORY IN [ -SPACES 
P 

C.V.M. v~n der Mee 

In this article boundary value problems of linear transport 
theory are studied in In-spaces (l~p<+~). It is shown that the 
results valid in [2-spaCe can also be derived in In-space 
(l~p<+~). For a non-multiplying medium formal expressions for 
the solutions are obtained. 

(0.i) 

where 

INTRODUCTION 

In this article a study is made of the integro-differential 

equation 

ud_~(x,u) + , (x ,~)  : (~,~')¢(x,~')d~' + f(x,~) 

dx -i~ (0<x<T, -I<~_<+I), 

(0.2) g(p,p,) : (2~)-I01 _ A(~p, + ~ iF~-~_~,2 cosa)d~. 

This equation describes the time-independent transfer of unpola- 

rized radiation through a stellar or planetary atmosphere (cf. 

[3,23,16]) or the stationary transport of neutrons with uniform 

speed through a fuel plate of a nuclear reactor (see [4]). In 

this equation x is a position coordinate, T is the thickness of 

the atmosphere or fuel plate (in suitable units) and ~ is the 

cosine of the angle describing the direction of propagation. The 

real-valued function ~ describes the scattering properties of 

the medium and is called the phase function. It includes the 

c = _lf+l~(t)dt as a factor. The term albedo of collision rate 

f(x,~) accounts for internal radiative or neutron sources. The 

function ¢(x,w) represents the (azimuth-averaged) intensity of 

the radiation or the angular density of the neutrons. Given 

and f, the problem is to determine the unknown function ~ under 

suitable boundary conditions. 

To treat Eq. (0.1) within an operator-theoretic framework 
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one usually considers the Hilbert space H : L2[-1,+I] of square 

integrable functions on [-l,+i] (cf. [14,22], for instance) and 

introduces the vectors ~(x) and f(x) in L2[-l,+l] and the opera- 

tors T and B on L2[-1,+I] by 

(0.3a) @(x)(p) = @(x,p), f(x)(p) = f(x,p); 
r+l (O<x<~, -l~p~+l) 

(0.3b) (Th)(w) : ph(p), (Bh)(~) : ] g(p,p')h(p')dp'. 
-1 

Now Eq. (0.i) can be restated in the form of the operator diffe- 

rential equation 

(0.4) (Te)'(x) : -(1-B)~(x) + f(x) (0<x<~) 

with suitable boundary conditions. 

In many physical and mathematical works instead of L2[-I,+I] 

one also considers other spaces of functions on [-i,+i]. The 

asymptotics of the solutions of (an equivalent form of) Eq. (0.1) 

can be described in Lp[-1,+1] for 1~p<+~ (cf. [6]). The (incom- 

plete) normed space T-IL [-i,+I] has been used in [19] for l<p<+® 
P 

and in [18] for p=1. Further, it seems that neutron physicists 

commonly believe that LI[-I,+I] is the "natural" space in which 

to solve Eq. (0.1) (see [18,13,4]). 

In this article we shall obtain formal solutions of Eq. (0.i) 

in Lp[-l,+l] (l~p<+=). If ~ ~ Lr[-l,+l] for some r>1, a transport 

theory is developed in L [-i,+I] (l~p<+~) by extending the ap- 
P 

proachef [22], which contains a theory in L2[-I,+I]. Throughout 

this work we restrict ourselves to non-multiplying media, where 

a n = (n+½) -~ f+1~(t)Pn(t)dt < +I (n = 0 1,2 ) and P0,P1 
- - 1  -- ' ' ' ' "  ' ' ° "  

are the usual Legendre polynomials. Basically the same results 

are obtained for different function spaces. 

To impose boundary conditions on Eq. (0.4), in [2[-i,+1] one 

defines the complementary projections P+ and P_ by 

(0.5) (Pih)(p) : h(p) (p~0), (P±h)(p) : 0 (p~0). 

For finite • one imposes the boundary conditions 

(0.6) lim P+~(x) = P+¢, lim P_~(x) = P_¢, 
x+0 x+~ 

where ~ • [2[-1,+i] is given, and one calls this boundary value 
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problem the finite-slab problem. For infinite ~ one imposes the 

boundary conditions 

(0.7) lim P+~(x) = ¢+, ll@(x)II = 0(i) (x÷+~), 
x+0 

where ¢+~ [210,1] is given and the norm is taken in i2[-i,+i]; 

the boundary value problem (0.4) - (0.7) is called the half-space 
problem. In an analogous way these two boundary value problems 

can be stated in other function spaces too. 

Let us give a description of some of the results on the fi- 

nite-slab and half-space problems. To process the numerous func- 

tion spaces together we introduce the notion of a C-admissible 

Banach space H of functions h:[-I,+I]÷ ~. On such a space H and 
i 

for 0~ x~ we define H(x) by 

(0.8) (H(x)h)(u) : " I l~l-le-x/Uh(~)' 
x~>0; 

[ 0 , x~<0; 

the function H(.) is called the propagator function. On a C-ad- 

missible space H it makes sense to define T, P+, P_ and H(x) 

(0 ~ xE~) by (0.Sb), (0.5) and (0.8) as bounded linear operators. 

Further, to process the conditions on ~, we call a C-admissible 

space compatible with ~ (or with B), if the operator B in (0.Sb) 

is a limit in the operator norm of H of operators of finite rank 

and _~f+~IIH(x)BIIdx< +~. Now on different function spaces the 

Transport Equation can be treated from one point of view. 

If a C-admissible space H is compatible with ~ and T[H] is 

dense in H, the finite-slab problem (0.4) - (0.6) is proved to 

be equivalent to the vector-valued convolution equation 

H(x-y)B,(y)dy : ~(x) (0<x<x), (0.9) ~(x) -0 

where ~(x,u) = e-X/~¢(U) + 0fx~-le-(X-Y)/Bf(Y,B)dY (0<U~I) and 

m(x,u) = e (T-x)/u - x~Tu-le-(X-Y)/~f(Y,U)dY (-1~<0). Here ¢ is 

an arbitrary function in H. For every right-hand side m(x) the 

convolution equation (0.9) is shown to be uniquely solvable by" 

comparison to the analogous equation in [2[-1,+1]. In particular, 

for phase functions ~ [r[-1,+1] with r>l and for non-multiplying 

media the finite-slab problem (0.4) - (0.6) is proved to be well- 

posed in the function spaces [p[-l,+l] (l~p<+-). Analogous re- 
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suits are established in a similar way for the half-space problem 

(0.4) - (0.7) in non-conservative media, but also in conservative 

cases the existence (and sometimes the uniqueness) of a solution 

is proved. 

Now that the finite-slab and half-space problems in non-mul- 

tiplying media have been investigated as to their well-posedness, 

on a C-admissible space compatible with ~ we define certain ana- 

lytic semigroups, construct spectral subspaces and projections 

and prove intertwining properties between pairs of corresponding 

operators. With the help of these entities formal expressions for 

the solutions are obtained. In fact, for l~p<+~ it is shown that 

for every X~ [p[-l,+l] and 0<T<+~ the operator differential 

equation 

(0.10a) (T¢)'(x) : -(I-B)~(x) (0<x<~) 

with boundary conditions 

(0.10b) lim IITP+~(x) - P+XIIp = 0, lim IITP_~(x) - P_XIIp = 0 
x+O X+T 

has a unique solution ~:(0,T)÷ Lp[-1,+l], provided ~E /r[-1,+1] 

for some r>l. The analogous half-space result is established too. 

Note that the boundary value problem (0.i0) is more general than 

the problem (0.4) - (0.6) (with f(x)e 0). 

In this article mathematical methods of a diverse nature are 

employed. On the one hand, the theory of vector-valued convolu- 

tion equations (cf. [9,6,7,10,11,8,i]) enables us to treat equa- 

tions of the form (0.9) on different function spaces at the same 

time. On the other hand, semigroup theory and especially the use 

of analytic semigroups (cf. [17], Section IX.l; see also Ch. VIII 

of [5]) enable us to write down formal expressions for the solu- 

tion. The theory of the Transport Equation developed in [22] is 

heavily used. 

Let us shortly describe the contents of this paper. After the 

preliminary first section in which the conditions on the phase 

function ~ are translated into the compatibility with ~ of cer- 

tain C-admissible spaces, the equivalence of the finite-slab and 

half-space problems to a convolution equation of the form (0.9) 
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is proved. In Section 3 we show the finite-slab problem in non- 

multiplying media and the half-space problem in non-conservative 

media to be well-posed. In Section 4 this result is extended to 

deal with the half-space problem in the conservative case. Using 

the unique solutions of the convolution equation on the full real 

line, in Section 5 we construct spectral subspaces and projec- 

tions, analytic semigroups and intertwining operator pairs. These 

entities enable us to write down formal expressions for the solu- 

tions, also for the more general problem (0.10) (see Section 6). 

In a future publication we shall show how the present approach 

extends to multigroup Transport Theory (see [4] for the physical 

aspects). Among other things we shall construct spectral sub- 

spaces and projections, analytic semigroups and intertwining 

operator pairs analogously to the present sixth section, and de- 

rive statements about the partial indices of the symbol of the 

Wiener-Hopf version of the multigroup half-space problem. 

Throughout this article all Banach spaces are complex and 

<.,.> denotes the inner product of a Hilbert space. By Ker T, 

Im T and ~(T) we mean the null space, range and spectrum of an 

operator T. The symbol [(H1,H 2) stands for the set of bounded 

linear operators from H 1 into H 2. We write L(H) for L(H,H). By 

I H (or I) we mean the identity operator on H. The Riemann sphere 

~u{~}is denoted by ~ . 

i. PRELIMINARIES 

Let C be the algebra over @ of functions ¢ = ¢_8 ¢+ from 

C[-I,0] ~ C[0,1] generated by the functions ¢+(p) = ¢_(-p) = Ipl ~ 

(0~i, ~0), the step function ¢+(~) = ¢_(-p) = ~(sign(p) + I) 

(0<~I) and the functions ¢+(p) = ¢_(-p) = IplY-le -Ix/pl (0<p~I, 

y ~, 0 ~ x~). Let H be a Banach space of functions h:[-l,+l]÷ 

with the property that every two functions hl,h 2 c H with hl(P) = 

h2(p) for 0 ~ ~ ~ [-I,+I] are to be identified. Examples of such 

spaces are [2[-i,+i] and C[-I,0] 8 C[0,1]. Then H is called C-ad- 

missible if for every ¢ E C the operator T¢ given by 

(Tch)(p) : @(p)h(p) (-Isps+l), 
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is bounded on H and IIT~II ~ M Hsup {l~(~)l:-lg~+l}, where the con- 

stant M H only depends on H. Clearly, s(T@)a T~(U):-ig~g+l}. De- 

fine the operators T, P+ and P_ by 

"h(~), ~0; [ 0 p~0; 

(i.I) (Th)(~l)= uh(u); (P+h)(~)= (P_h)(~) = i 0 , ~<0; h(u), ~<0. 

Then T is a bounded operator with ~(T)a[-I,+I] and P+ and P_ are 

complementary projections that commute with T. Their ranges are 

denoted by H+ and H_, respectively. Note that 

(1.2) H+8 H_ : H, o(TIH+) c [0,1], o(TIH_)C E-l,0]. 

For y ~ and 0 m x eZR we define the operator ITIYH(x) by 

(l.3a) (ITIYH(x)h)(~) = " I IUI¥-Ie-X/Uh(U)' 
XU>0; 

[ 0 , x~<O; 

then H(x) is bounded on every C-admissible space H and for y<1 we 

have 

(1.3b))I)TIYH(x>I) ~ ME O<~lsup l~IY-le -Ixl/~: { ~{(Ixl/(1-Y))¥-l~il~I~l;0 , Ixlal. 

The function H(.) is called the propagator function. 

PROPOSITION i.I. Let H be a C-admissible Banach space, and 

assume that on H the operator T has a dense range. Then the ex- 

pression8 

(1.4a) (U+(x)h)(~): 
[e-X/~h(u), Ua0; 

0 , ~ < 0 ;  

(U_(x)h)(~) : 

0 , p20; 

e+X/Ph(p), V<0, 

define bounded analytic semigroup8 on H+ and H_ with infinitesi- 

)-i (+TI )-i, respectively. Moreover, mal generators (-TIH + and H_ 

for h~ H we have 

IIT(T-k)-Ip+h - P+hll = 0, lim 
~÷0,Re~_<0 

(1.4b) 



van der Mee 411 

lim ' I I T C T - X ) - I p _ h - p _ h l l  : 0. 
l÷O,Rel~O 

Proof. Observe that the propagator function H(.) has an ana- 

lytic continuation to the non-imaginary part of ~, given by 

• [Ipl-le-X/Ph(p), p(Re x) > O; 

(1.5) (H(x)h)(p) : 

0 , p(Re x) < 0. 

In fact, by the C-admissibility of H we have for Re x, Re y > 0 

and h ~ H: 

ill I hHM  sup leX1 e -yj  l eXJ  I 
x-y H O<p~l y P ' 

and the right-hand side vanishes as y÷x. So U+ is analytic on the 

open right half-plane with derivative -H(x). Similarly U_ is ana- 

lytic on the open right half-plane with derivative -H(-x). 

By the C-admissibility on H, for Re x > 0 and h~ H we have 

I IT[U+(x)-  I ]h l lH  ~ IIhlIH'M H sup I~ (~-  e -X /~ ) l ,  
and for <' 0<¢_~ the right-hand side vanishes as x÷ 0 with 

larg x I ~ ¢. Since on H the operator T has a dense range and 

llu+(x)- P+II ~ 2M H, for O~¢<½n one gets 

lim II[U+(x)- P+]hll H = 0, h~ H. 
x+0, largxl~¢ 

Hence, (U+(X))x~ 0 is a bounded analytic semigroup on H+ with in- 

finitesimal generator (-TIH)-I. 
• • • + 

To prove the identltles (l.4b) we employ the C-admissibility 

of H and derive the estimates 

II [~(T-~)-~P+ - L ]T I I  : I1~ T(~-~)-~P+II ~ M H" sup I~ (p -~ ) -~ l  ~ MH. IXl ; 
O<p~l 

II x(x- T)-IP+II = M H sup Ix(x-~)-~l ~ M H. 

From these estimates and the density of the range of T the first 

one of the identities (l.4b) is clear. The second one is proved 

analogously. 

For specific C-admissible spaces H such as [p[-l,+l] and 

C[-I,0] ®C[0,1] this proposition is well-known. Here we organize 
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these properties by one statement. 

Let ~c L1[-1,+1] , and define an operator B by 

(1 6)(Bh)(p) _iI+i[(2~)-I012 • : g(PW' + i-/~U 2 IV~-P '2 cos~)da]h(p' )d~', 
J -1-<p_<+l. 

Then a C-admissible Banach space H is called compatible with 

(or with B) if the operator B is a limit in the norm of L(H) of 

operators of finite rank and for some (and hence every) 0<T_<+~ 

one has 

Similarly one defines the compatibility of H with an arbitrary 

operator BE L(H). 

PROPOSITION 1.2. Let ~ Lr[-l,+l] for some r> i. Then for 

every l_<p<+~ the Banach space Lp[-l,+l] is compatible with ~. 

This proposition is due to Feldman (cf. [6], Theorem i). In 

[22] (Th. VI 1.1) this result has been obtained for p= 2 by show- 

ing the existence of 0<y<(r-1)/(2r) and a bounded operator D such 

that B = ITIYD, and by employing (1.3b); this proof can be repeat- 

ed for l_<p<+~, provided one takes 0<a<(r-l)/(pr). 

2. EQUIVALENCE THEOREMS 

Throughout this section H will be a C-admissible Banach space 

on which the operator T has a dense range. In such a space we 

study the equivalence of the operator differential equation (0.4) 

and a convolution equation of the form (0.9). 

THEOREM 2.1. Let O<T<+~. Let H be compatible with the opera- 

tor B E L(H). Suppose that ~:[0,T]+ H is a continuous function 

such that T~ is differentiable. Then an essentially bounded 

(strongly measurable) vector function ~:(O,T)+ H is a solution of 

the convolution equation 

( 2 . 1 )  ~ ( x )  - H ( x - y ) B ~ ( y ) d y  = ~ ( x ) ,  0<X<T,  
0 

if and only if ~ is a solution of the operator differential equa- 

tion 
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(2.2a) (T¢)'(x) : -(I- B)~(x) + (T~)'(X) + ~(x) (0<x<~) 

with boundary conditions 

(2.2b) lim P+¢(x) : P+~(0), lim P_@(x) : P_~(T). 
x~0 x+T 

THEOREM 2.2. Let T = +~. Let H be compatible with the operator 

B (/(H). Suppose that ~:[0,+~)+ H is a bounded continuous function 

such that T~ is differentiable. Then an essentially bounded 

(strongly measurable) vector function ~:(0,+~)+ H is a solution 

of the convolution equation 

(2.5) ,(x) - (x-y)B*(y)dy : ~(x), 0<x<+~, 
0 

if and only if ~ i8 a solution of the operator differential equa- 

tion 

(2.4a) (T¢)'(x) = -(I- B)¢(x) + (T~)'(x) + m(x) (0<x<+~) 

with boundary condition 

(2.4b) lim P+¢(x) : P+m(0). 
x+0 

For H : [2[-i,+i] such theorems have been derived in [22]. 

Here in the present context we only prove Theorem 2.1 and conclude 

this section with some remarks. 

Proof of Theorem 2.1. Let ¢:(0,~)÷H be an essentially 

bounded solution of the boundary value problem (2.2). As H is 

with B, we have _T/+TI]H(x)BIIdx < +~, and thus the compatible 

function H(.)B is Bochner integrable on (-T,+~). Since @ is essen- 

tially bounded, it follows that the integral 

( 2 . 5 )  g (x )  = H ( x - y ) B ~ ( y ) d y  (0~x~T) 
0 

i s  an a b s o l u t e l y  c o n v e r g e n t  Bochner  i n t e g r a l .  Chaose x~ (0 ,~ )  and 

put X : ~-~. Take 0<TI<X<~2<T. A simple partial integration yields 

I TI+ )H(x_y)[(Tx),(y ) + X(Y)]dy : 
T 2 

T 1 
= [U+(x-Y)X(Y)]y=0 - [U ( y - x ) x ( Y ) ] y T  

- -  : T  2 
where U+ and U_ a r e  d e f i n e d  by ( 1 . 4 a ) .  Employing t he  boundary  
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conditions (2.2b), the semigroup properties following from Propo- 

sition i.I and the continuity of T~ we get 

01~H(x-Y)[(Tx '(Y) + X(Y)]dY : ¢(x) - m(x), 0<x<~. 

Inserting Eq. (2.2a) we obtain the convolution equation (2.i). 

Conversely, let ~:(0,r)÷H be an essentially bounded solu- 

tion of the convolution equation (2.1). As H(.)B~ [I((-T,+r);L(H)) 

and ¢ e L ((0,T);H) and as the function g is the convolution product 

of H(.)B and ~, it follows that g is continuous on [0,T] (see 

[27]; 30.17, 30.18, 31.7 and 31.9, where a scalar analogue is 

studied). For 0<x<~ and 0<e<r-x we have T{g(x+E)-g(x)}/e : h i+ 

h 2 + h 3+ h4, where 

h i : ~-1[U+(e)- p+]T01XH(x-y)B~(y)dy; 

h 2 = - e - l [ U _ ( e ) -  P_]T x H ( x - y ) B ~ ( y + e ) d y ;  

h3 -I fx+e 
: e xJ U+(x+e-y)B~(y)dy, 

h4 : -C-x- -(Y-x)B@(y)dy" 

Since -(TIH+)-I is the generator of the semigroup U+(.), we have 

h I÷ 0fXH(x-y)B~(y)dy as ~+0. Using the continuity of ~, the boun- 

dedness of ~ on [0,T] and the Bochner integrability of H(.)B on 

(-T,+~), we apply the theorem of dominated convergence for Bochner 

(cf. [27]) and get xfTH(x-y)B~(y+s)dY+xfWH(x-y)B~(y)dy integrals 

e%0. So h 2+-xf~H(x-y)B@(y)dy. By the continuity of ~ we have as 

h 3÷ P+B~(x) and h 4+ P_B~(x). Hence, for 0<x<T one gets 

T{g(x+e)- g(x)} [~ lim = - H(x-y)B¢(y)dy + Be(x). ] c+O e 0 

Similarly, lim -0/TH(x-y)B~(y)dy + B~(x) for e+0 T{g(x+e)- g(x)}/e : 
0<X<T. Thus Tg is differentiable on (0,T) with derivative -g+ B@. 

Recall that Tg and Tm are differentiable on (0,T) and @ = g+m 

(cf. Eq. (2.1)). Therefore, T~ is differentiable on (0,~) and 

(T~)'(x) : (Tg)'(x) + (Tm)'(x) : -g(x) + B~(x) + (T~)'(x). 
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Inserting g = ~-m we get Eq. (2.2a). The boundary conditions 

(2.2b) follow from the continuity of g on [0,~] and g(0) ~ H_ and 

g(~) ~ H+. 

Let us consider the operator differential equation 

(2.6) (T@)'(x) : -(I- B)¢(x) + f(x), 0<x<~. 

For finite T we impose the boundary conditions (0.6) and for in- 

finite T the boundary conditions (0.7). To apply Theorem 2.1 (for 

finite T) we have to find a continuous function ~:[0,T]÷ H such 

that T~ is differentiable on (0,T) and 

(2.7a) (T~)'(x) + ~(x) = f(x) (0<x<~); 

(2.75) P+~(0) = P+@, P_~(T) = P_@. 

For infinite T we have to find a bounded continuous function 

~:[0,+~) +H such that T~ is differentiable, Eq. (2.7a) (with T=+~) 

holds and 

(2.7c) P+~(0) = ¢+, 

in order to apply Theorem 2.2. For finite (resp. infinite) T 

Eq. (2.1) with boundary conditions (0.6) (resp. (0.7)) has the 

same essentially bounded solutions as the convolution equation 

(2.1) (resp. (2.3)). 

For finite ~ consider 

f+ (2.8) ~(x) = [U+(x) + U_(T-X)]~ + H(x-y)f(y)dy, 0~x~ 
0 

If H = [p[-l,+1] for some 1~p<+~ and f acts as a bounded continu- 

ous function from (0,T) into [pr[-l,+l] for some r > i, the inte- 

gral at the right-hand side of (2.8) is an absolutely convergent 

Bochner integral and ~ is a continuous function satisfying (2.7a) 

- (2.7b). To see this, note that there exists 0<y<l such that 

llR(x-y)ll : 0(Ix-yly-l) (y÷x) as an operator from Ipr[-l,+l] into 

ip[-1,+l] (see the proof of Theorem i of [6]). So x ÷ 0fTH(x-y)f(y)dy 

is the convolution product of an il-function and an i -function 

and therefore continuous on [0,T]. Thus ~ is continuous on [0,T] 

indeed, and TP+~(.) and TP_m(.) have the form 

X+(X) = TP+~(x) = U+(x)(T~) + U+(x-y)f(y)dy; (O~x~T) 
0 
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f 
T 

X_(x) : TP_m(x) : U_(T-x)(T¢) - U_(x-y)f(y)dy. (0~X~T) 
x 

Using Proposition i.i and standard semigroup theory we see that 

X+ and X_ have to be solutions of certain Cauchy problems (cf. 

[17], Section IX 1.5), and therefore ~ is a solution of the boun- 

dary value problem (2.7a) - (2.7b). For infinite T analogous ar- 

guments can be given; now the formula for ~ is 

f+ ( 2 . 9 )  m(x)  = U+(x )~+  + ~ ( x - y ) f ( y ) d y ,  0~x<+~.  
0 

3. EXISTENCE AND UNIQUENESS OF THE SOLUTION 

Throughout this section H will be a C-admissible Banach space 

that is continuously embedded in ii[-1,+1] and on which T has a 

dense range. On such function spaces and for a phase function 

to which H is compatible and for which the expansion coefficients 

a n = (n+~) -~ +l~(t)p n _1 f (t)dt ~ I (n = 0,1,2,...), we prove that 

the boundary value problems (0.4) - (0.6) and (0.4) - (0.7) have 

a unique solution. Here Pn(~) : (2n.n!)-l(~-{)d n(~2_l)n denotes the 

usual Legendre polynomial of degree n. 

THEOREM 3.i. Let 0<T<+~, and for some r > i let ~E [ [-i,+I] 
_! +l~(t ) r 

have the property that a n : (n+~) 2_i / Pn(t)dt ~ i (n = 0,1,2,...). 

Then on all C-admissible Banach spaces H continuously embedded 

in i1[-I,+i] and compatible with ~ on which T has a dense range, 

the boundary value problem 

(3.1a) (T~)'(x) = -(I- B)9(x) 

(5.1b) lim IIP+~(x) - P+¢[I H : O, 
x+O 

(O<x<r); 

lim I IP_~(x )  - P_¢ll  H = 0 
X+T 

has a unique bounded solution @:(0,T)~ H. 

As we shall prove in Section 6, we may drop the assumption 

that @ is bounded, and show that (without this assumption) the 

boundary value problem (3.1) has a unique solution. Also a more 

general type of boundary conditions will be considered. 

THEOREM 3.2. Let • = +~, and for some r > 1 let ~ Jr/-1,+1] 

-I +l~(t) (t)dt 1 (n 0,1,2, .) have the property that a n = (n+~) 2_1 f Pn < . . . .  
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Then on all C-admissible Banach spaces H that are continuously 

embedded in ki[-i,+i] as a dense linear subspace, are compatible 

with ~ and on which T has a dense range, the boundary value pro- 

blem 

(3.2a) (T~)'(x) = -(I- B)~(x) (0<x<+®); 

(3.2b) lim IIP+@(x) - ¢+II H : 0 
x+0 

has a unique bounded solution ~:(0,+~)+ H. 

In Section 6 we shall consider a more general type of bound- 

ary conditions. In the next section we generalize this result to 

the case a n ~ +I (n = 0,1,2,...). 

Proof of Thaorem 3.1. Let H satisfy the conditions of this 

theorem. According to Theorem 2.1 the boundary value problem 

(3.1) has the same essentially bounded solutions ~:(0,~)+H as 

the convolution equation 

I 
T 

(3.3) ¢(x) - H(x-y)B¢(y)dy = ~(x) (0<x<T) 
0 

with right-hand side m(x) = [U+(x) + U_(~-x)]¢ (see also formula 

(2.8)). 
For l~p~+~ the operator K H'p defined by 

(KH'P,)(x) = H(x-y)B,(y)dy (0<x<~), 
0 

is a compact operator on Lp((0,T);H). This can be proved in the 

same way as Lemma 1.1 in [8], because B is the limit in the norm 

of operators of finite rank. Moreover, I- KL2[-I'+I]'P is in- 

vertible for every l~p~+~ (see [22], Section V.4). Since L1[-1,+1] 

is compatible with ~ (cf. Proposition 1.2), and L2[-1,+1] is~a 

dense subspace of L.I[-I,+1] ~ it follows that for l~p~+~ the ope- 

rator I- KLI[-I'+I];P has a dense range. But K L1[-1'+ll'p is a 

compact operator. So for l~p~+® the operator I- K L1[-l'+l]'p is 

invertible. However, Ker (I- K H'p) ¢ Ker (I" K L1[-l'+l]'p) = {0} 

for l~p~+~. Thus for l~p~+~ the operator I- K H'p is invertitle. 

Now it is clear that for l~p~+~ and every ~E Lp((0,T};H) 

the convolution equation (3.3) has a unique solution @ in 

Lp((0,T);H). If ~ is continuous on [0,w], then @~ L ((0,~);H) and 

hence ~:(0,T) ÷H is continuous on [0,T] too. Observe that 
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~(x) : [U+(x) + U_(r-x)]# depends continuously on x in [0,T]. Thus 

the boundary value problem (3.1) has a unique bounded solution 

~:(0,T)+H. Z 

Proof of Theorem 3.2. Let H satisfy the conditions of this 

theorem. According to Theorem 2.2 the boundary value problem (3.2) 

has the same essentially bounded solutions ~:(0,+~)+H as the con- 

volution equation 

f' 
(3.4) 0(x) - ~(x-y)B,(y)dy : re(x) (0<x<+~) 

0 
with right-hand side ~(x) = U+(x)~+ (see also formula (2.9)). 

+~ 
As _~/ IIH(x)Blli(H)dX < +~, the symbol of the Wiener-Hope ope- 

rator integral equation is continuous in the norm; up to a trivial 

change of variable it is given by 

( 3 . 5 )  W(X) = I - eX/XH(x)Bdx  = I -  X(X-  T ) - I B ,  Re X = 0. 

Under  t h e  c o n d i t i o n s  o f  t h i s  t h e o r e m ,  on [ 2 [ - 1 , ÷ 1 ]  t h e  s y m b o l  W(X) 

h a s  a l e f t  and  a r i g h t  c a n o n i c a l  W i e n e r - H o p f  f a c t o r i z a t i o n  w i t h  

r e s p e c t  t o  t h e  i m a g i n a r y  a x i s  ( c f .  T h e o r e m s  V 7.2 and 7 . 3  o f  [ 2 2 ] ;  

s e e  a l s o  C h a p t e r  VI o f  [ l J ) .  S i n c e  B i s  a c o m p a c t  o p e r a t o r  on 

L 1 [ - 1 , ÷ 1 ]  and  [ 2 [ - 1 , ÷ 1 ]  i s  a d e n s e  l i n e a r  s u b s p a c e  o f  [ 1 [ - 1 , ÷ 1 J ,  

f o r  e v e r y  e x t e n d e d  i m a g i n a r y  X t h e  o p e r a t o r  W(X) i s  i n v e r t i b l e  on 

[ 1 [ - 1 , + 1 ]  and  L 2 [ - 1 , + 1 ] .  B e c a u s e  B i s  a c o m p a c t  o p e r a t o r  on H and 

H is a subspace of /1[-I,+1], for all extended imaginary ~ the 

operator W(1) is invertible on H. 

Observe that on H the symbol W has the following properties: 

(1) W belongs to the Wiener algebra of functions of the form 

{cI+ _~eX/Ik(x)dx : cE @, kc [I((-~,+~);L(H))}; (2) W can be 

written in the form 

W(1) = I - l(l- T)-Ip+B - l(l- T)-Ip_B (Re I = 0), 

where B is the limit in the norm of /(H) of operators of finite 

rank; (3) W(1) is invertible in L(H) for all extended imaginary I. 

By a result of Gohberg and Leiterer ([11], Theorems 4.3 and 4.4) 

on H the symbol W has a left and a right Wiener-Hope factorization 

with respect to the imaginary line with factors in the above 

Wiener al~ebra. 
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For l~pg+~ let K H'p be the operator on Lp((O,+~);H) defined by 

(KH'P,)(x) = ~(x-y)B¢(y)dy (0<x<+=). 
0 

From the existence of a Wiener-Hopf factorization of W one derives 

that for 1~p~+~ the operator I - K H'p is a Fredholm operator. The 

derivation is standard (see [9]). By the proof of Theorem V 5.1 of 

[22] for l~p~+= the operator I - K [2[-I'+I]'p is invertible. Since 

L2[-I,+1] is continuously embedded in Ll[-l,+l] as a dense linear 

subspace and I - K [I[-I'+I]'p is a Fredholm operator, it follows 

that for l~p~+= the operator I - K L/[-I'+I]'p is invertible. 

Because H is continuously embedded in LI[-I,+I] as a dense linear 

subspace and I - K H'p is a Fredholm operator, it follows that for 

l<p<+~ the operator I - K H'p is invertible. 

Now it is clear that for l~p~+~ and every wE Lp((0,+~);H) 

the Wiener-Hopf equation(3.4) has a unique solution ~ in ~((0,+~);H). 

If ~ is bounded and continuous on [0,+~), then ~c L ((0,+~);H) 

and hence ~:(0,+~)+H is bounded and continuous too. Observe that 

~(x) = U+(x)¢+ depends continuously on x in [0,+~) and is bounded. 

Thus the boundary value problem (3.2) has a unique bounded solu- 

tion ~:(0,+~)+H. 0 

For H = Lp[-l,+l] (l~p<+~) Theorems 3.1 and 3.2 apply to 

phase functions ~c Lr[-1,+l] for some r> I (cf. Proposition 1.2). 

If H is a C-admissible Banach space continuously embedded in 

LI[-I,+I], H contains the function e(u)~ i (and thus all polyno- 
+~ 

mials) and if _,f IIR(x)elIHdX < +~, then these theorems apply to 
N 

degenerate phase functions of the form ~(p) = n~0an(n+~)Pn(P) 

(N finite). 

In the statement of Theorem 3.1 (resp. 3.2) the finite-slab 

(resp. half-space) problem is considered for a non-multiplying 

(resp. non-conservative) medium. In Eq. (3.1a) (resp. (3.2a)) we 

did not allow an inhomogeneous term f(x) (as in Eq. (0.4)). For 

specific spaces H Theorems 3.1 and 5.2 are easily adapted to cover 

the occurrence of an inhomogeneous term. If H = Lp[-1,+l] (l~p<+~), 

we require that for some r' > I the function f acts as a bounded 

continuous function from (0,~) (resp. (0,+~)) into Lpr~[-l,+l]. 
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For such f a suitable w c i ((0,T);H) (resp. ~ [ ((0,+~);H)) can 

be constructed, which is continuous on [0,T] (resp. bounded and 

continuous on [0,+~)). This right-hand side m of Eq. (3.3) (resp. 

Eq. (3.4)) is given by (2.8) (resp. (2.9)). If one adds such an 

inhomogeneous term f(x) to Eq. (3.1a) (resp. (3.2h)), then Theo- 

rem 3.1 (resp. 3.2) can be derived as before. 

4. SPECTRAL ANALYSIS OF L(h) : I- B- AT 

Throughout this section H Stands for a C-admissible Banach 

space that is densily and continuously embedded in [i[-i,+i] ; it 

is supposed that T has a dense range on H. If for some r > i the 

phase function ~ gr[-i,+i] and H is compatible with ~, we study 

on H the operator pencil 

(4.1) L(I) : I- B- AT. 

In [22], Section III.3, the pencil L(X) has been studied in 

detail on [2[-I,+I] , which is compatible to every ~ [r[-l,+l] 

with r > i (cf. Proposition 1.2). On il[-l,+l] we have 

{A ( { : I- AT is not invertible} = (-~,-I] u [I,+~), just as on 

[D[-I,+I] for isps+~. For general H the pencil L(A) is a compact 

perturbation of L0(A) = I- AT and the spectrum of L0(A) is con- 

tained in (-~,-i] u [i,+~). By a result of Gohberg and Sigal [12] 

the set 

{A E ~ : A 4 (-~,-!] u [I,+~); L(A) is not invertible on H} 

consists of normal points only and these points can only accumu- 

late at points of (-~,-i] u [i,+~). Hence, if L(0) = I- B is not 

invertible, then ~ = 0 is an isolated normal point of the spectrum 

of L(A). 

-' +1~(t) To state the next proposition let a n : (n+~) ~_I / Pn(t)dt 

(n = 0,1,2,...); these numbers will be called the expansion co- 

efficients of ~. On ip[-i,+i] (l~p~%~) one has BP n = anP n 

(n = 0,I,2,...) and ~(B) = {a n : n~ 0} u {0} (see Appendix XII.8 of 

[26]). Since H is continuously and densily embedded in [l[-i,+i] 

and B is compact on H, the spectrum of B on H is the same set, 

provided, of course, H is compatible with ~. 
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PROPOSITION 4.1. Let H be compatible with ~ fr[-1,+l] for 

some r > 1. Then outside (-~,-1] u [1,+~) the spectrum of the pen- 

cil L(h) on H does not depend on H nor do the partial multiplici- 

ties of the normal points of L(1). Put ~ = {an: n ~ 0}. If ~c (-~,1], 

then the spectrum 2(L) of L(1) is a part of the real line and the 

order of any pole of L(1) -1 at a non-zero (resp. zero) normal 

point equals +1 (resp. +2 at most). 

Proof. Put ~ : ~\{(-~,-1] u [1,+~)]. Then on ~ the operator 

L(I) is a Fredholm operator of index 0. Since H and [2[-1,+1] are 

both of them densily and continuously embedded in L1[-1,+1], on 

these three spaces the part of the spectrum of L(1) on ~ is the 

same and for every 10 c ~ in the spectrum of L(1) the partial mul- 

tiplicities and Jordan chains coincide (cf. [1] for these notions). 

The rest of this proposition is clear from the properties of L(1) 

on L2[-1,+1] (see Section 111.3 of [22]). D 

If A = I- B is not invertible and a = {a n : n~ 0} c (-~,1], 

then I = 0 is a pole of L(1) -1 of order at most 2. Put 

= ~ + -(2~i)-1~ TL(1)-ldI' P0 -(2~i)-i L(1)-ITdl' P0 : 

where F is a positively oriented circle separating ~ = 0 from the 
+ 

rest of the spectrum of L(I). It appears that P0 and P0 are pro- 

jections of the same finite rank, Ker A c Im P0 and TP 0 = P~T 

(see Section 1.3 of [24]; see also Section III.3 of [22]). The 

finite-dimensial subspace H 0 = Im P0 of H is called the singular 
+ + + 

subspaoe. We also put H 0 = Im P0" Note that H 0 and H 0 have the 

same form as the corresponding subspaces in i2[-i,+i]. 

It is easy to see that A acts as an invertible operator from 
+ + 

H 1 : Ker P0 onto HAl = Ker P^.u So there exist bounded operators S 
+ + 

on H 1 and S on H i such that ASx = S+Ax = Tx, xe H i • The operator 

S we call the associate operator. If ~ = {an:n~ 0}c (-~,1], then a(S) 

= ~(S +) c ~. For the conservative isotropic case, where a 0 = I and 

a n = 0 for n ~ i, and on 12J-l,+&] the singular subspace and the 

associate operator have been constucted by Lekkerkerker [20]. 

Next for the case e = {an : n ~ 0}¢ (-~,i] we analyze on H the 

operator differential equation 
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(4.2) (T@)'(x) : -(I- B)~(x) + f(x) (0<x<~) 

with boundary conditions (0.6) (for finite Y) or (0.7) (for in- 

finite T). First recall that the singular subspace H 0 does not 

depend on the particular choice of H. So as in [2[-I,+i] this 

subspace H 0 consists of polynomials only (cf. [22], Theorem VI 

4.1). On H 0 one defines the indefinite inner product 

• : ~x(~)y(~)d~; x,y ~ H, (4 3) <x'Y>T -i 

which makes H 0 a Krein space (see [2] for the terminology). On H 0 

there exist subspaces M+ and M_ that are maximal strictly positive 

and maximal strictly negative in (4.3) and have the property 

M+~M_ : H 0 (cf. [2]). Clearly these subspaces M+ and M_ can be 

chosen independently of the choice of H. 

PROPOSITION 4.2. Let H be compatible with ~ [r[-l,+l] for 

some r > 1, and let s = {an : n~ O}c (-~,1]. Then the space H is 

also compatible with the operator 

B u = B(I- P0 ) + (I+ u-lT)(l- P)P0 + (I- u-IT)PP0 , 

where u> 0 and 0 is the projection of H 0 onto M+ and M_. Further, 

the spectrum of B u is contained in (-~,1). 

Proof. Recall that i2[-1,+1] is compatible with ~. Further, 

the operators T, B and P0 have the same form on H and on [2[-1,+1] 

and the subspaces H0, M+ and M do not depend on the particular 

choice of H. Since (I+ u'iT)(l - P)P0 + (I- u-iT)0P0 is an operator 

of finite rank, the operator B u is a limit in the norm of H of 

operators of finite rank• Since x : Bx + TBT-I(I- B)x (x~ H 0) and 

_~f+~IIH(x)BNdx < +~, the space H is easily proved to be compatible 

with B u. Because H and [2[-I,+i] are continuously and densily 

embedded in [I[-I,+11, the set ~(B u) does not depend on the par- 

ticular choice of H. The proposition is now immediate from Theorem 

III 6.3 of [221, which is the analogue in [2[-I,+11. 

In the statement of Theorem III 6.3 of [221 (applied to the 

pair (T,B) on [2[-i,+11) the conclusion is drawn that for u > 0 

the pair (T,B u) is a positive definite admissible pair on i2[-I,+I] 

(see Section III.2 of [221 for the terminology)• From this it 
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follows that for every l~p~+~ and every ~ Lp((0,+~);[2[-1,+1]) 

the Wiener-Hopf operator integral equation 

f 
+ 

(4 .4 )  ~(x) - ~ | H(x -y )Bu~(y)dy  : ~(x) (0<x<+~) 
0 

has a unique  s o l u t i o n  in  [ p ( ( 0 , + ~ ) ; [ 2 [ - i , + l ] )  ( c f .  [22 ] ,  Theorem 

V 5 . i ) .  I t  i s  a l s o  c l e a r  t h a t  f o r  eve ry  ~+ c [ 2 ( 0 , 1 )  the  boundary  

va lue  problem 

(4.5a)) (T~)'(x) : -(I- Bu)~(x) (0<x<+~); 

(4.5b) lim P+~(x) = ¢+, ll~(x)llL2[_z,+1] : 0(I) (x ÷ +~), 
x+0 

has a unique solution ~ : (0,+=) + L2[-l,+l] (cf. [22], Theorem 3.1). 

We have 

THEOREM 4.3. For some r > 1 let ~E [r[-1,+1] have the property 

that a n : (n+~).-~_i/+i~(t)Pn(t)dt ~ I (n : 0,1,2,...). Then on all 

C-admissible Banach spaces H that are continuously embedded in 

i1[-1,+i] as a dense linear 8ubspace, are compatible with ~ and 

on which T has a dense range, the boundary value problem 

(4.6a) (T~)'(x) : -(I- B)¢(x) (0<x<+-); 

(4.6b) lim IIP+¢(x) - ¢+II H = 0 
x+O 

has at least one bounded solution ¢:(0,+~)+H. The number of li- 

nearly independent bounded solutions of the corresponding homo- 

geneous problem (where ~+ : O) is finite and equals dim Ker (I- B) 

- ~dim H0, where H 0 is the singular subspace. In particular, 

there is a unique bounded solution for every ~+ if and only if 

all partial multiplicities of L(h) at ~ : 0 equal +2. 

It is possible to give a more direct description of the 

number of linearly independent bounded solutions. Let M : 

{ha 0 : a n: +1}, and call a subset {k+l,...,k+m} a cycle of M of 

length m, if and only if k 6 M and k+m+14 M. Then M is decomposed 

into a disjoint union of cycles. Note that Ker (I- B) equals 

span {Pn : n ~ M}. By Theorem VI 4.1 of [22] we have dim H 0 - 

dim Ker (I- B) : ~(M), where e(M) is the number of cycles of odd 

length. Hence, dim Ker (I- B) - ~dim H 0 is one half of the diffe- 
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rence of the cardinality of M and of ~(M). Thus there is a unique 

bounded solution for every %+ if and only if all cycles of M : 

{n~ 0 : a n : +1} have length one (i.e., if {an,an+ 1} ~ {1} for n~ 0). 

Proof of Theorem 4.3. Let S be the associate operator (i.e, 

ASx : Tx, xE Ker P0 ). Putting ~0(x) : Po~(X) and ~l(X) : (l-P0)~(x), 

Eq. (4.5a) can be decomposed as follows: 

(4.7a) ($91)'(x) : -~l(X) (0<x<+~); 

(4.7b) (T~0)'(x) : -(I- B)~0(x) (0<x<+~). 

Since dim H0< +~, T acts as an invertible operator from H 0 onto 
+ + 

H 0 Im P0 and the order of a (possible) pole of L(1) -1 at I = 0 

is at most 2, one easily computes that 

(4.7c) @0(x) = (I- xT-IA)h0 (0<x<+-), 

where A = I- B and hOE H 0. Since ~0 is bounded, we see that Ah 0 : 0 

and ¢o(X) ~ h O. 

Putting }0(x) : P0}(x) and ~l(x) = (I- P0)}(x), Eq. (4.5a) 

can be decomposed as follows: 

(4.8a) (S~I)'(x) : -~l(x) (0<x<+~); 

(4.8b) (T}0)'(X) : -(I- Bu)~0(x) (0<x<+-). 

(Note that (I- Bu)SX = Tx, x E Ker P0 ). Using the specific form 

of Bu, Eq. (4.8b) is easily solved in the form 

(4.8C) ~0 (x) : e-X/U(I- P)h0 + e+X/U0h0 (0<x<+-), 

where u> 0 and h0 E H 0. Obviously, ~0 is bounded if and only if 

Ph0 = 0. Here M+ = Im 0 (resp. M_ = Ker 0) is a maximal strictly 

positive (resp. negative) subspace of H 0. 

Using the decompositions (4.7a) - (4.7b) and (4.8a) - (4.8b) 

the boundary Value problem ~+ can be reduced to one of the form 

(4.5) (with a different ~+). The reduction does not depend on the 

particular choice of the C-admissible space H. Therefore, in H 

one finds the same result as in £2[-i,+1]. For the result in 

[2[-i,+I] we refer to Theorem IV 3.4 of [22]. (The inversion 

symmetry J referred to in this theorem is the map (Jh)(u) = h(-u); 

see Section III.7 of [22]). D 
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Now Theorem 3.2 has been generalized to the case a n~ +1 

(n = 0,1,2,...), and thus the conservative case of the Transport 

Equation is included in our description. 

5. SPECTRAL SUBSPACES, PROJECTIONS AND SEMIGROUPS 

Throughout this section H stands for a C-admissible Banach 

space that is continuously and densily embedded in L1[-1,+1] ; it 

is supposed that T has a dense range on H. If ~ £r[-1,+1] for 

some r> I and H is compatible with ~, we employ the (unique) 

bounded solutions of the boundary value problems (3.1) and (3.2) 

to construct spectral subspaces, projections and semigroups. In 

Section 6 these entities will enable us to write down the solu- 

tions of these boundary value problems. We put A = I- B. 

THEOREM 5.1. Let the C-admissible space H be as above, and 

let H be compatible with ~ kr[-1,+1] for some r > I. Assume that 

an (n+~)- ½ +1~ = _1 ~ g(t)Pn(t)dt ~ i (n= 0,1,2,...). Then there exists 

a decomposition of the form 

(5.1) H = Hp ~ H m ~ HO, 

where H 0 denotes the singular subspace, Hp~H m = Ker P0 and the 

closed subspaces Hp and H m have the following properties: 

(i) Hp and H m are invariant under the associate operator S and 

~(sl~ ) ~ EO,+~) and ~(sl~ ) ~ (-~,o]; 
~P -1 ~,m + -1 . . 

(ii) the operator (-SIH) (resp. ( SIH ) ) is the infin~tes~- 
P m 

mal generator of a bounded analytic semigroup (Up(X))x~ 0 

(resp. (Um(X~)x~ 0) on Hp (resp. Hm); 

(iii) if Pp (resp. Pm ) denotes the projection of H onto Hp (resp. 

H m) along H m~ H 0 (resp. Hp~H0), then for O~x<+~ the ope- 

rator Up(X) - U+(x) (resp. Um(X) - U_(x)) is compact. Here 

for h~ H one puts Up(X)h = Up(X)Pph and Um(X)h = Um(X)Pmh. 

Proof. First it is assumed that {a n : n~ 0}c (-~,1). Under 

this hypothesis the singular subspace H 0 is trivial, the operator 

A is invertible and the associate operator has the form S = A-IT. 

Let us construct the closed subspaces Hp and H m. Observe 

that the symbol of the Wiener-Hopf operator integral equation 
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(5.2) 4(x) - H(x-y)B4(y)dy = ~(x) (-~<x<+=) 

is given by (3.5), belongs to the Wiener algebra 

{cI + _~/+~eX/lk(x)dx : k c [l((-=,+~);i(H))}and has invertible 

values only. So for every isps+~ and m c [p((-=,+~);H) the above 

equation has a unique solution 4~ in [p((-~,+~);H). Given %(x) = 

TH(x)~ (i.e., m(x) = U+(x)# for x> 0 and ~(x) = -U_(-x)¢ for x < 0) 

we define operators Pp and Pm on H by 

PP : x¢01im 4¢(x), Pm = - x+01im 4¢(x), 

where 4¢ is the unique solution in [I((-~,+=);H) of Eq. (5.2); 

note that 4~ is continuous except for a jump at x= 0. Observe that 

Pp% + Pm¢ = lim 9%(x) - lim 4~(x) = lim TH(x)~ lim TH(x)% = 
x+0 , x+0 x¢0 x÷0 

P+~ + P_~ = %, % ( H. Further, if Pp# = Pm~ = 0, then for ~(x) = 

TH(x)# the solution 4~ of Eq. (5.2) would be continuous on all of 

~. From Eq. (5.2) the continuity of TH(.)# would follow, and 

thus P+% = lim TH(x)¢ = lim TH(x)~ = -P_~ { H+ n H_ = {0}. There- 
x + O  x+0 

fore, Pp and Pm are complementary projections. We put Hp = Im Pp 

and H = Im P 
m m 

Given ~e H let 4% be the unique solution of Eq. (5.2) with 

~(x) : TH(x)~ (0 ~ x ~). We define operators Up(X) (x~ 0) and 

Um(X) (xa O) by 

Up(X)¢ : 4¢(x) (x> 0), 

Um(X) ¢ = -4¢(-x) (x> 0), 

Up(0)~ = lim 4¢(x); 
x+0 

Um(0) ~ = - lim 4~(x). 
x÷0 

So Up(0) = Pp, Um(0) : Pm" Since on L ((-~,+~);H) the operator 

(L4)(x) = 4(x) - _~f+~H(x-y)B4(y)dy (-~<x<+~) has a bounded in- 

verse, it is easily seen that Up(X) and Um(X) are bounded and 

llUp(X)ll M ilCllI, ll%(x)I[ M IIL- II; 
By the continuity of 4~ on [0,+~) and (-~,0] the functions Up, 

U m : [0,+-) + [(H) are strongly continuous. 

To prove that U and U are semigroups, we apply the argu- p m 
ment of (the first part of) the proof of Theorem 2.1 and obtain 
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(5.3a) (T~¢)'(x) : -(I- B)~¢(x) (0 ~ xc~); 

, lim ~¢(x) : (5.3b) lim ~¢(xl) ~ Pp¢ -Pm ¢. 
x+O x+0 

For 0~y<+~ the function ×y(X) = ¢~(x+y) (x~ 0), ×y(X) = 0 (x< 0), 

is a solution of Eq. (5.2) with ~(x) = T~(x)Up(y)~ (0 ~ x ~), and 

thus ×y(X) = Up(X)Up(y)~ (x~ 0) and ×y(X) = -Um(-X).0 = 0 (x< 0). 

So we have for 0~x<+~: 

Up(X)Up(y) = Up(x+y) (xe 0); Um(X)Up(y) = 0 (xe 0). 

Hence, Im Up(X) c Hp (xe 0) and Up is a semigroup. Analogously, 

Im Um(X) c H m (x~ 0) and U is a semigroup. 
_i m 

Let us show that A T leaves invariant Hp and H . It is 

easily checked that for ~ ~ H the function ~(x) = A-i~¢~(x) sa- 

tisfies 

(T})'(x) : -TA-I(T¢¢)'(x) : -T¢¢(x) = -A}(x) (0 ~ x (m). 

So A-ITPp~ = lim }(x) c Hp and A-ITPm @ = - lim }(x)( H m. 
x+O x+O 

Let us compute the infinitesimal generators of the bounded 

strongly continuous semigroups (Up(X)IHp)Xe 0 and (Um(X)IHm)XeO • 

For O<x<+~ we have 

x-iT{Up(X) Up(0)}% x i ;x -i [x - = - (T~¢)'(y)dy = -x A~(y)dy, 
0 0 

and by the continuity of ~% on [0,+=) this tends to -A~#(0) = 

-APp~ as x+ 0. Therefore, if Pp~ belongs to the domain of the 

generator Gp of (the restriction to Hp of) the semigroup 

(Up(X))x~0, we have A-ITGpPp% = -Pp%. Conversely, if h belongs 

= lim ~(x) for some % ( H and to the domain of Gp, then h = Pp~ x+0 

~ = Up(.)~ is differentiable on (0,+=), while 

TUp(X)Gph = (T~)'(x) : -A~(x) = -AUp(X)h, 0<x<+ ~. 

For x + 0 we get TGph = -Ah, and thus h ~ A-IT[Hp]. Hence, Gp = 

_(A-ITIH )-I. Similarly, +(A-ITIHm )-i is the infinitesimal gene- 

rator of P(the restriction to H m of) the semigroup (Um(X))xz 0. 

Since the above semigroups are bounded and a(A-IT) c ~, we 

have 
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(5.4) ~(A-ITIHp) c [0,+~), ~(A-ITIHm ) c (-~,0]. 

Clearly, for 0<x<+~ we have llUp(x)*ll : II%(x)ll + 0 as x+ +~, where 

the convergence is uniform in ¢ on bounded subsets of H. Hence, 

(5.5) lim llu (x)rl : o, lira llUm(X)II : o. 
x++~ P x÷+~ 

To establish the analyticity of the semigroups take ~ { H and 

consider Eq. (5.2) for m(x) = TH(x)¢ (0 ~ x (~). First we show that 

the integral g%(x) = _~/+=H(x-y)B~¢(y)dy, with ~% being the solu- 

tion, represents an analytic function on ~\ i~. Putting (U(t)h)(D) 

= e-it/~h(~) (-is~s+i) and observing that NU(t)II = i (t (m), we 

have H(z) = U(Im z)H(Re z) for Re z ~ 0. Hence, 

IIH(x-y)B¢¢(y)II ~ IIH(Re x - Y)B*¢(Y)II; 0<y<+-, Re x > 0, 

and thus g~(x) is given by an absolutely convergent Bochner inte- 

gral for every Re x > 0. Because the absolute convergence of this 

integral is uniform in x on strips of the form e1~Re xsc2, where 

0<c1<e2<+~, it appears that g~(x) depends analytically in x on 

the open right half-plane. Since TH(.) is analytic on ¢\i~, the 

functions Up(X)¢ and Um(X) ¢ depend analytically on x for every 

~ H. Thus Up and U m are analytic on the open right half-plane. 

(Here we employed Theorem 4.4 G of [25]). 

It remains to prove that 

(5.6) lira llUp(X)¢ - P ¢II : 0, ¢ e H 
x+0,1arg xl~B P 

(and similarly for Um). Remark that 

H ( x - y ) -  H( -y)  dy = P+ ( x - y ) B ~ o ( y ) d y  + 

+~ R 
+ [P U (x)] I H(x-y)B**(y)dy [ ~ x _- _ (-y)B~¢(y)dy. 

-~ 0; 

Since (U_(X))x~ 0 is an analytic semigroup, we have 

l im H ( x - y ) -  H( -y)  B~¢(y)dy  = 0, 0 < 6 < ~ .  
x ~ 0 , 1 a r g  x I ~  -~  

Prom t h i s  r e l a t i o n s h i p  fo rmula  ( 5 . 6 )  i s  c l e a r .  The semigroups  

(Up(X)lHp)X~ 0 and (Um(X)lHm)X~0 a r e  a n a l y t i c ,  i n d e e d .  
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To prove the compactness of Up(X)- U+(x) and Um(X)- U_(x), 

we consider the convolution equation 

(5.7) ,~(x) - H(x-y)B,T(Y)dy : ~(x) (-T<X<+T). 
-T 

By the "projection method" (Theorem 3 of [7]) for • large enough, 

for every l~p~+~ and m c Lp((-T,+T);H) Eq. (5.7) has a unique solu- 

tion CT in Lp((-T,+T);H). Furthermore, if we set CT(X) : 0 for 

Ixl ~ ~, and if ¢ denotes the unique solution of Eq. (5.2) (with 

~ Lp((-~,+~);H)), we have 

(5.8) T~+~lim IICT- ¢ llLp( (_=,+=) ;H) = 0. 

On Lp((-T,+T);H) (0<T<+~, 1~p~+~) the operator (KCT)(X) : 

_Tf+~H(x-y)B¢~(y)dy (-T<X<+T) is compact. (The proof is analogous 

to the proof of Lemma 1.1 of [8], because B is a limit in the norm 

of operators of finite rank). Further, if ~(x) = TH(x)¢ (0~ x~]R), 

the solution ~r of Eq. (5.7) is continuous on [-T,+~] except for a 

possible jump at x = 0. Using the compactness of K on L((-T,+T);H) 

it follows that the linear operators on H that map ¢ into 

lim (K~)(x), are compact. But from (5.8) it is clear that these 
x+0 
operators converge in the norm of L(H) to Up(X)- U+(x) (x~ 0) and 

Um(-X)- U_(-x) (x~ 0), respectively. Hence, the operators 

Up(X)- U+(x) (x~ 0) and Um(X)- U_(x) (xz 0) are compact. 

Finally, we extend our results to the case {a n : n~ 0}c (-~,I], 

where H 0 might fail to be trivial and A might fail to be inverti- 

ble. If S: Ker P0 ÷ Ker P0 denotes the associate operator (see 

Section 4), take u> max (IITII,IISII) and let M+ (M_) be a maximal 

strictly positive (negative) subspace of H 0 (endowed with the in- 

definite inner product (4.3)). Then M+$M_ = H 0. Let p be the 

projection of H 0 onto M+ along M_ and put 

B u = B(I- P0 ) + (I+ u-iT)(I- o)P 0 + (I- u-IT)PP0 ; 

A u = I - B u = AP0 - u-IT(I- P)P0 + u-ITPP0 

(see Proposition 4.2). Then H is compatible with B u and 

AuiT : S @ (-U)IM_ @ UIM+ , ~(A~IT) : ~(S) u {u,-u}, 
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where s(S)n {u,-u} = ~. Using the first part of the proof one dis- 

covers that Ker P0 (i.e., the subspace on which S is defined) can 

be decomposed as the direct sum Hp@H m = Ker P0' where Hp and H m 

are closed S-invariant subspaces, S[H ] is dense in H_, S[H m] is 
P~ 1 p 

dense in H m and the operators (-SIH)-i and (+SIHm)- generate 

bounded analytic semigroups. In fac~, for the operator B u the ana- 
-i logues of Hp and H m are the A u T-invariant subspaces Hp@M+ and 

H m@M_, respectively. To see this, note that the spectrum of the 

restriction of A-ITu to Hp@ M+ (resp. H m@M_) is contained in 

[0,+ ~) (resp. (-~,0]). Now the theorem has been extended to the 

case {an: n~ 0} c (-~,i]. D 

COROLLARY 5.2. Let the C-admissible space H be as above, and 

let H be compatible with ~E £r[-i,+l] for some r> i. Assume 

a : (n+l)-~ + 1 '  _i f ~(t)Pn(t)dt ~ i (n : 0,I,2 ...). Put H + : A[Hp], + ' p 
H = A[H m] and H 0 = T[H0]. Then we have the identities 

+ T[Hm ] : H + A[H0] + (5.9a) T[~p = Hp, m' c H0, 

the decompositions 

(5.9b) Hp@H m@H 0 : H, H +¢H +@ + p m H 0 : H, 

and the intertwining properties 

(5.9c) TPp : P;T, TP m : P~T, TP 0 = P~T; 

+A : P~A (5.9d) APp : P~A, APm : Pm ' AP0 

where.H + P++p (P~) is the projection of H onto H +p (H +m ) along H+m @H0+ 

( p @ H0). 
Proof. The corollary is a direct consequence of the follow- 

ing facts: 

(1) A acts as an invertible operator from Ker P0 = Hp@ H onto 
+ : H+ ® H+ " m Ker P0 p m' 

@ + 
(2) T maps Ker P0 into Ker P0 and H 0 into H0; 

+ 
(3) T has a dense range and T[H 0] = H0; 

(4) the subspaces Hp and H m are invariant under S, and 

(5) ASh = Th for every h ~ Ker P0" [] 
+ 

With the operator S + on the subspace Ker P0 = A[Ker P0 ] given 

by AS = S+A, one can associate bounded analytic semigroups on H + 
P 
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and H + that satisfy the relationships 
m 

+(x)A, AUm(X) = U~(x)A; (5.10a) AUp(X) = Up 

(5.10b) TUp(X) : U+(x)T,p TUm(X) : U~(x)T. 

The infinitesimal generators are (-S+IH+) -I and (+S+IH+) -I. Using 

the compactness of B : I- A one easily ~hows that for ~z 0 the 

operators U+(x) - U+(x) and U~(x)- U (x) (and therefore P+- P+ and p - p 
P+- P ) are compact. m 

If H = i2[-1,+i] , the operator S is self-adjoint with respect 

to the inner product 

<f'g>A = <Af,g> (f,g( Ker P0 ), 

which is equivalent to the usual one. If F denotes the resolution 

of the identity of the opretor S, then Pph : F((0,¢~)) (I-P0)h and 

Pm h = F((-~,0)) (I-P0)h for every h E L2[-l,+i] (see Section III.3 

of [22]; for an anisotropic case see [15]). 

THEOREM 5.3. Let the C-admissible space H be as above, and 

let H be compatible with ~ [r[-1,+I] for some r > i. Assume 

a n (n+~)-~_if+l~(t = )Pn(t)dt ~ i (n = 0,1,2,...). Then there 

exists a subspace N of Ker (I- B) such that 

( 5 . 1 1 a )  Hp ¢ N ~ H_ : H, H m ~ N ~ H_ : H. 

Furthermore, if {an,an+ 1} ~ {1} (n : 0,1,2,...), then 

(5.11b) Hp 8 Ker A ~ H_ = H, H m ~ Ker A ~ H+ = H. 

Proof. For later use (in multigroup Transport Theory) we 

shall postpone the application of Theorems 3.1 and 4.3 until the 

second half of the proof. Fist we assume that an<+i (n=0,1,2,...). 

Consider the operator integral equations 

(5.12a) ~+(x) - ~(x-y)B~+(y)dy : ~(x) (0<x<+~); 
0 

I ° V_(x) - H(x-y)B@_(y)dy : ~(x) (-~<x<0). (5.12b) 

Let the subspaces 
P 

(5.13a) 

and ~m be defined by 

~p : {-lira ¢+(x) 13¢cH: ¢+c i ((0,+~);H) satisfies (5.12a) for 
x+0 ~(x) :TH(x)¢}; 



van der Mee 432 

(5.13b) H : {-lira 4_(x) I3@EH: 4_c L ((-~,0);H) satisfies (5.i2b) for 
m x+0 ~(x) : TH(x)¢}. 

(Note  t h a t  4+ and 4_ have  c o n t i n u o u s  e x t e n s i o n s  t o  [ 0 , + ~ )  and 

( - ® , 0 ] ,  r e s p e c t i v e l y ) .  Fo r  ~ ( x )  = TH(x)¢  ( 0 ~  xe ]R)  t h e  f u n c t i o n s  

4+ and 4_ s a t i s f y  t h e  o p e r a t o r  d i f f e r e n t i a l  e q u a t i o n  ( T ¢ ) ' ( x )  = 

- ( I -  B ) 4 ( x )  on ( 0 , + ~ )  and ( - ~ , 0 ) ,  r e s p e c t i v e l y .  H en ce ,  HpC Np 
and Hm c Hm" 

Le t  us  p r o v e  t h a t  f o r  ~ ( x )  = TH(x)¢  w i t h  ¢ c H e v e r y  s o l u t i o n  

of Eq. (5.12a) and Eq. (5.12b) is uniquely determined by its 

value at x = 0. Let 4+ be a solution of Eq. (5.12a) with ~(x) = 

TH(x)¢ (0<x<+~) and lim 4+(x) = 0. As in the proof of Theorem 
x@0 

2~i one sees that (T4)'(x) = -(I- B)4(x) (0<x<+~), and thus the 

right derivative of T 4 at x= 0 exists and vanishes. Putting 

4(x) = 0 for x < 0, the function 4:(-~,+~) ÷ H is bounded and sa- 

tisfies the equation (T4)'(x) = -(I- B)~(x) (xc~) and the iden- 

tity 4(0)= 0. So 4 is a solution of Eq. (5.2) in L ((-~,+~);H) 

with right-hand side m(x) e 0. Thus @ = 0. Hence, every solution 

is uniquely determined by its value at x= 0. 

Since TH(x)@ = TH(x)P+@ (x> 0) and TH(x)¢ = TH(x)P_¢ (x< 0), 

we have 

I % ( 5 . 1 4 a )  dirn{~+14+(x) - H(x-y)B4+(y)dy = 0 fo r  0<x<-~} = dim [ n H_]<+~; 
0 

I ° (5.14b) dim{4_14_(x) - H(x-y)B~_(y)dy : 0 for +~o<x<0} : dim [%n H+]<+~. 

Further, Hp+ H_ (resp. Hm + H+) is the set of those vectors @ e H 

for which Eq. (5.12a) (resp. (5.i2b)) with right-hand side 

~(x) = TH(x) has a solution 4+ e ~((0,+~);H) (resp. 

4_ c i ((-~,0);H)). Hence, 

(5.15a) codim[%+ H_]~ codim{~i((0,+~);H)IEq. (5.12a) has a solution}<+~; 

(5.15b) codim[%+ H+]~ codim{~eL((-~,0);H)IEq. (5.12b) has a solution}<+~. 

But Hp c Hp and Hm c Hm, and therefore 

(5.16a) dim[Hp n H_] ~ dim[Hp n H_], dim[H m n H+] ~ dim[H m n H+]; 

(5.16b) codim[Hp+H ] ~ codim[Hp+H_], codim[Hm+H +] ~ codim[Hm+H+]" 
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Put V = P+Pp + P-Pm" Then I- V = P+Pm + P-Pp = (P--P+)(Pp-P+) 

is a compact operator (see Theorem 5.1, third part). Since Ker V = 

[Hpn H_] @ [H mn H+] and Im V = [Hp+ H_] n [H m+ H+], one gets 

(5.17) dim[Hp n H_] + dim[H mn H+] = codim[Hp+ H_] + codim[H m+ H+]. 

From Theorem I of [7] (whose proof is based on methods from 

[9]) it follows that the right (left) indices KI,...,K n (01,...~pm) 

for the Wiener-Hopf factorization of the symbol (3.4) of 

Eq. (5.12a) with respect to the imaginary axis (-i~,+i~) satisfy 

(5.18a) dim{~+l~+(x) - H(x-y)B~+(y)dy 0 for 0~x~+~} = - ~ ~i; 
0 ~<0 

(5.18b) codim{~ L ((0,+~);H)IE q. (5.12a)has a solution} = + [ • 
~>0<i ' fo 

(5.i8c) dim{,_10_(x) - = H(x-y)B,_(y)dy : 0 for -=<x<0} : + ~>0j[ Oj; 

(5.18d) codim{~ L=((- ,0);H)IE q. (5.12b) has a solution} : ~ pj. 
<0 

However, a slight change of B in the norm of i(H) does not change 
n m 

the right (left) sum index Z <i ( ~ p~) (cf. [11], Lemma 7.2), 
i:l j=l J 

and for an operator B of finite rank the right and left sum in- 

dices are the same (cf. [Ii], Theorem 8.2). Because B is a limit 

in the norm of 6(H) of operators of finite rank, we have 
n m 

(5.19) Z <i :"ZlP j" 
i:l J :  

Next we combine (5.14) - (5.19) and the inclusions HpC Hp 

and HmC H m and conclude that the equality sign holds in (5.15) - 

(5.16) and that 

Hp n H_ : Hp n H_, 

+ H : H + H , H p  - p - 

So if hpE Hp, then hp 

Hmn H+ = Hmn H+; 

Hm + H+ = H m+ H+. 

= hp+ h_ for some~ hp~ Hp and h_~ H_, and 

therefore hp- hp = h ~ Hp n H_. So hp- hp ~Hp n H_c ~p, and thus 

hp c Hp. We may conclude that Hp = Hp and H m = H m. Hence, the iden- 

tities (5.13) provide a description of Hp and Hmdifferent from the 

one given in the proof of Theorem 5.1. In particular, for some 

(and hence every) l~p~+~ and every ~ .Lp((0'+~);H) (resp. 

~ £p((-=,0);H)) the Wiener-Hopf operator integral equation 
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(5.12a) (resp. (5.12b)) has a unique solution @+ s kp((0,+~);H) 

(resp. @_ ~ Lp((-~,0);H)) if and only if the decomposition Hp@H_ 

= H (resp. H me H+ = H) holds true. 

At this moment we incorporate Theorem 3.1 and conclude that 

(5.20) Hp @ H_ : H, H m ~ H+ : H. 

Finally, we drop the assumption that a n < +I (n : 0,1,2,...). 

Let M+ (M_) be a maximal strictly positive (negative) subspace of 

the singular subspace H 0 (endowed with the indefinite inner pro- 

duct (4.3)). Using the operators B u and A u defined at the end of 

the proof of Theorem 5.1, it follows from (5.20) that 

Hp ~ M+ @ H_ : H, H m ~ M_ @ H+ = H. 

So Hp n H_ = H mn H+ = {0} and [Hp¢ H 0] + H_ = [H m~ H 0] + H+ = H. But 

for a subspace N of H 0 we have Hp@ N@ H_ = H (resp. H m~ N~ H+ = H) 

if and only if N@ {[Hp~ H_] n H 0} = H 0 (resp. N¢ {[H m@ H+] n H 0} = 

H0). By Proposition III 5.5 of [22] the subspace [Hp~ H_] n H 0 is 

strictly negative and the subspace [H me H+] n H 0 is strictly posi- 

tive. (Actually this is proved in L2[-1,+1] , but H 0 does not 

depend on the specific form of H). By formula (III 7.5) of [22] 

there exists a subspace N of Ker A that is both maximal positive 

and maximal negative (and hence neutral). For this subspace N 

formula (5.11a) is clear. One may take N = Ker A if and only if 

dim Ker A = ~ dim H0, and the latter is true if and only if 

{an,an+ 1} ~ {1} (n ~ 0) (cf. the paragraph following the statement 

of Theorem 4.3), and therefore in this case formula (5.11b) is 

clear. 

COROLLARY 5.4. Let the C-admissible space H be as above, and 

let H be compatible with ~ ~ Lr[-1,+1] for some r > i. Assume 

a n (n+'~)-~ +1~ = _1 ~ g(t)Pn(t)dt-< 1 (n= 0,1,2,...). If for some sub- 

space N of H 0 the decomposition Hp~N~H = H holds, then also 

(5.21) H + ~ T/N] ~ H = H, p 

where T[N] c H 0. Further, if P is the projection of H onto Hp~ N 

+ @ TIN] along H , along H_ and P+ is the projection of H onto Hp 

then we have the intertwining property 
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(5.22) TP : P+T. 

Proof. Note that P+-P+ is a compact operator (see the para- 
P 

graph following the proof of Corollary 5.2). Put V + = P+Pp + P_Pm +. 

Then I- V + = P+Pm + + P_Pp = (P_- P+)(Pp- P+) is a compact operator 

and TV = V+T. But 

Im V = [Hp~H_]n [Hm~H +], Im V + = [ pH+~H_]n [H+~H+]; 

m + 
Ker V = [Hpn H_]@[H n H+]~H0, Ker V+--[Hp 6H_] ¢[H+nH+]~H0 • 

+6 
From these identities we get codim[Hp H_] = codim[Hp~ H+] and 

+ 
[H+~Hp _]n Im T = T[Hp@H_], and thus [Hp@H_] n TIN] = {0}. There- 

. + 
fore, codzm[Hp~H_] = codim[HpSH_]= dim N = dim T[N], and formula 

(5.21) is clear. The intertwining property (5.22) is obvious. 0 

We conclude this section with some historical remarks. For 

H: = 62[-I,+i] the decompositions (5.11b) are due to Hangelbroek 

in the non-conservative degenerate case (0<a0<l , -a0-<an-<a0 for 

l_<n_<N, an= 0 for n>_ N+i) and to Lekkerkerker [20] in the conser- 

vative isotropic case (a 0 = I, a n= 0 for n_> i). For non-conserva- 

tive cases formula (5.22) originates from Hangelbroek. For 

H = 62[-I,+i] the results of this section can be found in Sections 

111.3 - 111.5 of E22]. 

6. FORMAL SOLUTIONS OF BOUNDARY VALUE PROBLEMS 

In Sections 5 and 4 the finite-slab problem (3.I) and the 

half-space problems (3.2) and (4.6) were shown to be well-posed 

under certain conditions on the phase function and the underlying 

function space. In this section the semigroup and intertwining 

properties derived in Section 5 will be exploited to obtain formal 

expressions for the solution of somewhat more general boundary 

value problems. Throughout this section H stands for a C-admissible 

Banach space that is continuously and densily embedded in 

61[-i,+i] ; it is supposed that T has a dense range. 

THEOREM 6.1. Let the C-admissible space H be compatible with 

-' +l~(t) e 6r[-l,+l] for some r > I. Assume that a n : (n+~) ~_i ] Pn(t)dt 

+i (n = 0,1,2,...). Then for every X e H there exists a unique 

function ~ : (O,T) ÷H such that T~ is strongly differentiable on 
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(O,T) and satisfies the equations 

(6.1a) (T@)'(x) : -(I- B)~(x) 

(6 .1b)  l im  IITP+ (x)- P+XllN : o, 
x+0 

The solution ~ has the form 

(O<x<T<+~); 

lim I I T P _ , ( x ) -  P-XIIH : o. 
X+T 

-i + T-IU~(T_x) + T-I(I xAT-I)p~](V:)-I×, (6.2a) 9(x) = [r Up(X) + 

where V + is the invertible operator given by 
T 

(6.2b) V +~ : P+[P++p U~(T)] + P_[P++m U+p(T)] + P0+ - TP_AT-1p~. 

Note that @(x) is well-defined for 0<x<T, because (U + x)) p( x~O + + 
and (Um(X))x~ 0 are analytic semigroups and T[H 0] = H 0. 

THEOREM 6.2. Let the C-admissible space H be compatible with 

- '  + l~( t )  ~e Lr[-l,+l] for some r > 1. Assume that a n = (n+½) z_i f Pn(t)dt 

1 (n : 0,1,2,...) and that {an,an+ 1} ~ {I} for every n ~ O. Then 

there exists a unique function ~ : (0,+~) +H such that T~ is 

strongly differentiable on (0,+~) and satisfies the equations 

(6.3a) (T~)'(x) : -(I- B)@(x) (0<x<+~); 
i 

(6 .3b)  lim I I T L , ( x ) - x + I I H  : 0, I IT¢(x)IIH : ( x + + = ) ,  
x+0 

for every X+ c H+. The solution ~ has the form 

(6.4) ¢(x) T-Iu + + = (x)P X+, O<x<+~, 
P 

+@ span{TPn:an=+l } where P+ is the projection of H along H_ onto Hp 

Note that ~(x) is well-defined for 0<x<+~. The existence of 

the projection P+ will be derived in the proof of Theorem 6.2. 

Proof of Theorem 6.1. Let ~ : (0,~) +H be a solution of 

Eq. (6.1). By definition, T@ is strongly differentiable on (0,~) 

with derivative -(I- B)@. Using (5.9c) - (5.9d) it is clear that 

TPp~(.) and TPm~(.) are differentiable with derivatives -APp@(.) 

and -APm~(.) , respectively. So both functions satisfy the equa- 

tion $ : -AT-l@. From the contents of Section IX 1.3 of [17] it 

+ H + the initial value problems follows that on Hp and m 

$(X) = -AT-I¢(x), x ( [T1,T 2] c (O,T), 
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H + H + and TP ¢(~2 ) e have unique so- with initial values TPp~(:I)~ P m m 

lutions given by the respective expressions 
+ 

@1 (x) : Up(X-~I)TPp~(T 1) = TUp(X-~I)Pp~(~I), x~ ~1; 
+ 

¢2 (x) : Um(~2-x)TPm~(T 2) = TUm(~2-X)Pm~(~2), x~ ~2" 

Here we have employed (5.10b). But TPp~(.) and TPm@(.) also satis- 

fy these initial value problems. By the uniqueness of the solution 

of these problems and the triviality of Ker T we obtain for 

TI~X~T2: 

(6.5) Pp@(X) = Up(X-~l)Pp@(~l) , pm~(X) = Um(~2_X)Pm@(~2). 

By (5.9c) - (5.9d) the function TP0@(.) satisfies the equa- 

tion $ = -AT-I¢ on (0,~). But T acts as an invertible operator 
+ 

from H 0 onto H0, H 0 has a finite dimension and (T-IA)2h = 0 for 

hc H 0. Therefore, 

(6.6) P0@(x) = e-XT-iA¢ 0 = (I- xT-1A)¢0 , 0<x<~, 

where ¢0 ~ H 0. Prom (6.5) and (6.6) we get for ~l~X~T2 : 

(6.7) @(x) = Up(X-~1)pp~(~l) + Um(~2-X)Pm~(~2 ) + (I-xT-IA)¢0 . 

Suppose that @ satisfies (6.1b) for some x~ H. Substituting 

x = ~1 (x = ~2 ) into (6.7), premultiplying by TP+ (TP) and taking 

the limit as ~1 @ 0 (~2 ÷ T) we see that lim TP+Pp~(X) and 
x+0 

lim TP_Pm~(X ) exist. Suppose that for some N c H 0 the decompositions 
x÷T 

H ~ N ~ H = H ~ N @ H = H 
P - m - 

hold true (cf. Theorem 5.3, where the existence of such Nc Ker A 

is proved). Then by Corollary 5.4 we have 

H + ~ TIN] @ H = H + ~ TIN] ~ H = H. P - m - 

Denoting by P+ (Q+) the projection of H onto H +@TIN] (H~T[N]) 
P 

along H_ (H+) and by P (Q) the projection of H onto Hp~N (H m~N) 
along H_ (H+), one has 

TP = P+T, TQ = Q+T 

(cf. (5.22)). But P+(TP+Pp) = TPP+PD = TPp and Q+(TP_Pm) = TQp_p m 
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= TP m. So ~p = lim TPp¢(X) and ~m = lim TPm@(X) exist. Taking 
x+0 x+T 

T 1 + 0 and T 2 ÷ T in (6.7) and employing (5.10b), we see that 

~(x) : T-Iu+(X)~p + T-IU~(T-X)~m + (I- xT-IA)@0 0<x<~ p ' , 

where ~p { H +p, }m ~ H+m but ~0 ~ H0" Substituting (6.1b) one obtains 

V+(~p + ~m + ) : T¢ 0 X , 

where V + has the form (6.2b). 
T 

It remains to prove that V + is invertible. Because the 

boundary value problem (6.1) certainly has a solution for 

X = T¢ ( Im T (cf. (3.1)), the operator V + has a dense range. From 
T 

the paragraph following the statement of Corollary 5.2 it is 

clear that U~(x)- U+(x) and U~(x)- U (x) are compact ?perators. 

But then V +- I is easily shown to be compact and the invertibil- 
+T 

ity of V is estiblished. D 
T 

Proof of Theorem 6.2. Let ~ : (0,+~) ÷H be a solution of the 

boundary value problem (6.3). According to Theorem 6.1 for every 

0<T<+~ there exists a (unique) X ~ H with P+X T : X+ such that 

has the form (6.2a) on (0,~). More precisely, for 0<x<T we have 

T~(X) :U;(x)(V~)-IxT+ U~(T-x) (V) + -1XT + (I-xAT-1)p~(v~) -1XT. 

So lim T~(x) exists and this limit 
x+0 

+ + -I 
(6.8) x+01im T~(x) : P+p(V$)-IxT + U~(~)(V~)-IxT + P0(VT) XT 

does not depend on T, and hence none of the three terms at the 

right-of (6.8) depends on T. Further, 

0 [ ~) X~. 

Since P+ "V+'-IXT . . U~ $)-IXT II p< T) does not depend on T, one ha~ II (T)P+(V ~ 0 

as T+ += (cf. (5.5)). Because P$(V$)-IX~_ does not depend on T, 

it follows from the estimate IIT@(x)II : 0(i) (x÷ +=) that 

P~(V+)-I X E T[Ker A]. From this estimate it is also clear that 
u+ T + _1 T . + + + -i 
P (V) X : 0(1) (T+ +~). Since U (~)P (V) X does not de- ,, m T % ,, ~ m m % % 

• + + -~ 
pend on T, it follows that Pm(VT) X~ = 0. Thus 

T~(x) : U~(X)$p~ + ~0 (0<x<+~), 
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where ~pC H +p and ~0 ~ T[Ker A]. Substituting (6.1b) we get 

(6.9) P+(~p + ~0 ) : X+. 

First assume that a n < +1 (n : 0,1,2,...). From Theorem 5.3 

and Corollary 5.4 we have Hp~H_ : H, H +p~ H_ : H and TP : P+T, 

where P+ denotes the projection of H onto H + along H and P de- p 
notes the projection of H onto Hp along H_. Therefore, lim T~(x) 

: P+X+, and formula (6.4) is clear, x+0 

Next assume that a n~ 1 (n = 0,1,2,...). Then there exists a 

subspace N of Ker A such that Hp~ N~ H_ : H (see Theorem 5.3), 

and therefore H +~T[N] ~H : H (see Corollary 5.4). So given p 
X+C H+ there exist ~p ~ Hp and ~0 c T[N]c T[Ker A] such that (6.9) 

holds true. Hence, for every X+ c H+ the boundary value problem 

(6.3) has at least one solution. By Theorem 5.3 and Corollary 5.4 

+¢ T[Ker A] ~H : H if and only if {an,an+ 1} ~ {i} for we have Hp 

every n~ 0. But Ker A : span {Pn: ~n :1}" "Hence, the boundary 

value problem (6.3) has a unique solution for every X+ ( H+ if 

and only if {an,an+ 1} ~ {1} for every n~ 0. 0 

The unique solution of the boundary value problem (3.1) is 

obtained from (6.2a) by inserting X : T%. Intruducing the operator 

VT : P+[Pp+ Um(T)] + P-[Pm + Up(T)] + P0 - ~P-T-IAP0 ' 

it follows from Corollary 5.2 that V - I is a compact operator, 
Y 

and from (5.9c), (5.10b) and (6.2b) that TV : V+T. Since V + is 
Y Y Y 

invertible and T has a dense range, it is clear that V is in- 
Y 

vertible. Using TV : V+T and (5.10b) one sees that the unique 
T Y 

solution ~ of the boundary value problem (3.1) is given by 

(6.10) ¢(x) : [Up(X) + Urn(T-x) + (I-xT-IA)P0](V )-I~, 0<x<T. 

Similarly one solves in a formal way the boundary value problem 

(4.6) if a n~ +1 and {an,an+ l } ~ {i} (n: 0,1,2,...). 

A statement of the finite-slab problem in L2[-1,+1] by 

Hangelbroek [15] stimulated the author to investigate this pro- 

blem. Independently of and parallel to the research leading to 

[22] Hangelbroek proved the invertibility of V T in [2[-1,+1] for 

a non-conservative case. In [22] in [2[-1,+1] this result has 

been extended to the conservative case. In [15] Hangelbroek 
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announced an expression of the form (6.10) on £2[-1,+1] in the 

non-conservative case, using the boundary conditions (5.1b) and 

assuming the solution to be continuous on [0,T]. 

Except Eq. (0.1) astrophysicists also study the more general 

equation 

1 
[~(~'~')¢(x,~')d~' + f(x,~) (6.11) (cos 0)d_~dx (x,m) + ~(X,m) = 2-#~J (~¢ fl, 0<x<~), 

where ~ is the unit sphere inI~ 5 and ~ = (sine cos~,sin~ sin~,cos0)E ~. 

From (6.11) one obtains Eq. (0.i) by averaging over azimuth (i.e., 

by setting ~(x,cos e) = (2n)-10/2n%(x,m)d~). Defining ~(x), f(x), 

T and B by 

¢(x)(~) = ¢(x,~), f(x)(~) = f(x,~); 

(Th)(m) = (cos 8)~(~), (Bh)(~) = (2~) "1 I~(~.e')h(~;)d~', 
J 

one gets an operator differential equation of the form (0.4). 

Put t ing 

( P + h ) ( m )  = (P_h) (co )  = 

, COS e < 0; h(m), cos 0 < 0, 

one may impose boundary conditions. The "natural" spaces to 

study Eq. (6.11) in are so-called Ca-admissible Banach spaces H 

of functions h: ~+ ¢ with the following properties: 

(1) functions in H that only differ at ~ ~ with cos 0 = 0 are 

identified; 

(2) for every ~ ~ C the operator T¢ defined by 

(T¢h)(~) = ¢(cos 8)h(~)(~=(sine cos¢,sine sine, cos e) ~ c) 

is bounded and IIT¢II_< MHSUp{I¢(~)l :-l_<U_<i } for some finite 

constant M H only depending on H. 

Examples of such spaces are Lp(~) (l_<p_<+=) and C(~_)~ C(S+). For 

Eq. (6.11) and C~-admissible Banach spaces the results of Sec- 

tions I to 6 can be reproduced. The space L2(~) appears in [21]; 

in [6] the spaces LD(C) (l_<p<+~) are considered. 
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