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WEIGHTING OPERATOR PATTERNS OF PRITCHARD-SALAMON REALIZATIONS 

M.A. Kaashoek, C.V.M. van der Mee and A.C.M. Ran 

In this paper a complete characterization is given of those operator kernels which 
appear as weighting patterns of Pritchard-Salamon realizations. The result is based on an 
extension of the standard shift realization to weighted L2-spaces of vector-valued functions. 

0. INTRODUCTION 

This paper concerns a class of infinite dimensional systems which has been introduced 

in [PS, $1] and is known as the Pritchard-Salamon class (cf., [C, CLTZ, vK]). Systems from 

this class have been successfully used in the analysis of control and optimization problems 

involving partial differential equations and/or delay equations (see, e.g., the books [CZ], 

[vK]). 
In this paper we consider for Pritchard-Salamon systems the analogue of the weight- 

ing pattern (or, in other words, the impulse-response function), i.e., the inverse Laplace 

transform of the transfer function. The weighting pattern is a function on 0 < t < ~c 

whose values are bounded linear operators acting between (possibly infinite dimensional) 

input and output spaces. Our main result gives a complete description of the class of all 

operator-valued functions that can appear as the weighting pattern function of a Pritchard- 

Salamon system. Furthermore, for such an operator-valued function we show how one may 

construct a corresponding Pritchard-Salamon realization. 

Pritchard-Salamon realizations have two infinite dimensional state spaces, one contin- 

uously and densely embedded in the other. The crucial role of this embedding is clarified 

further by writing the corresponding embedding operator explicitly. The latter helps to 

simplify the duality theory. As a second by-product we link the stable Pritchard-Salamon 

systems with the realization triples considered in [BGK 1, 2]. It turns out that after a 

small modification any system with a stable Pritchard-Salamon realization and finite di- 

mensional input and output spaces is a realization of the type used in [BGK 1, 2]. The 

converse is not necessarily true. 

The paper consists of four sections. In the first section we introduce the weighting 

pattern, state the main theorem and make the connection with the realization triples 

from [BGK 1, 2]. In Section 2 we give a new definition of the transfer function of a 

Pritchard-Salamon system, and show that it leads to the same formulas for the transfer 
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function which usually appear. The third section gives a duality theorem, which we need 

for our main result. In the fourth section we present the construction of a Pritchard- 

Salamon realization, starting from the weighting pattern, and complete the proof of the 

main theorem. At the end of this section we also compare our results with the realization 

theory developed.in [$2]. 

1. M A I N  THEOREM AND CONNECTION WITH REALIZATION TRIPLES 

Let V and W be complex Hilbert spaces (not necessarily separable), and let ~- : W-*V 
be a fixed continuous and dense (linear) imbedding. For A ( V ~ V )  a possibly unbounded 

operator we define the part Aw of A in W (with respect to the injection T) by 

7)(Aw) = {x E W I 7x C D(A), ATx E T[W]}, vAwx = Avx, x e D(Aw). 

Then Aw(W--~W) is a closed operator whenever A ( V ~ V )  is closed, but it may- fail to be 

densely defined, even if A ( V ~ V )  is densely defined. 

Let Y and U be complex Hilbert spaces. We call 9 = (A, B, C; V, W, U, Y) a Pritchard- 
Salamon realization (or a PS-realization for short) if the following conditions hold: 

(1) - i A ( V ~ V )  is densely defined and generates a strongly continuous semigroup 

S(.; - iA) ,  
(2) - l A w  ( W ~ W )  is densely defined and generates a strongly continuous semigroup 

S ( . ; - l A w )  while 

S(.;-iA)~" : ~-S(.;-lAw), (1.1) 

(3) B e / : (U,  V) and C e s Y), 
(4) there exist t > 0 and 7 > 0 such that 

HCS(';-iAw)X[IL~([o,~],z) <_ 71[Txl[vo 

(5) there exist t > 0 and/3 > 0 such that 

~o ' S(s; - id)Br  e T[W], ds 

and 

x ~ w ,  

r C L2([0, t],U), 

lIT -I S(s; - iA)Br dsllw <_ fltlr r e L2([0, t],U). 

The semigroup property guarantees that (4), respectively (5), holds for each t > 0, with 

the choice of the constant 7 > 0, respectively/3 > 0, depending on t. 
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Given a Pr i tchard-Salamon realization as above the associated control system 

2 x(t) = S(t; - iA )xo  + S(t  - s; - i A ) B u ( s )  ds, 

y( t )  = c x ( t ) ,  

is a so-called Pritchard-Salamon system (see [PSI). 

Usually, in the analysis of Pr i tchard-Salamon systems and their realizations the em- 

bedding operator  T appears  only implicitly because one takes W C V. However, as we shall 

see in Section 3, the duality theory for PS-realizations simplifies considerably if one writes 

r explicitly. In [PS] and other publications prior to [CLTZ], the requirement 2)(A) C W 

is par t  of the definition of a PS-realization. This circumvents several technical difficulties 

of the proofs, but restricts its applicability. Both in [CLTZ] and the present paper  a more 

extensive class of PS-realizations is considered where it is not assumed tha t  D(A) C W. 

Let 0 = (A, B, C; V, W, U, Y) be a PS-realization. The input-output operator of 0 is 

the linear map  To : L2,1oc ( ]R+, U)-~L2,1oc (~+, Y)  defined by 

(ToO)(t) = Cr  -1 S(t  - s ; - iA )Br  

This is well-defined by properties (5), (3) and the remark made directly after (5) (see also 

[CLTZ]). In fact, from (5) and (3) it follows that  Toe is a continuous Y-valued function for 

each r C L2,1oc (N+,  U). As (4) holds for all t and r[W] is dense in V, there is for every 

t > 0 a bounded linear operator  Ao,t : v-+n2([O,t], Y)  defined by 

(ao,,rw)(s) = C S ( s ; - i A w ) w ,  0 < s < t, w e W. (1.2) 

However, for 0 < s < min{t l , t2}  we have (Ao,,,rw)(s) = ( A o , ~ , r w ) ( 8 ) .  Therefore, there 

exists a unique linear operator  Ao : V--+L2,tor (~:~+, Y)  such tha t  

(Aox) ( s )  = 0 < s < t. 

The operator  Ao is called the observability operator of 0. By (5) and the remark made 

directly after (5) there is for each t > 0 a bounded linear operator  Fo,t : L~([0, t], U)--+W 
defined by 

/0' P0,tr = r -1 S(s; - i A ) B r  ds. (1.3) 

Now define the weighting pattern of 0 to be the operator-valued function 

ko:  z ) ,  ko(t)  = 

where A0 is the observability operator  of 0. 
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The main problem we consider in this paper is the characterization of those func- 

tions k(-) which appear as weighting patterns of a PS-realization. Our main result is the 

following. 

THEOREM 1.1 Let U and Y be complex Hilbert spaces, and let k(.) : F~+ ~s  Y).  

In order that k(.) is the weighting pattern of a PS-realization it is necessary and sufficient 

that for some # c ~ the following hold: 

e~k(.)u e Lu(N +, Y )  (u e U), eWk(.)*y e L2(]R +, U) (y e Y),  (1.4) 

where the asterisk denotes the adjoint. 

As we shall show in Section 4 (see Corollary 4.3) from Theorem 1.1 it follows that  

the input-output  operator and the weighting pat tern are related as follows: 

(Tor = (P) ko(t - s)r t E ]R + a.e. , (1.5) 

where the symbol (P)  refers to the fact that  the integral on the right hand side is to be 

understood as a Pettis integral, i.e., 

2 ((Tor y) = ( k o ( t -  s)r y)ds, y C Y. 

If the input space U and the output  space Y are both finite dimensional, U = C TM 

and Y = C ~, say, then k(.) may be viewed as an r x m matrix function, and (1.4) reduces 

to the requirement that  the entries of k(.) belong to eWL2(~  +) for some #. Furthermore, 

in this case the integral in (1.5) is a usual Lebesgue integral. In general, from condition 

(1.4) it does not follow that  the integrand in (1.5) is Boehner integrable (see [Ka]). 

The next lemma is a technical result the proof of which is based on the arguments 

used to prove Lemma 3.7 in [C]. Among other things, the lemma will be used to prove the 

necessity of the first part  of (1.4). 

In the sequel we write -w0 for the maximum of the growth bounds of the two semi- 

groups associated with a PS-realization 0. 

LEMMA 1.2 Let 0 = (A, B, C; V, W, U, Y)  be a PS-realization, and let -wo be the 

maximum of the growth bounds of the semigroups S ( . ; - i A )  and S ( . ; - i A w ) .  Then for 

every # < wo there are constants ~/(#) and ~(#), independent oft ,  such that for each t > 0 

[le~Ao,*X]ln~([o,t],y) ~ ~(~)I]xllw, x e V; 

Ilro,~(e~r ~ ~(u)tl~liL~Cto,,],u>, r e L2([0,t], U). 

(1.6) 

(1.7) 
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Moreover, both statements also hold with L2 replaced by L1. 

PROOF. Fix 0 < tl < co. For t > t l  take N such that  Nt l  < t < (N + 1)tl. For 

x E T[W] we have with x = Ty using (4) 

o' e' "8 II(Ao, w)(s)ll  ds < 

N lit1 - zAw)Yi ly  ds<_ E e2'~'tl e 2"~ I ICS(s ; - iAw)S(n t l ;  " 2 
n:O 

N 

-~A)TYHv < 
n:O 

N 

n : 0  

which settles (1.6) for x E r[W]. Since T[W] is dense in V and Ao,t : V-~L2([0, t], Y) is 
bounded, (1.6) holds for ai1 x C V. For t <_ tl  the same estimate trivially holds. 

To prove the second part, let 4) E L2([0, t], U). For t > t l  we have, writing t = Nt~+v, 

t N - - 1  t l  

+ e N"tl S(Ntl;  - i A )  e"~S(s; - iA)BO(s  + Nt l )  ds. 

Note that  each term of the series belongs to T[W]. Moreover, by (5), applied for t = tl 

and t = v, 

N - ~  ! 1 fo t~ ml)ds ! W Ilro,t(e"r < ~ e ~'~ IT-  S ( n t l ; - i d )  e '~S ( s ; - i d )BO(s  + + 
n=O 

T-1S(Nt l ;  ~o ~ Nt l )  ds w + e N't~ - i A )  e ' ~ S ( s ; - i A ) B o ( s  + = 

N--!  ~0 tl n t l )  d8 w = E e'~"** S ( n t l ; - i d w ) r  -1 eU*S(s;- iA)BC(s + + 
n=O 

S(Nt l ;  fo v ds w + e N"t~ - i A w ) v  -1 e ' ~ S ( s ; - i A ) B r  + Nt l )  <_ 

<_ fl~ e -n(~-")t~ r -1 e'"S(s; - i A ) B r  + n t l )  d. + 
\ n=O 

+ e - s ( ~ - ~ ) a  7- -~ f ~  e " ~ X ( s ; - i A ) B r  + Nt~) ds w - 
JO 

N 

<_ ~2 ~ e -n(~-")~l tIr = ~(~)ilr 
n ~ O  



Kaashoek, van der Mee and Ran 53 

which completes the proof of (1.7). 

By taking # a little smaller if necessary, we see that the results above also hold with 

Lt in place of L2. Indeed, take #1 < # < w. Then 

jo t lte"lAo,tXllLt({o,t],g) = e ("1-~)8 Ile'S(Ao,tx)(s)llg ds 

_ I 

< e( ' l -•) l  L2[0,t] "lle"A~176 

< ~(v) e ( . 1 - . )  L~E0,~I ]lxllv, x e V. 

The analogue of (1.7) is proved in the same way. [] 

From formula (1.6) in Lemma 1.2 it follows that for every # < aJ0 and every u E U we 

have e~ko(.)u = e"  (AoBu)(.) r L2(]R +, Y). This proves the first condition of the necessity 

part of Theorem 1.1. By taking # a little smaller, if necessary, and using the same argument 

as in the last paragraph of the previous proof, we see that e"'ko(.)u E LI(]R +, Y). 
A PS-realization 0 = (A, B, C; V, W, U,Y) is said to be stable if a~0 > 0, i.e., if 

the semigroups S ( . ; - iA)  and S ( . ; - l A w )  in (1) and (2) are both exponentially decaying 

semigroups. In this case (see [PSI) 0 has the following two additional properties: 

(4') there is a bounded linear operator Ao : V--*L2(IR +, Y) such that 

Ao'rx = C S ( . ; - l A w ) x ,  x r W, 

(5') there is a bounded linear operator F0 : L2(IR +, U) -*W such that 

J/ TF06 = S(s; - i A ) B 6 ( s )  ds (r r[W]) 

for r E L2(]R +, U). 

Note that (4') and (5') automatically imply (4) and (5). So 0 = (A, B, C; V, W, U, Y) 

is a stable PS-realization if and only if (1), (2) and (3) hold, the semigroups in (1) and 

(2) are exponentially decaying, and (4') and (5') are fullfilled. Observe that the operator 

defined in (4') is indeed the same as the observability operator defined earlier, i.e., in the 

particular case of a stable PS-realization the image of A0 is in L2(lR +, Y) instead of just 

in L2,1oc (~+ ,  Y). 

For the sake of completeness, let us prove (4') and (5') for a stable PS-realization 0. 

Notice that for every x r W we have C S ( . ; - i A w ) z  C L2(lI~ +, Y) because S ( - ; - l A w )  is 
exponentially decaying. Applying Lemma 1.2, formula (1.6) with # = 0, the boundedness 

of A0 viewed as a map from V to L~(~{ +, Y) follows. To prove (5') first observe that for 

every r r L2(N +, U) the integral in (5') exists and defines a vector, v say, in V. Next, for 
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every posit ive integer n, consider w~ = F0,nr and Vn = vw~. Applying  (1.7) wi th  # = 0 

we see tha t  for every m > n we have 

tlr0, r - ro, oHw <_ 

As r is in L 2 ( R  +, U), we see tha t  w,~ is a Cauchy sequence in W.  Let w be its l imit  in W.  

Then v~ = "rWn-~TW. On the other hand, v ~ v .  Thus v = ~-w E ~-[W], and the opera tor  

F0 in (5 I) is well-defined. The rest of (5 ~) is then an easy consequence of Lemma 1.2. 

The next lemma shows tha t  for many purposes we may  restr ict  our a t ten t ion  to the 

stable case. 

LEMMA 1.3 Let 0 = ( A, B, C; V, W, U, Y) be a PS-realization. For any real number 

# we have that 0(#) := (A + ip lv ,  B, C; V, W, U, Y)  is a PS-realization with the following 
properties: 

(1) (A + i # l y ) w  = Aw + i#Iw,  

(2) S ( t ; - i A  + p ig)  = e ' t S ( t ; - i d ) ,  and S(t; - l A w  + #Iw)  = e ' t S ( t ; - l A w ) ,  

(3) T0(,)r  = e"tTo(e-"'r 

(4) ko(,)(t)u = e"tko(t)u for all u E U. 

If # < a;o, where -a~o is the maximum of the growth bounds of the semigroups 

S ( . ; - i A )  and S ( . ; - l A w ) ,  then 0(#) is a stable PS-realization. 

PROOF. I tems (1) and (2) are s traightforward.  From i tem (2) it also follows tha t  

0(#) is a PS-real izat ion,  as is readi ly checked. For i tem (3), compute  using (2), 

j~0 t (To(,)O)(t) = C'c - t  e ' ( t -")S( t  - s ; - i A ) B r  ds = e"tTo(e-Wr 

Next, (4) is a consequence of the fact that for any t > O, and any w E W we have 

(Ao(,),tmw)(s) = e~sCS(s ; - lAw)w ,  and hence (Ao(,)v)(s) = e~S(Aov)(s) for all v E V. 

Finally, the s tabi l i ty  of 0(#) is clear in case # < we. [] 

One may  view :D(A) as a Hilber t  space by endowing it with the graph norm ilxll~(A) = 

[[Ixtl~ + llAxll~] 1/~ where x C :D(A). 

PROPOSITION 1.4 Let 0 : (A, B, C; V, W, U, Y) be a PS-realization. Then there exists 

a unique C : :D(A)--*Y such that Cx = CTx, x c I ) (Aw) ,  and C is A-bounded, i.e., 

e s Y)  where 7)(A) is endowed with the graph norm [1" II73(A)" 
The opera tor  C defined in the above proposi t ion wilt be called the extended output 

operator associated with  0. 

PROOF. Firs t ,  we prove tha t  we may assume wi thout  loss of generali ty tha t  0 is 

stable.  To see this, let # < aJ0. Let 0(#) be the s table PS-real iza t ion as constructed in 
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Lemma 1.3. Since the graph norms associated with A + i#Tv and A are equivalent norms 

on ~9(A + i# Iv )  = Z)(A), we see that it sumces to prove the proposition for 0(/~) in place 

of 0. 

Let us now assume that  0 is stable. Then, by property (4'), with L2(IR +, Y) replaced 

by L I ( N  +, Y), there exists a constant 7 -> 0 such that 

f0  ~ I l C 5 ( t ; - i A w ) z l l g d t  ~II~zllv,  �9 w .  (1.8) _< Z 

By taking the Fourier transform, we see that for Im A > 0 

I l c ( a  - A w ) - l z l t y  <_ ~@-zllv,  z �9 W. (1.9) 

Thus, C(A - Aw )  l r -1  extends to a bounded operator on V, which we denote by d(A). 

Now, fix )~, and define C :  59(A)--+Y by d = 0(a)(A - A). Then, for x �9 ~(A), we have 

by  (1.9) 

ltdxllg = I I d ( a ) ( a  - A)xllY <_ 110(a)fl(latllxllv + IIAxllv) _< 

< ?lllC(A)ll(I,~l + 1)([IxlIv + IIAxllv) <_ 7211xllv(A). 

Thus 6' is A-bounded. Next, for z �9 ~D(Aw): 

e~z  = d (a ) (a  - A)~z = d ( a ) ~ ( a  - A w ) z  = 

= C(;~ - A w ) - l < % ( ; ~  - A w ) z  = Cz, 

where we use T(a -- A w ) x  = (A - A)Tz for z �9 7~(Aw), which holds because of (1.1). 

It remains to prove the uniqueness of C. Let C : 7 ? (A)~Y  be A-bounded and satisfy 

CTz = Cz for z �9 7)(Aw). Then 

C ( A -  Aw)  -1 = C T ( A -  A w )  -1 = C ( A -  A)-tT,  

so for z �9 ~ [ w ]  we have  C ( a - A w ) - ~ < ~  = O ( A - A ) - ~ z .  Therefore ,  O ( a - A )  -~ = d ( a ) .  

Hence O = O ( a ) ( a -  A) = O. �9 

The extended output operator C defined in Proposition 1.4 is very useful, since it 

allows one to work with realizations having one state space. (See also the remarks below.) 

We conclude this section with a remark which relates stable PS-realizations to the 

realization triples appearing in [BGK1,2]. Let 0 = (A, B, C; V, W, U, Y) be a stable PS- 

realization. Consider the triple of operators 0 = (A, B, C; V, U, Y), where C is as in 

Proposition 1.4. This triple has the following properties: 

(i) - i A ( V - ~ V )  generates a strongly continuous exponentially decaying semigroup 

S ( . ; - i A )  with growth bound < -w,  

(ii) :D(C) D :D(A) and d is A-bounded, B c/2(U, V), 
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(iii) there exists a linear operator  A~ : V---+LI(]R +, Y) such that  the following two prop- 

erties hold: 

sup e~tll(A~xD(t)II dt < o~, # < ~, 
il~!l<l Jo 

and A~ maps ~ ( A )  into DI(IR+,Y) := { f  �9 L I ( ~ + ,  Y) I ff  �9 LI(IR+, Y) a.e~ and 

A~ix = C S ( . ; - i A ) x ,  x �9 7)(A). 

In proper ty  (iii) the derivative is taken in the strong sense. Properties (i) and (ii) 

are immediate,  it remains to prove (iii). Take A 0 = A0. Applying proper ty  (4') and the 

identity e t~t = e- (u-~) te  ut with # < t, < cz, we find using Cauehy-Schwarz's inequality 

Ile~*AoxllL,(~§ ~ const.  Ilxllv, x �9 V, 

where # < w is arbitrary.  Therefore, the first proper ty  in (iii) holds. Furthermore,  

for x C :D(A), we have S ( . ; - i A ) x  E I)(A), so C S ( . ; - i A ) x  is welt-denned, and more- 

over, S ( . ; - i A ) x  is strongly differentiable with derivative AS( . ; - iA)x .  This implies that  

C S ( . ; - i A ) x  E Dt(IR+,Y). Now for x E I ) (Aw) we have, as ~-O(Aw) C ~(A)  A T[W], 

using Proposit ion 1.4 and the definition of a PS-realization: 

A~TX = AoT"z = C S ( . ; - i A w ) x  = CS(. ; - - iAw)T-!TX = CS( . ; - iA)~-x .  

As 7?(Aw) is dense in W and v is continuous and injective with dense range, T~(Aw)  is 

dense in V. Thus A 0 and 6"S ( . ; - iA)  coincide, whenever they are bo th  defined. So the 

second proper ty  also holds. 

It follows that  0 has the properties of a realization triple in the sense of [BGK 1], 

Section 1.2 if U and Y are both finite dimensional. 

In the other direction, let U and Y be finite dimensional, and let 0 = (A, B, C; V, U, Y) 

be a realization triple in the sense of [BGK 1], Section 1.2, i.e., assume properties (i), (ii) 

and (iii) above hold. Put  W = T)(A) endowed with the graph norm, and define ~- : W--,V 
by Tx = x. Also, define C by C = CIZ~(A)- Consider 0 = (A, B, C; V, W, U, Y). Then  for 0 

the first four properties of a PS-realization hold. On the other hand, from [BGK 1! we know 

that  a matr ix  function k(-) is the weighting pa t te rn  of a realization triple in the sense of 

[BGK 1] if and only if there is a positive number  # such tha t  e "k ( - )  C LI(]R+; s Y)). It 

follows (use Theorem 1.1) tha t  the class of weighting pat terns  that  allow a. PS-realization 

with finite dimensional input space U and finite dimensional output  space Y is strictly 

smaller than the class of weighting pat terns  tha t  allow a realization in the sense of [BGK !, 

2]. 
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2. THE TRANSFER FUNCTION AND THE INPUT-OUTPUT OPERATOR 

Let 0 = (A~ B, C; V, W, U, Y) be a PS-realization, and let ko be its weighting pattern. 

We define the transfer function of 0 to be the operator function Wo(A) given by 

/J Wo(A)u = - i  eiXtko(t)udt, ImA > -coo. 

Here u is an arbitrary vector in U and -coo is the maximum of the growth bounds of the 

two semigroups associated with 0. We will show that  this definition coincides with the one 

given in, e.g., [CZ], see also [CLTZ]. 

Observe that  the integral above is well-defined by the part  of Theorem 1.1 which was 

already proved in Section 1. Furthermore, if 0 is a stable PS-realization, then the function 

Wo(.)u is analytic and uniformly bounded in the open right half plane. To see this, take 

0 < # < coo and notice that  ko(.)u E e - " 'L2 (~+ ,Y ) ,  by the remark made in the first 

paragraph after the proof of Lemma 1.2. 

PROPOSITION 2.1 Let 0 = ( A , B , C ; V , W , U , Y )  be a PS-realization, and let C 

~)(A)-~Y be the extended output operator associated with O. Then 

W o ( A )  : 0 ( ,~  --  A ) - I B ,  ImA > -coo- (2.1) 

PROOF. 

--co0 < 0, and fix Im A > 0. We claim that 

Without  loss of generality we may assume that  0 is stable. Thus assume 

To prove this, take x = Ty with y E W. Then, by (4t), 

/j /o - i  e~at(Aox)(t) dt = - i  e~atCS(t; - i A w ) y  dt = 

= C(A - A w ) - ! y  = C(A - A ) - l x ,  

where we use the definition of C. Now use that  the map A0 : V---~L2(~ +, Y) is a bounded 

linear operator,  and that  the map x ~ C ( A  - A ) - l x  is a bounded linear operator from V 

into Y. Since (2.1) holds for each x C ~-[W] and T[W] is dense in V, a continuity argument 

yields (2.2). From (2.2) and ko(t)u = (AeBu)(t) it is clear that  (2.1) holds. [] 

PROPOSITION 2.2 Let 0 ---- (A, B~ C; V, W~ U, Y) be a stable PS-realization, and let 

: ~P(A)---~Y be the extended output operator associated with O. Define bounded linear 
operators 

= CA -1 : V ~ Y ,  [~ = T - 1 A - 1 B  : U ~ W .  

x �9 v .  (2.2) - i  e~t(Aox)(t) dt = C(A - A ) - l x ,  
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Then 

W0(A) : CA(A - A) - IB  = CAw(A - AW)-I]). (2.3) 

PROOF. The first equali ty in (2.3) follows immedia te ly  from (2.2). To prove the 

second equality, first note tha t  A ( A -  A) ~* and A w ( A -  Aw) -~ are well-defined bounded 

linear operators  and (el., [GGK], page 410) for x E V and y E W we have 

lim A(A - A ) - l x  = O, 
) ,ER, A-*co 

It follows that 

lim 0 A ( A  - A ) - ~ B u  = 
AEIR, A-~-~ 

Next, we compute  

l im Aw(A - Aw) - l y  = O. 
AEIP~, ),--+co 

l i m  C A w ( A  -- A w ) - I B u - -  0.  ( 2 . 4 )  
AE]R, A ---+ oo 

~ OA(A - A)-IBu = -OA(A - A)-2Bu = 

= - 0 A ( A  - A)-2Arf~u = - 0 A 2 ( A  - A)-2TBu = 

= - 0 A 2 T ( A  - dw)-2Bu = - 0 r d ~ ( A  - Aw)-2f~u = 
--1 --1 2 = - C A  W r r A w ( A -  Aw)-2f~u - C A w ( A -  Aw)-2f~u. 

Here we used tha t  on r [W] the opera tor  C coincides with CAwXr -~. From the above 

calculat ion we see tha t  

This identity,  together  with (2.4), yields the second equali ty in (2.3). m 

One easily sees that  0 = (Aw, B, CAw; W, U, Y) is a real izat ion t r iple  in the sense of 

[BGK11 in case 0 = (A, B, C; 17, W, U, Y) is a s table PS-real izat ion and U and Y are finite 

dimensional.  

COROLLARY 2.3 Let 0 = (A, B, C; V, W, U, Y) be a stable PS-realization. Then To 
maps L2(R +, U) into L2(]R +, Y), and 

To1;(; ,)  = ;, e Ia,  

where ~ denotes the Fourier transform of the L2-function ~. 

PROOF. Put  

(RO)(t) = S(t - s; - iA)Br ds, r �9 L2(~{ +, U). 
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Since S ( - ; - iA)  is exponentially decaying, we know that  R is a bounded linear operator 

from L2(IR +, U) into L2(N +, V). Notice that for I m l  > 0 we have 

- i e i~t(Rr dt = (A - A ) - I B $ ( A )  = 

= ( I  - A)-IA'rJgr  = A(A - A ) - I T B r  = 

= AT(A - A w ) - l J 3 r  = T A w ( A  - A w ) - I B r  

Writing (Rr = ~-Fo,tCt, where Ct is defined by Ct(s) = r - s) for 0 < s < t, and 

Or(s) = 0 elsewhere on IR +, we see that ~--I(Rr e L~(]R +, W). Thus for ImA > 0 both 

sides of the equality 

/0 /0 7 -1 eiXt(RO)(t) dt = eiXt 'r - l (Ro)( t )  dt 

are well-defined. Moreover, because of the boundedness of % they coincide. 

Next observe that  (Tor = C T - I ( R r  Now using the boundedness of C, we 
have for Im A > 0 

//  /0 - i ei~t(Tor dt = --iCT -1 e~t (RO)( t )  dt = 

= C 7 - 1 T A w ( A  - A w ) - I B r  = C A w ( A  - A w ) - I B r  = 

= 

Since 0 is stable, Wo(') is analytic and bounded on I m t  > O. Thus, by the Paley-Wiener 

theorem, Wo(.)r is the Fourier transform of a function in L2(IR +, Y). It follows that  To 

maps L2(~  +, U) into L 2 ( ~  +, Y), and moreover, (2.5) holds. [] 

The result of Corollary 2.3 is known, see [vK], Section 2.3. 

3. DUALITY 

Let 0 = (A, B, C; V, W, U, Y) be a PS-realization. Since 7- : W ~ V  is a continuous 

injection with dense range, also T* : V - ~ W ,  defined by @*v, W}w = {v, 7W}v , is a con- 

tinuous injection with dense range. Also observe that B* : V--~U and C* : Y ~ W ,  defined 

by ( B ' v ,  Y}u = (v, BY}v  , and (C ' y ,  W}w = (y, C w } z  are well-defined bounded linear 

operators. We also denote the adjoints of operators acting in V and W by superscripted 

PROPOSITION 3.1 Let 0 = (A, B,  C; V, W, U, Y)  be a PS-realization, and let A w  be 

the part of A in W .  Then O* = ( - A ~ , C * , - B * ; W , V , Y , U )  is also a PS-realization. 

Moreover, the transfer function of 0" is given by Wo*( -A)  = Wo(1)*, and its weighting 

pattern is given by ko.(t) = ko(t)*. 
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Observe the reversal of the roles of V and W, as well as the reversal of the roles of U 

and Y. 

PROOF. First we show that  A* ( V ~ V )  is the part of A ~  (W--+W) in V (with respect 

to the injection r*). For the time being let us denote the part  of A ~ v ( W ~ W  ) in V by T. 

Let v �9 D(A*). We have to show that  r*v �9 :D(A~) and A~vr*V �9 r*[V]. For x �9 l ) (Aw)  
we have: 

@*v, A w x } w  = (v, r A w x } v  = {v, Arx}y  = (A'v,  rX}v = @*A'v, x}w. 

So by the definition of A~v we have indeed that  r*v �9 Z)(A~v ) and A~yT*V = ~*A*v �9 
r*[V]. In particular, 

~(A*) C {v �9 V I~-*v �9 :P(d~y ) and A~vr*V �9 r*[V]}. 

This proves that  A* C T. To prove the converse, let again -w0 be the maximum of 

the exponential growth bounds of the semigroups S ( . ; - i A )  and S ( . ; - l A w ) .  We claim 

that  for ImA < w0, the operator A - iT is invertible. Indeed, for all x C V we have 

(A - iA* ) - l x  e ~(A*)  C D(T),  and hence 

(A - iT)(A - iA* ) - l x  = (A - iA*)(A - iA*) - l x  = x. (3.1) 

Thus, A - iT is onto. Now suppose x C ~P(T) satisfies ()~ - iT)x  = 0. Then r*x C :D(A~v ) 

and A~vT*X = r*Tx. Thus (A - iA~c)r*x = 7"(~ - iT)x  = 0. As v-* is injective, and 

also A - iA~v is injective it follows that  x = 0. So, A - iT is invertible, and moreover, 

(~ - iT) -1 = (& - iA*) -1, by (3.1). But then A* and T must coincide. Thus A* is the 

part  of A~v in V. 
Using [PI, Corollary L10.6, one sees that  iA~v and iA*(= (iA~ylv)) are generators of 

C0-semigroups, and that  

S(-; iA~z) = S(.; - iAw )* ,  S(.; iA*) = S(.; - iA)*.  

Hence 

S(t; iA~y)V* = (rS(t ;  - i A w ) ) *  = (S(t; - iA)T)* = r*S(t ;  iA*). 

In order to show that  0* is a PS-realization it remains to define bounded linear 

operators Fe*,t : n2([0, t], Y)--~V and Ae*,t : W---~L2([O, t], U) satisfying 

~t 

r* re . , t r  = Jo S(s; iA~)C*O(s)  ds ,  r e L2([0, t], Y),  

and A0.,~r*x = - B * S ( . ; i A * ) x ,  for x E V. Taking Pe-,~ = A~,~ and he*,~ = -F$ ,  t, one 

easily verifies that  the conditions just mentioned hold. 
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To show the statement concerning the transfer functions, we use Proposit ion 2.2. For 

simplicity we assume that  0 is stable, which may be done because of Lemma 1.3. Also, 

put  c~ = - A ; v ,  /3 = C*, "7 = - B * ,  then a v  = - A * ,  and 0* = (c~,/3, "~; V, W, Y, U). Recall 

~om Proposit ion 2.2 the definitions of C a n d / ) .  Define ~/and/3  in a similar way for 0% 

By formula (2.3) we have 

Wo(A) = CA(A - A ) - X B ,  TWO* (A) = 7ozv(,k - C~v)-l~. 

We first show that  

(O)*  = ( t ) ) *  ; (3 .2)  

To prove the first equality, recall that  CI~[w] = CAwIT-1I,-[w]. Fix w E W and y E Y. 

We know that  a-1/3y C r*[V], and thus c~-1/3y = T*T*-la--1/3y. Hence 

<CTw, y} = (CAwlw ,  y} = (w, A~v- lC*y)= 

=<W, --O~-l/3y) = (W, --T* T* - - I~ - - I~y )  = (TW, --T*--lof--l~y>. 

Now use tha t  T[W] is dense in V. We see that  (C)* = - -T*-loz- l~  = -- /3 ,  

To prove the second equality in (3.2), recall that  TB = A - l B .  Thus 

(/))*T* = B * A  *-1 = B * A * - 1 7 * - l T  * = "~aV1T*--IT *. 

Therefore, (/))*[~*[v] = @l~*[v]- Both (/))* and -) are bounded, and T*[V] is dense in W ,  

so ( / ) )*  = - 5 .  
Now using (3.2) we compute 

Wo(A)* = {CA(A - A ) - I B }  * = 3 ~ v ( - A  - ay)-Zr  = W o . ( - A ) .  

From this the statement concerning the weighting operator functions is obtained by taking 

inverse Fourier transforms. [] 

Note tha t  if 79(A) c r[W], then ~9(A~v ) c r*[V]. To see this assume that  0 is a 

stable PS-realization. Then A -1 is bounded, and the inclusion 73(A) C T[W] means that  

T - 1 A  -1 : V---~W is well-defined. As it is clearly closed, it is bounded. Also, from T A w x  = 

ATX for x E T~(Aw), we see that  AwI~ -1 C r - I A  -1. Hence ( 7 -1A-1 )  * C (Awl"r-i)  *. As 

Aw 1 is bounded (for the same reason as A -1 is bounded), we see from [R], Theorem 13.2: 

( ;--1A-1)* c (Awl;- - i )  * = v*-lA~v-1. Thus, (~--1A-1)* C ~-*-ld~y-1. But (T -1A-~ )  * is 

bounded, as it is the adjoint of a bounded operator. Since 7"-1A~v-1 is closed, it must also 

be bounded, which means :D(A~) C T* IV]. See [vK], Theorem 2.17 (iii), for an analogous 

result. 
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4. PROOF OF THEOREM 1.1 AND REALIZATION THEOREM 

In this section we prove Theorem 1.1. Using the results of the previous sections the 

proof of the necessity part is now easy. Let 0 = (A, B, C; V, W, U, Y) be a PS-realization, 

and let ko(t)u = -i(AoBu)(t)  be its weighting pattern. As before, let -cv0 be the maximum 

of the exponential growth bounds of S ( . ; - i A )  and S ( . ; - l A w ) .  We already know (see 

the first paragraph after the proof of Lemma 1.2) that  for each # < aJ0 the function 

e~'ko(.)u E L2(]R+,Y) for all u E U. Since ko(')* = ko*('), by Proposit ion 3.1, we also 

know that  e"'ko(.)*y E L2(IR +, U) for all y C Y and every # < coo = co0.. Thus (t.5) holds 

for some # E IR. 

The reverse implication will first be proved for the stable case. To do this, let k(.) : 

N + ~ s  and # > 0 be such that  eU'k(.)u E L~(N+,Y) for all u E U and e"'k(.)*y e 
L2(IR +, U) for all y E Y. We shall produce a stable PS-realization 0 such that  k = ko. 
Observe that  by taking # a little smaller if necessary, we may assume from the start  that  

in addition eUk(.)u E LI(IR +, Y) for all u E g and e"k(.)*y E LI(F~ +, U) for all y E Y. 

Before we state and prove the realization result in detail we need some prepara- 

tions. For every p > 0 let L• + 'Y~ be the complex Hilbert space of all strongly 

measurable functions f : ] R + ~ Y  which are bounded with respect to the norm ]lfH = 

[fo e~:2"tllf(t)ll2 dt] 1/2 We have in the sense of continuous and dense imbeddings 

L~(R+. y) ,  L2"( ]R+;Y)  C L2(]R+;Y) C ~t , 

and similarly if Y is replaced by U. 

PROPOSITION 4.1 Let U and Y be complex Hilbert spaces, and let k(.) : 1R+ ~s  Y) 
be such that for some ~ > 0 we have e" k(.)u e LI (~a +, V) n L2 (~+, V) for all ~ C U, and 
e" k(. )* y E LI(IR +, U) N L2(IR +, U) for all y E Y.  Then the operator H defined by 

(Hf)( t)  = (P) k(t + a ) f ( a )  da t > 0 (4.11) 

is bounded from L~qR+'2~ , U) into L ~ ( ] R + ;  Y), and is also bounded from L2(IR+; U) into 
L2(IR+; Y), where the integral is to be interpreted as a Pettis integral in the.following sense 

((Hf)(t) ,  y} = (k(t + s)f(s),  y)y ds, t > O. (4.1b) 

In the proof we shall show that  the formula defining (Hf)(t)  may be interpreted as 

a Bochner integral in case f is a measurable step function of compact support. 

PROOF. First we prove some auxiliary statements. The map J : U~LI(IR+;Y)  
defined by Ju = k(.)u is easily seen to be a closed operator. As it is everywhere defined it 
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is a bounded operator, and we have Ilk(DUllLlm+;g) ~ ~tl~llg, for all u e U, and for some 

. k * positive ~. The same argument shows that also II (') YllLI(R+;u) -< "YttYlIY for y ~ Y. 
We first show that the integral defining (Hf)(t)  is well-defined. Let y E Y, and 

f E L2(IR +, U). Then 

(k(t + -)f(-), y)y = (f(.), k(t + .)*y}y 

is a function in LI(IR+). Thus f o  (k(t + a)f(a) ,  y}y da is well-defined. Moreover, by the 

result of the previous paragraph, this expression is continuous in y. Hence, by the Riesz 

representation theorem, there is a unique vector (Hf)(t)  such that (4.1b) holds. Thus 

(4.1a) is well-defined as a Pettis integral. Moreover, it is clearly linear in f .  
We define k(,~) by 

~(~)~ = k(.)~-~(~), ~ e u ,  

where k(.)u is the Fourier transform of k(.)u. For each u E U we have 

/7 /7 sup t/k(ADull = sup I1 eiatk(tDudt}l <_ Ilk(t)ull dt : Ilk(.)UllL,(~a+;g) <_ 71{ullg. 
A 6 R  AEIR 

Hence supxer t [Ik(A)l{ = supxen, ll~,ll_<l Ili(A)<l _< ~ is finite. 
Now let f c L=(~R+; U) be a step function, i.e., 

/(t)  = { fj,  t eEj , j=l , . . . , r  
0, otherwise, 

where E 1 , . . . , E r  are mutually disjoint subsets of IR + of finite Lebesgue measure and 

f l , ' ' ' ,  f r  are vectors in U. Observe that by our assumption on k(-) we have 

j J L' j 

Then for t > 0 

(Hf)(t)  = k(t - s ) f ( - z )  ds = k(t - s)fj ds. 
oc j = l  E j  

Taking Fourier transforms it follows that (-H~f)(A) = k(A)](-A) for A e In. So 

I)H-'--flIL'(~{;Y) <-- \~Ela(sup tlk(A)ll). II]HL,(I~;U), 

whence also 

IIHftIL=(R+;Y) <-- \heR(sup tlk(k)ll) llfllL=(l{+;u) < 7llfilL=oa+;u). 
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Now let f be an arbitrary element of L2(N+; U), and take a sequence of step functions 

f,~ converging to f in L2(N+; U), again using [DU], Section 11.2 to see that such a sequence 

exists. The estimate in the previous paragraph shows that H f n  is a Cauchy sequence in 

L2(N+; Y). Thus Hf,~--*g for some g c L2(P~+; Y). Now fix t > 0 and compute for y E Y 

]o ( (HA)( t ) ,  y> = (k(t + ~)A(oO, y>y d~ = 

Z" = (f,~(a), k(t + a)*y}y da = 

=(fn(-), k(t + ")*y}i2(l~+;u)-~{f('), k(t + ")*Y}L2(rt+;U) = 

= ( ( H f ) ( t ) , y ) .  

Thus Hf~  converges pointwise to H f ,  and converges in L2(IR+; Y) to g. But then H f  = g. 
This shows that H f  E L2(~+; Y) for all f C L2(]R+; U). 

Now we show that H is a bounded linear map from L2(~+; U) to L2(IR+; Y). Again, 

let f~ be a sequence of step functions converging to f in L2(~t+; U). Prom the previous 

paragraph we now that Hf,~ converges to H f  in L2(tt+; Y). We also have that IIHf,.il <<_ 

~. IIALI. Take e > 0, and let n be such that [IHf - H A l  [ _< e and i l / -  All <_ c. Then we 
have 

IlgfH _< ]lH f - g f,dl + IlH f,~ll <_ ~ + "~lffn[I 

-< ~ + ~/(llfll + llf - All) <- (a + 7),  + ~llfll. 

Letting e~0,  we obtain that flHfll < ~'llfll. 
Replacing k(.) by e"k( . )  it is easily seen that the same arguments show that H is 

bounded as a linear map from L~t]R +- U) into L~-~(]R+; Y). [] 2 \  , 

For t > 0 we define 

[ s ( t ) / ] ( a )  = I ( t  + ~) ,  t, ~ > 0, 

/ ( a - t ) ,  a > t > 0  
[ S # ( t ) f ] ( a ) =  o, otherwise. 

Let us note that S(.) induces strongly continuous semigroups on L~U(IR+; Y) and 

L~(N+;Y).  We denote these semigroups by S_(.) and S+(.), respectively. Similarly, 

S_#(.) and S+#(.) are the Co-semigroups induced by S#(.) on L~-u(IR+; U) and L~(IR+; U), 

respectively. The semigroups S_(.) and S+#(.) are both exponentially decaying. In fact, 
S_ (t) and S+ # (t) both have norm e -ut .  In the sequel, we shall use that 

s_(t)" = c-2.~ s~_ (t), s+(t)* : c~.t s~+ (t). 

Now, let H be as in Proposition 4.1. Then 

s_  ( t )H = HS~+ (t), t_>O, 
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and 

S+(t)H* = H*S#(t) ,  t >_ O, 

Thus I m H  is invariant under S_(t). We define V to be the closure of I m H  in L ~ ( ~ + ;  Y). 

Then S_(t) lv  is an exponentially decaying Co-semigroup on V; its generator will be de- 

noted by - i A .  Thus 

S ( t ; - i A )  = S- ( t ) lv  : V ~ V ,  t >_ O. 

Next, let Q be the orthogonal projection of L~(P~+; U) along Ker H. Since Ker H is 

invariant under S#+(t), we have QS#+(t) = QS#+(t)Q for each t �9 ~+ .  If Hg = f for some 
# a_ 

g �9 L2(IR' ; U), then the vector Qg is uniquely determined by f.  We define W to be the 

complex Hilbert space which one obtains if Im H C L~"(N+;  Y) is endowed with the norm 

2 71/2 [ o 
IISlIw - -  LIIflt~;~(~%~) + llQgll~.(~+;u)j 

where g is some vector such that Hg = f .  For the case when Ker H = {0}, the space W 

is just the space I m H  endowed with the graph norm corresponding to H -1. If Hg = S, 

then S - ( t ) f  = HS#+(t)g. Since QS#+(t)g = QS#+(t)Qg, we see that 

IIS-(t)Stl~ ~ # 2 = t l S - ( t ) S l I L ; ~ ( R % y ) +  IIQS+ (t)QgllL~(~%v/ 
_ - - t L t  2 - - t~ t  2 <e IlSll~;.(~%~)+e IIQgll~(R%v) =e-"~llSIl~. 

Thus S_(t) induces an exponentially decaying C0-semigroup in W. Let ~- : W ~ V  be the 

canonical embedding of W into V. Then T[W] is dense in V. As before, we write A w  for 

the part of A in W. Then 

S ( t ; - i A w )  = S_(t) lw : W--*W. 

THEOREM 4.2 Let U and Y be complex Hilbert spaces, and let k(.) be such that for 
some # > 0 we have that eWk(.)u belongs to LI(]R +, Y)  n L2(~ +, Y)  for all u C U and 

e" k(.)*y belongs to L I ( R + , U ) N L 2 ( ~ + , U )  for ally E Y.  Suppose If, W, A and A w  are 

as above. Define 

(u~) ( t )  = k(t)~, t �9 ~ + ,  ~ �9 u, 

/j C f  = (P) k(t)(Qg)(t) dt, f = Hg, 

where Q is defined as above and the integral is to be interpreted as a Pettis integral. Then 
B �9  V), C � 9  Y) and 0 = (A, B, C; V, W, U, Y) is a stable PS-realization, whose 
weighting pattern is precisely k(.). 
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PROOF. Let us define 

f 
x/~ 

(BnU)(t) = n k(t § (~)uda, JO 
Then B~u C I m H ,  

t > O .  

oo /,1/n k( t ) }udal  2 IIB~u--BulI2L;.(R+;y)=~ e 2"~ nJo {k(t+~)- dr. 

Now 

n ffo 1/~ k(t)}uda 2 [ [ , / n  )2 { k ( t + ~ ) -  < ~njo II{k(t+a)-k(t)}ul lda j} < 

~O1/n fl/n f l /n  
<n 2 ( [l{k(t+(~)-k(t)}u[]2d(~)(Jo i d a )  = n  J0 I[{k(t+a)-k(t)}u]]2da" 

Thus we see that  

Jofl/~ k(t)}ud t 2 o e2€ n {k(t + a) - dt < 

fo~ { [1/~ < n e2"tll{k(t+a ) -k( t)}ul l2da}dt= dO 
f l / ~  fooo = njo ( e2"*il{k(t+ a)  - k(t)}uH2dt)da. 

As f o  e2"t ][{k(t + a ) -  k(t)}u][ 2 dt is continuous in a we have tha t  B~u tends to Bu in the 

norm of L~-~(IR+; Y). Thus B is a bounded linear operator  from U to V, i.e., B C s V). 

Take r C L 2 ( ~ + ;  U). As S(-; - iA)  is an exponentially decaying semigroup it follows 

that  S(t;- iA)Br E LI(]R+; V). Moreover, Be(t) E L~"(]R+; Y). So, S(t;-iA)Br = 
S_(t)k(.)r This gives 

S(t; - iA)Br dt = S_ (t)k(.)r  d t =  (P) k(. + t )r  dt= He ~ W. 

Therefore, for r C L2(IR+; U) we have 

fo I! S(t;-iA)Br • HHr H 2 2 = = H CHL;,(R+;y) + I[Qr <- 
- 2 _< (~ + 1)11r _< ~Hr 

for some constants 7 and ~. To get the one but  last inequality we used that  H is bounded 

(by Proposi t ion 4.1) and tha t  Q is also bounded. 
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On the other hand, if f = Hg for some g E L~(]R+; U), we have 

/j IlCflIy = sup t< Cf, y >) < sup t< (Qg)(t),k(t)*y >t dt 
[]yH= I ,yE Y [[y[I= l ,yE Y 

_<sup,,y,,=l,yCy [ J ~  e2"tHk(t)*yii2dt] 1/2 " [[L~,v ~ e-2"t]i(Og)(t)II2 dt] 1/~ 

< const, lIQgIIn;(R+;u) <- const. Ilfflw, f �9 I m H ,  

so that  C �9 E(W, Y). 

Moreover, CHg = (P) f o  k(s)g(s) ds. Indeed, for y E Y we have 

((Hg)(t), y} = (k(t + a)g(a), y} da = 

/j /j (g(a), k(t + a)*y) da  = (g(a), (S_(t)k(.)*y)(a)) da = (g, S_(t)k(.)*y), 

which, as t j. 0, tends to (g, k(-)*y) = ((P) f o  k(c~)g(a) da, y). Thus 

/J <CHg, y) = ((P) k(a)(Qg)(@ dc~, y) = lti~((HOg)(t), y) = liim((Hg)(t), y>, 

because H(I  - Q) = 0, and so (CHg, y) = ( ( P ) f o  k ( ~ ) g ( a ) d a ,  y). Hence, CHg = 
(P) f o  k(s)g(s) ds. 

Using this we have for f E W 

l/f C S ( t ; - i A w ) f  = CS_(t)Hg = CHS#(t)g = (P k(a)(S#(t)g)(a) da = 

= (P k(a)g(a - t) d~ = (Hg)(t) = f(t), 

whence C S ( . , - i A w ) f  c L2(]R+; Y) and 

IICS(',--iAw)fHL,(R+;y) = II/IIL,(R+;Y) < IIfHLg"(R+;y), f �9 L 2 " ( R + ;  Y)" 

Thus 0 is a PS-realization. 

Finally, since the weighting pat tern  ko(.) of 0 is given by ko(.)u = AoBu, it is straight- 

forward to see that  ko(.) = k(.) as desired. [] 

Observe that  the realization above is just the s tandard shift realization on weighted 

L2 spaces. 

PROOF OF THEOREM 1.1. The proof of Theorem 1.1 for the general case is reduced 

to the stable case by using Lemma 1.3. Let k(.) : ]R+~s Y) and # E ~ be such that  
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eWk(.)u C L2(~+ ,Y)  for all u E U and eWk(.)*y C L2(]R+,U) for all y E Y. Taking 

p a little smaller if necessary we may assume without loss of generality that e ' k ( . ) u  E 
L2(~  +, Y)MLI(R +, Y) for all u E U and e"k( . )*y e L2(]R +, U ) M L I ( ~  +, U) for all y C Y. 

We may also assume that # < 0, as the case # > 0 has already been dealt with. Take p > 0 

fixed, and put ~:(t) = e('-P)~k(t). For k(.) we have ePk(-)u e L2(R +, Y)  N LI(IR +, Y)  for 

all u C U and ePk(.)*y �9 L2(]R +, U) N L I ( ~  +, U) for all y �9 Y. Thus, by Theorem 4.2, 

there is a stable PS-realization 0 = (.4, B, C; V, W, U, Y) such that l: = ko. Define A by 

D(A) = D(A) and - i A  = - i A - ( # - p ) I y .  Then 0 = (A, B, C; V, W, U, Y) is a PS- 

realization and ko(t)u = e-(U-P)~ko(t)u = e-(u-P)~k(t)u = k(t)u for all u �9 U by Lemma 

1.3. [] 

COROLLARY 4.3 Let 0 = (A, B, C; V, W, U, Y) be a PS-realization. Then 

(To~))(t)=(P) k o ( t - s ) r  t�9 a.e., r 149  (4.2) 

Here the integral on the right hand side of (4.2) is to be understood as a Pettis integral. 

The right hand side of (4.2) is well-defined as a Bochner integral in case r is a 

measurable step function of compact support. 

PROOF. Without loss of generality we may assume that 0 = (A,/3, C; V~ W, U, Y) is 

stable. 

First we show that the right hand side of (4.2) is well-defined as a Pettis integral. 

Take r �9 L2(]R +, U) and put w'(t) = (P) f~ ko(t - s)C(s) ds. Let y �9 Y then 

(k(t  - . )r  y ) ,  = (r  k(t  - .)*~). 

is a function in LI([0, t]). Thus fo (k(t a) r  y)y da is well-defined. Moreover, by the 

result of the previous paragraph, this expression is continuous in y. Hence, by the Riesz 

representation theorem, there is a unique vector g(t) such that 

(g(t ) ,  v) = (k(t  - s )O(s ) ,  y ) y  ds,  t > 0. 

Thus the right hand side of (4.2) is well-defined as a Pettis integral. Moreover, it is clearly 

linear in r 

For each y �9 Y we have (~b(t), y} in L2(IR+). Moreover, 

(r y} = ei~t(r y) dt = e ~t (ko(t - s)r y} ds) dt = 
JO 

= ei~t((ko(t - s)O(s), y) dr) ds = e i~(~+~) (l%(ct)O(s), y) da) ds 

/j = e ~ ( w o ( a ) r  y)  ds  = ( W ~ ( a ) ~ ( ~ ) ,  Vl 
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Now using Corollary 2.3 we have (W0(A)r y} = (Tetr y). This proves the corollary. 
[ ]  

The Pritchard-Salamon realizations studied in this paper are different from the sys- 

tems considered by Salamon in [$21. For instance, the systems in [$2] have three state 

spaces W, H and V such that W C H C V, and for r E L2([O, t]; U) the vector 

fo S(s;- iA)Br belongs to H rather than to W as is required for PS-realizations. 

On the other hand, the main result of the present paper can be used to rederive Theorem 

5.20) in [$2]. To see this, assume that U = C ~ and Y = C p, and let k E e-"L2(IR+; Cn• 

Then, by Theorem 1.1, there exists a PS-realization 00 = (A0, Bo, Co; V0, W0, C ~, C p) with 

weighting pattern k. Now, let W be/)(A0) endowed with the graph norm, and put H = Vo 

and A = Ao. Next choose V such that V* = ~D(A*) C H*, set B = Bo and C = C0 where 

C0 is the extended output operator associated with 00, and let G(A) = C ( A -  A)-~B. 
Then (A, B, C, G(A)) is a well-posed system in the sense of [$2]. Its weighting pattern is k 

and B : U--~H and C : W---~Y are bounded. 
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