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ABSTRACT

Mueller matrices and Cloude coherency matrices are
used to describe the transfer of polarized light in atmos-
pheres, oceans and atmosphere-ocean systems. Basic prop-
erties of such matrices are presented for single and
multiple scattering as well as reflection and refraction by
interfaces and boundary surfaces.

1. INTRODUCTION

Transfer of polarized light in atmospheres and oceans
can conveniently be described by means of Stokes param-
eters [, @, U and V, which represent the radiance (or flux)
and state of polarization cf a beam of (quasi-)monochro-
matic radiation [Van de Hulst 1957, 1980]. When these
Stokes parameters are written as elements of a column vec-
tor each linear change of this vector may be characterized
by means of a real 4 x 4 matrix that transforms the vector
into a similar column vector of four Stokes parameters.
Such a matrix is called a Mueller matrix. Examples are
provided by matrices describing single or multiple scatter-
ing and matrices corresponding to the reflection and re-
fraction of light at a surface of discontinuity, such as the
atmosphere-ocean interface.

Quite often the 16 clements of a Mueller matrix obey
certain interrelationships (equalities and inequalities). In
recent years the literature on such basic properties has
grown rapidly. The primary purpose of this paper is two-
fold, namely (i} to briefly summarize some of the most im-
portant basic properties of matrices describing single
scattering of polarized light in atmospheres and oceans and
(ii) to present some resuits for matrices describing multiple
scattering in such media including boundary effects. With-
in the limited framework of this paper we will have to
make ample use of references for details.

2. PURE MUELLER MATRICES

Consider a monochromatic plane wave that is scat-
tered in an arbitrary direction by an arbitrary particle in a
fixed orientation. This process can be described by
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where A is called the (scattering) amplitude matrix. Here
E and E)° denote the electric field components-of the
scattered wave, parallel and perpendicular, respectively, to
the plane containing the directions of the incident and scat-
tered beams. Similarly, £;" and E," describe the incident
beam. In terms of Stokes parameters we have for the same
process

rc=rre, @

where the bold letters I are column vectors whose elements
are the Stokes parameters, and the real 4 x 4 matrix F is the
scattering matrix of a single particle. This matrix is a pure
Mueller matrix, which means that its elements can be ex-
pressed in the elements of a 2 x 2 amplitude matrix, by ap-
plying the definition of Stokes parameters on both sides of
Eq. (1). The explicit expressions have been reported by
Van de Hulst [1957, section 5.14]. However, the relation-
ship between F and A can also be expressed by a mafrix re-
lation invelving a Kronecker product [see e.g. Barakat,
1981]. The matrix F can also be used for single scattering
of quasi-monochromatic light. From hereon we will only
consider this type of light, unless explicitly stated other-
wise, :

Other examples of pure Mueller matrices are the ma-
trices describing the changes of Stokes parameters upon
reflection and refraction by a smooth interface between
two isotropic, nonconducting media. These matrices are
readily obtained from the Fresnel formulae, since the un-
derlying amplitude matrix is diagonal [see e.g. Born and
Wolf, 1964, section 1.5; Tsang et al., 1985; Kattawar and
Adams, 1989).

For each (nonvanishing) pure Mueller matrix 9 inde-
pendent interrelations for its elements exist which can be
used to derive all other relations based on'the existence of
one underlying amplitude matrix [see Van de Hulst, 1957,
section 5.14; Hovenier et al., 1986]. For a comprchensive
discussion of the structure of a general pure Mueller matrix
we refer to Hovenier (1994) and references therein. If a
real 4 x 4 matrix is obtained from experiments or calcula-
tions and one wishes to know if this can be a pure Mueller
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matrix a variety of tests can be used [see Hovenier and Van
der Mee, 1996 and references therein].

For later applications it is useful to mention the fol-
lowing two general theorems for pure Mueller matrices
. [see Hovenier, 1994].

Theorem 1: If M7 is a pure Mueller matrix and c is 2 real
non-negative scalar, then the product cM” is a pure Muel-
ler matrix.

Theorem2: If M7 and M? are both pure Mueller matrices,
then their product M M5 is 2 pure Mueller matrix.

Quite often it is useful to empioy Dirac delta func-
tions. Therefore, we state explicitly that the product of a
delta function and a matrix shall be called a pure Mueller
matrix if and only if the matrix occurring in the product is
a pure Mueller matrix.

3. SUMS OF PURE MUELLER MATRICES

Let us consider the sum of pure Mueller matrices
(SPM)
M=% ML €)

where & = 1, 2...and N is a positive integer (N 21). For
N 22 the structure of M is, generally, much less involved
than that of a pure Mueller matrix. For every SPM we have
the foliowing six elementary inequalities [Fry and Katta-
war, 1981; Hovenier et al., 1986]
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where M;; is the element of the i-th row and j-th column of
Mandij=1234.

By taking linear combinations of the elements of M,
Cloude (1986) constructed an alternative matrix, T, which
he called the coherency matrix [see also Van der Mee,
1993: Hovenier and Van der Mee, 1996]. An important
property of this coherency matrix is that it has only real,
non-negative eigenvalues if ¥ 22 and only one non-van-
ishing positive eigenvalue if N = 1 (i.e. for a pure non-
vanishing Mueller matrix). Since these conditions are nec-

essary and sufficient they provide excellent means for test-
ing purposes. Instead of T one can also use a matrix
introduced by Simon (1982), which is unitarily equivaient
toT.

It follows directly from theorems 1 and 2 of section 2
that muitiplying an SPM by a non-negative scalar, or a
pure Mueller matrix, or an SPM results in another SPM.
We will call this the multiplication rule for SPM’s. Further,
it is clear from Eq. (3) and properties of integrals that the
integral of a pure Mueller matrix over any domain of real
variables has exactly the same properties as an SPM. Such
a real variable may concern the particle size and/or orien-
tation of particles and surface elements as well as direction
and wavelength.

1t is well-known that the scattering matrix of a collec-
tion of independently scattering particles is an SPM [Van
de Hulst, 1957, section 5.21). This is the common situation
for single scattering by a small volume element in an at-
mosphere or ocean. The total radiation field in such a me-
dium is, however, also determined by other processes,
such as multiple scattering as well as reflection and refrac-
tion by boundary surfaces. This will be considered in the
following sections.

4, PLANE-PARALLEL ATMOSPHERES

Consider a plane-paraliel atmosphere bounded below
by a solid or liquid surface that does not transmit tight. The
atmosphere is illuminated at the top by a parallel beam of
polarized light. This beam is described by the vector nd,
which is normalized so that its first element is the flux per
unit horizontal area of the atmosphere. The incoming light
is scattered in the atmosphere by randomly oriented parti-
cles, each of which has a plane of symmetry, (or by parti-
cles and their mirror images in equal numbers and in
random orientation). Thus the extinction can be fully de-
scribed by means of a positive scalar [see Van de Hulst,
1957, section 5.41].

We use the local meridian plane as the plane of refer-
ence for the Stokes parameters [Chandrasekhar, 1950, sec-
tion 17.1]. The radiation at optical depth T (measured from
the top downwards) may be written as

1T, 4, @) = K(T, &, §, i, 90)D M

Here the first element of I(T, 4, @) is the diffuse radiance
in a direction given by the angle with the downward nor-
mal (whose cosine is &) and the azimuth angle ¢. Similarly.
4, and @, specify the direction of the beam incident at the
top of the atmosphere. In downward directions we have, in
addition to the diffuse radiation, the reduced incident radi-
ation exp(-1/1y)® , which represents light that has not
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Figure 1.

Schematic representation of scattering in an atmosphere and refiection by an underlying surface. A parallel beam
of hight illuminates the top of the atmophere. Thin lines represent light paths. The thick arrows represent contributions
to the Stokes parameters at an arbitrary optical depth in an arbitrary direction.

been scattered in the atmosphere nor reflected by the un-
derlying surface. In the special case of a perfectly absorb-
ing ground surface the real 4 x 4 matrix K is usuaily called
the reflection matrix if T = 0, and the diffuse transmission
matrix if T has its maximal value. For intermediate values
of the optical depth in this special case, K is equivalent
the matrices U and D introduced by Hovenier and De Haan
(19835) for the internal upward and diffuse downward radi-
ation, respectively. If the surface is not perfectly absorbing
we assume that reflection by the surface alone can be de-
scn'be? analogous 10 Eq. (7) by the surface reflection ma-
trix K.

To investigate the structure of K we study the history
of the light that is represented by I(t, u. p) [see also ng
1]. Clearly we can write

K=EK+K+K% ®)

where:
- K" represents light that has been scattered one or
mare times in the atmosphere without ever reaching

the surface,
- K’ represents light reflected by the surface without
ever being scattered in the atmosphere, and
- K™ represents light which is due to combinations
of scattering in the atmosphere and reflection by the
underiying surface.
First we consider the contribution to I(t, u, @) due to K,
Naturally, extinction may occur before each scattering and
after the last scattering, If the scattering by an arbitrary par-
ticle can be described by a matrix F. as in Eq. (2), we must
pre- and postmultiply this matrix by rotation matrices. be-
cause the local meridian plane is now the plane of refer-
ence for the Stokes parameters. The result is the matrix

Z = L(cy)FL(5,), ®
whera
1 0 0 0
L(U) - 0 cos2o smlo G (10)
0 —sin2¢ cos2o @ O
¢ 0 0 1

The latter matrix is a2 pure Mueller matrix, whose ampli-
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tude matrix is obtained from the middie block by writing
o instead of 2o . Hence Z is a pure Mueller matrix. We can
~now conclude that we can write

K% = 2 Kj, (1)

j=1

where the index j corresponds to the order of scattering and
each K is a pure Mueller matrix, so that K® isan SPM.

Letus also assume that R is an SPM (including the case
of one pure Mueller matrix). Then the same is true for X*
since positive scalars (due to extinction) and rotation ma-
trices are immaterial in this respect. Finally, K is an
SPM, as follows from the multiplication rule for SPM’s,
discussed in section 3. Conseguently, Eq. (8) yields that K
is an SPM. This concludes our investigation of the struc-
ture of the matrix K(z. #, @, iy, ©p) OCCUITINgG in Eq. (7).

5. OCEANS AND OCEAN-ATMOSPHERE
SYSTEMS

If we replace the atmosphere considered in the preced-
ing section by a scattering ocean with scalar extinction, a
completely analogous treatment can be given. The only
difference is that we must take diffraction and internal re-
flection at the top boundary into account. Since these ef-
fects can be described by pure Mueller matrices (for a
smooth interface) or by an SPM (for a rough interface con-
sidered 1o be made up of locally smooth facets) we can
draw the same conclusion as before, namely that we can
use Eq. (7) in which K(T, 4, 9, 4, ¢) isan SPM.

1t is now readily verified that if we have an atmos-
phere above an ocean, and both have scalar extinction, we
can again use Eq. (7) with K(1, 1, 9, iy, @) being an SPM.
Of course, this remains true if the atmosphere - ocean sys-
tem is bounded below by a reflecting surface which can be
characterized itself by a matrix which is an SPM.

6. DISCUSSION AND CONCLUSIONS

The radiance and state of polarization of the radiation
inside and outside a plane-paraliel atmosphere, ocean or at-
mosphere-ocean system can be expressed in terms of a
Mueller matrix. We have shown that, in general, this ma-
trix is a sum of a pure Mueller matrices. Properties of these
matrices and their corresponding Cloude coherency matri-
ces have been discussed. These properties can be used for
several purposes, in particular to test computer codes and
experimental results {see also Hovenier and Van der Mee,
1996].
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