
LDU F A C T O R I Z A T I O N  R E S U L T S  F O R  B I - I N F I N I T E  A N D  
S E M I - I N F I N I T E  S C A L A R  A N D  B L O C K  T O E P L I T Z  M A T R I C E S  

C. VAN DEll MEE, G. RODRIGUEZ, S. SEATZU (I) 

A B S T l l A C T  - In this article various existence results for the LDU-factorization of semi- 
infinite and bi-infinite scalar and block Toeplitz matrices and numerical methods 
for computing them are reviewed. Moreover, their application to the orthonormal- 
ization of splines is indicated. Both banded and non-banded Toeplitz matrices are 
considered. Extensive use is made of matrix polynomial theory. Results on the 
approximation by the LDU-factorizations of finite sections are discussed. The gen- 
eralization of the results to the LDU-factorization of multi-index Toeplitz matrices 
is outlined. 

1. I n t r o d u c t i o n  

Let A be a bi-infinite Toeplitz matr ix  A = (Ai-j)ij~z where Z is the set of 
integers and Ah, h E Z, are k x k matrices, so tha t  Ah is a scalar if k = 1 and a 
k x k m a t r i x i f k > l .  

We consider the factorization 

(1.1) A = LDU, 

where L : (Li-j)i,jeZ is a lower tr iangular matrix,  U : (U~_j)idez is an upper  
t r iangular  ma t r ix  and D = (Di-j)i,jez is a diagonal matr ix.  Thus, Ah, Lh, Uh and 
Dh, h E •, are scalars if k = 1 and/~ x k matrices if k > 1. 

This  factorization,  which exists under very general hypotheses, is not unique. 
We are especially interested in obtaining efficient methods  for finding the unique 
factorizat ion such that  D is nonsingular and L and U are boundedly invertible 
on the Hi lber t  space I2(Z) of all square summable  bi-infinite complex sequences 
with L0 = U0 = I ( I  being 1 if k = 1 and the identity matr ix  of order k if 
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k > 1) and further L -1 and U -1 are lower and upper triangular Toeplitz matrices, 
respectively. 

The outline of the paper is as follows: in w we give a review of several results 
on the L D U  factorization of bi-infinite and semi-infinite scalar and block Toeplitz 
matrices; in w we synthetically illustrate the algorithms we are aware of to obtain 
the spectral factorization of bi-infinite real banded and positive definite scalar 
Toeplitz matrices; in w we review some useful properties of matrix polynomials; j 
in w we prove the necessary and sufficient con~iitions for the existence of the 
L D U  factorization of bi-infinite block-tridiagonal Toeplitz matrices. The proof 
is constructive and leads to a numerical method for obtaining the factorization 
that we are looking for. In w and w we illustrate two comparatively new research 
lines and their relevance to the solution of some problems typical of approximation 
theory. Finally, in w we generalize the LDU-factorization results to multi-index 
Toeplitz and non-Toeplitz matrices. 

2. Fac to r i za t i on  of  bi-infinite Toepli tz mat r ices  

Let 12(Z) be the Hilbert space of all square summable bi-infinite sequences 
with norm 

Ilzll = = ~ Ixjl 2, x = (x~)j~z, 
jEz 

and inner product 

(~, u> = ~*u = ~ ~jyj,  �9 = (x~)j~,  y = (yj)j~z, 
jE• 

where x* = (xj)jez. 
Consider the bi-infinite Toeplitz matrix A = (Ai_j)i,yez, defined as any bounded 

linear operator A on 12(Z) that commutes with the right shift S(x,~),~ez = (x~-l)~ez. 
For Toeplitz matrices in the Wiener class we have 

OO 

LAjl < + ~ .  

ff~---OO 

Define the symbol by 
(2O 

A(z)= ~ Ay, I z l = l .  

Then LDU-factorization of A with factors and their inverses in the Wiener class 
amounts to the Wiener-Hopffactorization 

(2.1) A(z) = ].,(z) D ~/(z), Izl = 1, 

where D is a nonzero constant, L(z) and L(z) -1 are continuous in [z[ _< 1 and 
analytic in [z[ < 1, and U(z) and U(z) -1 are continuous in [z[ > I and analytic 
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in ]z I > 1 (including ~ ) .  The functions ],(z) and U(z) and the constant D are 
connected to the factors L, U and D as follows 

c o  c o  

L(z) = ~ njz  j, U(z) = E U_jz-J and D = D 0 .  
j=O j=O 

For A(z) in the Wiener class, a Wiener-Hopf factorization (2.1) exists (and its 
factors L(z),  s and their reciprocals are sums of absolutely convergent Fourier 
series) if and only if ~i,(z) _fi 0 for Izl = 1 and has zero winding number  with 
respect to the origin [20, 14]. Here the winding number is the unique n E Z such 
that  log(z-~A(z)) is continuous in Izl = 1. 

Let A T denote the transpose of A and A* the adjoint of A, i.e. (A*)ij = (A)j~. 
A self-adjoint matrix is called positive definite whenever there is a constant  ~ > 0 
such that  

x*Ax > ~x*x, x E/2(Z). 

Clearly, a Toeplitz matrix A is positive definite if and only if A(z) is strictly 
positive on the unit circle (3r > 0: A(z) > c, Izl = 1). Moreover, a positive 
definite Toeplitz matrix A in the Wiener class has an LDU-factorization with 
factors in the Wiener class. Said otherwise, (2.1) exists if A(z) is the sum of 
an absolutely convergent Fourier series and is strictly positive on the unit circle 
[20, 14]. In this case, 

D > 0 ,  ( ; ( z ) = L ( 5 - 1 )  *, 

and therefore 

i ( z )  = L(z)L(z-1) *, L(z) = L(z) D ~/2, 

leads to a Cholesky factorization of A. 
For A in the Wiener class with factorization (1.1), the finite truncations 

A ('~) = (A~_j)~,j=_,~ 

have an LDU-factorization for sufficiently large n and the LDU-factors in A (~) 
converge strongly to those of A (cf. [14]). 

Now take positive weights wj such that w~+j < wiwj, and consider the bi- 
infinite Toeplitz matrix A in the weighted Wiener class: 

o o  

j -~- - - o o  

Put t ing  p+ = limj_~+~ (wj) 1/j, so that  0 < p_ < p+ < +0% we find that  A has a 
bounded inverse in the same weighted Wiener class if and only if A(z) r 0 when 
p_ < Izl < p+ (cf. [9]). If A(z) also has zero winding number with respect to the 
origin, the LDU-factors of A and their inverses are in the above weighted Wiener 
class. 

The following special cases are of particular interest: 
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(a) wj = r Ijl for some r > 1. Then p_ = 1/r  and p+ = r. 

(b) wj = (1 + [j[)~ for some a > 0. Then p+ = 1. 

If A is banded (i.e. Aj = 0 for [Jl > m), then zmf~(z) is a polynomial  of 
degree 2m. Moreover, i f0  < p_ < 1 < p+ < +co,  A(z) ~ 0 for p_ ~ [z I < p+ and 
A(z) has zero winding number with respect to the origin, then the LDU-fac tors  
of A and their inverses are in the weighted Wiener class with weights wj = p:+ 
and w_j = pJ_ for j _> 0. 

If A is positive definite and banded, the Cholesky factors of A are banded 
and their inverses satisfy 

(2.2)  § <  l[ -ll_jl < 
j=1 j=1 H- - 

if A(z) r 0 for p_ < I z] < p+ for certain p+ with 0 < p_ < 1 < p+ < +c~.  The 
inequalities (2.2) are also true if A satisfies 

(2.3) pJ+lA:l < +c~, E IA-j I < +0% 
j=0 j=0 

for certain 0 < p_ < 1 < p+ < +co, and A(z) r 0 for p_ < [z[ < p+ and A(z) has 
zero winding number with respect to the origin. In particular, if Aj and A_j are 
exponentially decreasing (i.e., i fA+j = O(s +j) as j --~ +~z for certain s• e (0, 1)), 
(2.3) is true for any p+ E (1, l / s+)  and p_ > ( l / s_ ) .  

For bi-infinite k x k block Toeplitz matrices A, one defines the Wiener  class 
as the class of matrices A for which 

oo 

IIAjEI < +oo. 
j ~ - - o o  

Its symbol 

A(z)  = ~ zJAj, I z l = l ,  

is a k • k matrix function. Then LDU-factorization of A with factors and its 
inverses in the Wiener class amounts to the Wiener-Hopf factorization 

A ( ~ ) = L ( z ) D U ( z ) ,  I z ] = l ,  

where D is a constant invertible matrix,/~(z) and L(z ) - i  are continuous in Izl < 1 
and analytic in ]z I < 1, and U'(z) and U'(z) -1 are continuous in ]z I > 1 and analytic 
in [zl > i (including cx~). In that case we have the necessary condition for the 
existence of (2.1) 

det A{z) = det L(z) det D get ~(z) ,  Iz] = 1. 
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Necessary and sufficient conditions can be given in terms of the so-called partial 
indices of .4(z) [14, 9], but except in some very specific cases (such as positive 
definite A(z),  rational matrix functions, and matrix polynomials) these indices 
cannot be  easily computed. 

If A is a positive definite k x k block Toeplitz matrix in the Wiener class, 
there exists a Wiener-Hopf factorization as in (2.1); in that  case D is positive 
definite and U(z) = ~,(2-1).. Moreover, A has a Cholesky factorization A = LL* 
where 

L(z)  = L ( z ) D  = 

3. R e a l  s y m m e t r i c  a n d  b a n d e d  scalar  m a t r i c e s  

For its relevance in the applications, we now outline the five methods we 
are aware of for the spectral factorization of banded and symmetric real matrices. 
This problem is crucial, e.g., to the identification of the asymptotic behavior of the 
Gram-Schmidt iteration for the orthonormalization of a large number of integer 
translates of a fixed function [17, 18] and also in techniques used for wavelet 
construction [7, 27]. This section is largely adapted from [19]. 

Let A = (ai-j)~,jez be a real symmetric and banded Toeplitz matrix and let 
m 

a(zl= ajzJ 
j = - m  

be its symbol, that  is a Laurent polynomial of degree m such that  aj = aj = a_j, 
j = 1, 2 , . . .  , m. We denote the space of all such functions by Sin. When a E &,  
has the property that  

(3.1) a(z) > O, Izl = 1 ,  

the problem we consider is to find real numbers 7'o, % , - . .  , 7,,~ such tha t  
fn  

j = 0  

h a s  all of its roots outside the unit disk and such that  

(3.2) ~(z)7(z  <)  = a ( z ) ,  z e C \ { 0 } .  

To guarantee the uniqueness of the factorization we impose the normalization 
3'(0) > 0 on the polynomial 7(z). The existence of such a factorization is well- 
known and at tr ibuted to Fej~r [23, pg. 117]. 

The first method we wish to outline is due to F. Bauer [2, 3]. As the Laurent 
polynomial a satisfies (3.1) the matrix A is positive definite on 12(Z). Moreover, 
the factorization (3.2) corresponds to the factorization 

A = FF T, 
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where F = (~i-j)i,jEg is the banded lower triangular matrix formed by the coeffi- 
cients of "),(z). 

Let A+ be the semi-infinite compression of the bi-infinite matr ix A given by 

A+ = (A#)i,jsz+, Z+ = {0, 1 ,2 , . . . } ,  

and A,~, n E Z+, be the sequence of finite compressions of A defined by 

A~ = (A~j)~j=o,1,...,~. 

As a result, each finite compression A~ has a unique Cholesky factorization 

L~L~ = A~, 

where L,~ is a lower triangular matrix with positive diagonal elements. As we 
increase n to n + 1 the matrix An+l agrees with A~ in its first n + i rows and 
columns. Likewise L~+I has its first n + 1 rows and columns equal to those of 
L~. Therefore we may consider L~ to be the n-th finite section of a semi-infinite 
matr ix L which is the unique Cholesky factor of A+. 

Bauer proved that  (Ln)~j -+ 7~-j as n --+ 0% and in [17] it has been proved 
that  the elements of the semi-infinite Cholesky factor L approach those of F ex- 
ponentially, that  is, there exist c > 0 and p E (0, 1) such that  for all i, j E Z+ 

(3.3) Ilij - 7i-jl  < cP ~, 

so that  the Bauer method represents an iterative linearly convergent method.  

A second iterative method, which is quadratically convergent, is due to Wil- 
son [28], cf. [19]. His idea is to write equation (3.2) as the following equivalent 
system of quadratic equations: 

m-- i  

(3.4) ~ 3 , j T j + i = a i ,  i = 0 , 1 , . . . , m .  
5=0 

His approach consists of the use of a Newton-Raphson method for solving system 
(3.4). Wilson proved that, if a(z) has no zeros on the unit circle, for a suitable and 

easily made choice of the starting values 7 (~176 . .. , 7~ ), the i terat ion is self- 
correcting and converges quadratically to the required solution. For an effective 
implementat ion of this as well as of the next method we refer to [19]. 

The third algorithm we mention is based on the computation of the zeros of 
the Laurent polynomial a(z). In order to improve the effectiveness of the method, 
in view of the symmetry of its coefficients, we take w = z + z -~ and consider the 
polynomial 

m 

c(w) := a ( z ( w ) )  = 
j=0 
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whose coefficients Co, c l , . . .  , c~ can be expressed recursively in terms of the orig- 
inal coefficients ao, a t , . . .  , a,~. 

The  zeros w~, i = 1, 2 , . . .  , m, of the polynomial c(w) can then be evaluated 
by computing the eigenvalues of its companion matrix by a QR method [16]. Next, 
recalling tha t  w = z + z -1, we obtain the 2m roots zi of a(z), which we order by 
decreasing modulus. 

As the coefficients of a(z) are real and symmetric, if zi is a root so are 2i and 
z~ -1, so that  if zi is outside the unit circle, z~ "1 is inside and conversely. 

The polynomial  7(z) that  we are looking for can then be constructed by 
taking all the roots zj (including 2j) outside the unit circle. 

The fourth method which has been tested in [19] is the minimum phase 
factorization. It is based on the following observation. 

Let a(z) have no zeros on the unit circle. For any g E I1,~ normalized so that  
g(0) = 1 we consider the minimization problem 

min ig(eSO)l 2 d____~O 
9en~,,9(o)=l ~ a( ei~ " 

The solution of this minimization problem is given by 

go,t(z) := 

where 3, is the polynomial in (3.2) we seek. The coefficients of gopt are determined 
by solving a Toeplitz linear system. 

The  final method we review is very popular in signal processing and goes 
by the name of the cepstral algorithm [4, 22]. It is based on some results on the 
factorization of an absolute convergent Fourier series on the unit circle, discovered 
independently by M.G. Krein [20] and by A. Calderdn, F. Spitzer and H. Widom 
[5]. Let us recall the basic idea of this method. 

As the Laurent  polynomial a(z) is strictly positive on the unit circle, by the 
Wiener-Lfivy theorem concerning trigonometric series, the function loga(z)  can 
be writ ten as an absolutely convergent Laurent series 

b(z) := log a(z) = E bJ zj" 
jEZ 

Moreover, the coefficients bj, as those of a(z), are even in j and decay exponen- 
tially, since log a(z) has an extension as an analytic function in some annulus 
r -1 < lzl < r,  r > 1, containing the unit circle. 

Split t ing the Laurent series in the form 

b(z) = b_(z) + b+(z), 

where 

j=O 
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we obtain the factorization (3.2) of the required type, where 

V(z) := exp(b+(z)) 

is analytic and zero free in the disk {z : Iz[ < r} and normalized so that "7(0) > 0, 
and ~3 = 0 for j r 0 and 50 = 1. Note that 7 above is indeed a polynomial of 
degree at most m. A MATLAB implementation of this method has been proposed 
in [1]. 

In [19] it was found that there is a huge disparity between the methods, 
and that all of them except for the Wilson method are significantly affected by 
the variation in magnitude of the coefficients of the Laurent polynomial, by the 
closeness of the zeros of this polynomial to the unit circle and by their spacing. 

To explain how the spectral factorization of Laurent polynomials which are 
positive on the unit circle has been used to identify the limiting profile of splines 
obtained by orthonormalizing a large finite set of B-splines with integer knots, we 
recall some results from [17]. 

Let Bk be the (k + 1)-fold convolution of the characteristic fimction of the 
interval [0,1) (Schoenberg [26, pg. 11] called Bk the (k + 1)-st order forward 
B-spline). Consider the integer translates of Bk, that is 

r  i � 9  

Suppose n i s  an integer such that n > k + l  and t a k e m = n - k -  1. Next we 
orthonormalize on [0, n] the functions r , Cm recursively by a Gram Schmidt 
process. In this way we generate the functions r  ,r having the property 
that 

fo~r162 6ij, i , j = O , l , . . . , m .  

The asymptotic behavior of this recursion as n --+ oo has been studied in [17]. 
Among other things the authors proved that there exist a function O(x), x E N, 
and constants c > 0, # C (0, 1) such that for any n and 0 < i < m 

- o i ( = ) l  < x e R , . ,  

where O~(x) := O(z - i). This function O has the property that 

f O(x)O (x)dx = �9 z, J 

and for some constants {7j}yez+ which decay exponentially 

(3.5) o = 
jEZ+ 

The constants {Vj}jez+ can be identified in the following manner. We consider 
the Toeplitz matrix 

T = (t,-j)i,jez, 
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where 

t ~ : = ~ B k ( t ) B k ( t - i ) d t = B 2 k + l ( k + l + i ) ,  i E Z ,  

and let ~-,~(z), z E C, stand for the Euler-Frobenius polynomial of degree n - 1 
[26, pg. 22]. Then 

1 
t(z) := E t J z J  = (2k + 1)! z-k~'2k+l(z)' z e C. 

jEz 

Moreover, from [26, pg. 22], we know that 7r2k+l(z) has 2k simple negative zeros 
A1 < - . .  < A2k < 0 such that  /klA2k . . . . .  ~k/~k+l = 1. Consequently, we can 
write t(z) in the form 

t ( z )  = z e C\{0} ,  

where h(z) is a real polynomial of degree m having its zeros outside the unit circle 
at A1,.. .  ,Ak with h(0) > 0. Since h(z) has no zeros in the unit disk we can 
expand its reciprocal in some neighborhood of the unit disk as 

1 
: -  h (z )  -  ,zJ, 

jEZ+ 

where the constants {%}jez+ necessarily decay exponentially. These constants 
determine the limiting profile by formula (3.5) (Figure 1). 
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Figure 1: O-splines of degree 3 and 10 

4. R e v i e w  of  p r o p e r t i e s  of  m a t r i x  p o l y n o m i a l s  

J o r d a n  cha ins  of  m a t r i x  po lynomia l s .  Let W(z) be a k x k matrix 
polynomial, i.e., a polynomial in z whose coefficients are real or complex k x k 
matrices. Then de t W(z) either vanishes identically or is a scalar polynomial in z. 
We call zo E c an eigenvalue of w if det W(zo) = 0, and ~0 E C k an eigenvector 
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of W corresponding to the eigenvalue Zo if ~0 # 0 and W(zo)~o  = 0. The  set of 
eigenvalues of W is called the spectrum of W; it either coincides with the  entire 
complex plane (if det W ( z )  - 0) or with the finite set of zeros of det W ( z ) .  

Let zo be an eigenvalue of W. Then the m-uple of vectors ~0, ~1,. - - , ~m-1 
in C e is called a Jordan chain at z0 of length ra if ~0 # 0 and the upper t r iangular  
linear system 

k W(S)(Zo) 
(4.1) E j------T - ~ r  k = 0 , 1 , . . . , m - 1 ,  

j=0 

is satisfied. If one considers the subspace of C k spanned by the vectors const i tu t ing 
the Jordan chains at the eigenvalue z0 and orders the Jordan chains, say, according 
to decreasing length until one has a basis of this subspace, the lengths of these 
chains are the so-called partial multiplicities of W at the eigenvalue z0. They  do 
not depend on the specific choice of the Jordan chains but only on W. The  sum 
of the partial multiplicities at the eigenvalue zo coincides with the order of z0 as 
a zero of det W ( z )  and is called the algebraic multiplicity of Zo; the dimension of 
the kernel of W ( z o ) ,  which coincides with the number of Jordan chains at z0, is 
called its geometric multiplicity. This definition appears in [25] in the context of 
operator polynomials. 

In matrix algebra one usually considers the situation W ( z )  = z - T where T 
is a k x k matrix and the leading coefficient is the identity matrix. The partial 
multiplicities are then exactly the sizes of the Jordan blocks at the eigenvalue z0 
of T. 

A definition of partial multiplicity through root vectors for meromorphic op- 
erator functions, clearly equivalent to the present one in the case of matr ix  poly- 
nomials, appears in [13]. 

S p e c t r a l  pa i r s  o f  m a t r i x  p o l y n o m i a l s .  Let us introduce some basic facts 
about  matrix polynomials [11, 12, 25]. Consider the monic matr ix polynomial  

(4.2) 7~(z) = z l + z l - lA~_ 1 + . . � 9  + zA1 + Ao, 

where the coefficients are k • k matrices; here monic  means that  the leading 
coefficient is the identity matrix�9 Since det 7)(z) is a scalar polynomial of degree kl, 
there are exactly kl eigenvalues, when counted according to algebraic multiplicity. 
Let z l , . . .  , zp be the distinct eigenvalues of P ( z ) .  For each j ,  we construct a pair 
of matrices X s (of size k x m s where mj is the multiplicity of z s as a zero of 
det P ( z ) )  and Tj (of size m s • mj) as follows: 

Xj = [z~ ) .. _(s)  z~{) ...(s) . .  z~) . ~(s)] �9 : / ' l r l  " �9 " . ~ 2 r  2 �9 " " .t, q rq j  

Tj = diag ( Jr, (zj) ,  JT2(zj), . . . , Jrq(zj) ) . 

Here x~{ ) -(J) .(s) for s = 1, q are the Jordan chains for P(z)  correspond- 

ing to zj such that  the eigenvectors (S) (J) -(J) are linearly independent and 
~ 1 1  ~ X 2 1  , ' "  " , : b q l  
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rl + r2 + . ' .  + rq = mj, and Jr,(zJ is the r s x  rs upper triangular Jordan block 
with eigenvalue zj. Finally, put 

(4.3) X= [X~ X: --. X,], T=diag(T~,T2,...,TJ. 

One can show [11, 12] that the kl x kl matrix 

is invertible and that 
l-I 

(4.5) XT' + Z AjXTJ = 0. 
j:O 

More generally, let P(z)  be the monic k x k matrix polynomial given by (4.2). 
Then the pair of matrices (X, T), where X is of size k x kl and T is of size kl x kl, 
is called a right spectral pair for the polynomial iP(z) if the operator in (4.4) is 
invertible and (4.5) holds. Thus the pair (X, T) given by (4.3) is a right spectral 
pair for :P(z). According to [25], Theorem 2.1.1, for every couple of right spectral 
pairs (X1,1/"1) and (X2,TJ  of the same monic matrix polynomial there exists a 
unique invertible matrix S such that 

X1 = X2S, T1 = S-1T2S. 

Analogously, (T, Y), where Y is of size kl x k and T is of size kl x kl, is called a 
left spectral pair if the matrix 

[Y z Y  . . .  

is invertible and 

, - 1  

T ' Y  + E TJYAJ = O. 
j = 0  _ 

One can prove that for every couple of left spectral pairs (T1, ]I1) and (T2, Y2) of 
the same monic matrix polynomial there exists a unique invertible matrix S such 
that 

}'1 = 3-1Y2, T1 = S-1T2S. 

According to [25], Theorem 2.2.1, we have the following: If (X, T j  is a right 
spectral pair and (T2, Y) is a left spectral pair of the same monic matrix polynomial 
;re(z) given by (4.2), then 

~(z)  -- z z - XT~ (V1 + zV2 + . . -  + z'-lVl) 
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where V1, . . .  , Vl are kl x k matrices defined by 

v,] (col . . . .  [XTi ],=o) , 

and 

~ ( z )  = z' - (w1 + zrV~ + . . .  + z~-IW~)T~ Y 

where W1, . . .  , Wl are k x kl matrices defined by 

col[Wj]~=l = [Y T2Y ""  T~-IY] -1.  

These representations are called right and left canonical forms of ~ (z ) ,  respec- 
tively. 

An important  special case is the spectral triple (Q, C~,, R) given by 

Q T =  , C 7 , =  0 Zk " .  , R =  , 

: " . .  " .  " .  

o . - .  o zk 

where C~ is called the companion matriz of T'(z), (Q, C~,) is a right spectral 
pair and (C~,, R) is a left spectral pair of 7~(z). Then there exist (kl x kl) matrix 
polynomials E(z)  and F(z)  with constant nonzero determinant such tha t  E ( z ) ( z -  
C~,)F(z) = 7)(z) @ Ik(,-~) for every z E d, cf. [11]. As a result, T'(z) and C~, have 
the same eigenvalues and the same Jordan structure at each eigenvalue. 

5. B l o c k - t r i d i a g o n a l  Toep l i t z  m a t r i c e s  

Let A = (Ai-j)i,j~z be a bi-infinite block tridiagonal Toeplitz matr ix,  where 
A1, A0 and A- l  are k x k matrices and As = 0 for s ~ - 1 ,  0, 1. 

We consider the factorization 

(5.1) A = L D U  

where D = (Di-j)i , jez is a block diagonal Toeplitz matrix with k x k entries 
Do = 7)k, and L = (L/_j)/,jez and U = (Ui-j)i,j~z are block bi-diagonal Toeplitz 
matrices with k x k entries L1 = _ / : T  U-1 = -g4 ,  L0 = U0 = Ik (the k x k 
identity matrix) and Ls -- U_~ = 0 for s ~ 0, 1. The matrices L, U and  D are 
factors in the factorization (5.1) if and only if s b/k and 7)k satisfy the relations 

A0 = s  

A1 = --z:T:Dk 
A_I = -~k/-4k. 

This factorization, which exists under very general hypotheses, is not  unique. 
We are especially interested in giving an efficient method for finding the unique 
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factorization such that  L and U are boundedly invertible on the Hilbert space 
/2(Z) and, further, L - t  and ( f f r ) - t  are lower triangular block Toeplitz matrices. 

In the following, we shall give the necessary and sufficient conditions for 
the existence of such a factorization. The proof is constructive, as it contains a 
numerical method for obtaining the factorization that we are looking for. 

We shall assume that either Al or A_t is nonsingular. First suppose that  At 
is nonsingular. Now let the function 

E(z) = zAi  + Ao + z - t A - t  

be the symbol associated to the matrix A. Then P(z)  := zA-[ I E(z) is a monic k x k 
matr ix polynomial of degree 2. Now let F, with 0 ~ F, be a simple closed oriented 
rectifiable Jordan curve dividing the complex plane into an interior domain f2+ 
with 0 E f2~_ and an exterior domain f2_ with e~ E f2_, and assume that  zE(z) 
(and hence P(z) )  does not have eigenvalues on F. Then (5.1) is valid if and only 
if 

(5.2) = ( h  - zZ;k)rZ) (h - z- tZ4) .  

Moreover, as At is nonsingular, it follows from At = - s  that  both Z;k and 
~Dk are nonsingular. 

Let .kt , . . .  , %s be the distinct eigenvalues of zE(z) in f~_, let #1, -- - , #t be 
the distinct eigenvalues of zE(z) in f~+, put zj = Aj for j = 1 , . . .  , s and zj = #j-s 
for j -- s + 1 , . . .  , s + t, and let rrzj, j = 1 , . . .  , s + t denote the multiplicity of 
zj as a zero of det(zE(z)). Then rnt + --. + rn~+t = 2k. The main result of this 
paper is the following theorem, which gives a constructive proof of the existence 
of the factorization (5.2). 

THEOREM 5.1. A factorization (5.2) of E(z), where b/k has its eigenvalues in f~+ 
and/2~ 1 has its eigenvalues in f~_, exists if and only if 

(5.3) 'ra 1 + . . . + m s  = k = m s +  l + . . . + rr t s+ t .  

Whenever this factorization exists, it is unique and it is called the spectral factor- 
ization of A. 

PROOF. As :Dk is nonsingular, if E(z) has the factorization (5.2), then the eigen- 
values of zE(z) are given by the union of the sets of eigenvalues of/dk and s 
Hence, if the eigenvalues of b/k and s  t are in f~+ and f2_, respectively, re la t ion  
(5.3) is satisfied. 

Now suppose that  relation (5.3) is true. We shall prove that  the factorization 
(5.2) holds and that  #1, #2, . . .  , #t are the eigenvalues of/2k and A1A2,... , As are 
the eigenvalues of Z;~ 1. As in (4.3), we now construct the right spectral pair 
(Xr, T~) of T'(z) by using its Jordan chains (which are also the Jordan chains 
of zE(z)) and the right spectral pair (Xl,Tz) of (A ~) - t P ( z ) rA  T using its Jordan 
chains (which are also the Jordan chains of zE(z)r) ,  where the distinct eigenvalues 
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z l , . . .  , z~+t of zg(z )  have been ordered by decreasing modulus. Then,  denoting 
the re x re upper tr iangular Jordan block with diagonal entries ,k by J,~(,k) and 
part i t ioning the k x 2k matrices Xl and X~ into k x k blocks, we have 

x,=[v :], x =[7 w], 
T~ = Tr = diag ( J~ , (k l ) , .  �9 �9 , J~,(A~), J ~ , + , ( # l ) , - . - ,  Jm,+,(#t)) ,  

where V and W are nonsingular k x k matrices and the k x k matr ices at the 
question marks are irrelevant. Writing 

A71 = diag (J~,  (,~i), �9 �9 �9 , J~, ( ~ ) ) ,  

AM = d i a g  ( J ~ , + , ( # l ) , . . - ,  J~,+,(#t) ) ,  

we obtain the factorization (5.2) by defining 

(5.4) s = V A L V  -1, bik WAMI'V -1, 1)k = --(f'k)T -1A1. 

Indeed, put  

Ao = s Uk + 7)k = --AlUk + 7)k, `4-1 = --TPk b/k. 

Then for z E C \ {0} we have 

~ ( z )  : =  (Ik - z & ) ~ k ( I k  -- z-lUg) = z &  + .40 + z-1`4-~. 

Now, lett ing Wo, w l , . . .  , win-1 be a Jordan chain of zg(z )  corresponding to the 
eigenvalue ttj, by virtue of (4.1) we have 

(5.5) #jP,(#j)wp + (2#yA~ + Ao)wp_~ + Atwp-2 = O, 

w h e r e p  = 0 , 1 , . . . , m -  1 and w-2 = w_~ = 0. Furthermore,  in view of the 
definition of b/k given in (5.4), using (4.1) for W(z)  = z - ldk we get 

(/~j - / . /k)wp = - w p _ , ,  

where p - 0, 1 , . . .  , m - 1. The result of the computat ion 

= (/k - # y E k ) T v k ( a  -- ldk)%, + lzyA~wp_~ + A~(tty - blk)w~,_~ 

(5.6) + (`40 + Albl~)wp_~ + Alwp-2 

= --(Ik - #S.k)TlpkWp-~ + ~jA~wp-i - A~wp_2 + lPkwp_~ + A~wp_2 

= ~ ( s  + &)w~_~ = 0 

now implies tha t  w0, . . .  , wm-z is also a Jordan chain of zE(z)  corresponding to 
the eigenvalue #j. Next, letting v 0 , v b . . .  ,vm_~ be a Jordan chain of zE(z)  v 
corresponding to the (nonzero) eigenvalue ,kj, by virtue of (4.1) we have 

(~.r) :~,r~(:~,)~'~, + (2~,AT + d~o)V~_, + AT~p-: = o, 
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where p = 0 , 1 , . . . , m -  1 and v_2 = v_l = 0. Furthermore,  in view of the 
definition of A:e given in (5.4), using (4.1) for W(z)  = z - s we obtain 

(,Xj - Z ; ; 1 ) v p  = - v p - 1 ,  

where p = 0, 1 . . . .  , m - 1. The result of the computation 

a s E ( a y v  , + (2asAT + A0~)v,_l + ATv,_~ 

= - ( a j  - u [ ) ~ [ c ~ ( a s  - c ; 1 ) , ,  + (aj - U [ ) A T v , _ ~  

(5.s) + AT(~j  - c;1)~,-~ + ATv,_~ 

= (As -u;)v~L~v,_~~" ~ + ( A j - U [ ) A T v , _ I -  A T v , - ~ +  AT~,-~ 

= (as - u ~ ) ( v ~ c ~  + aT)~,-1 = 0 

now implies tha t  vo , . . .  , v,~-i is also a Jordan chain of zE(z)  T corresponding to 
the eigenvalue Aj. Consequently, subtracting (5.6) from (5.5) and (5.8) from (5.7), 
respectively, we obtain 

[ ,AAo - ~io) + (A_~ - ~i_i)] ~ ,  + (Ao - ~io)~,_~ = 0. 

[Aj(Ao - , 4 o )  ~ + (A_~ - ~i_l) ~] v, + (Ao - A ) % - i  = 0, 

where p = 0, 1 , . . .  , m - I. The first of these equations can be written as 

= - (Ao - Ao) [Wo ~ .-- w~_~] Jm(,~), 

which implies (A_l - A _ i ) W  = - ( A o -  .Ao)WAM and hence 

(5.9) (A_, - A_l)  = - ( A o  - fto)ldk. 

In the same way We get (A-1 - .4-1)TV = - (Ao - -~o)TVA~ 1 and hence 

( 5 . 1 0 ) ( d _ l  - f i_~)  r = - ( A o  - Ao)r~:~ -~. 

From (5.9) and (5.10) one immediately gets 

(Ao - Ao)blk = ( s  - rio) = - ( A _ l  - ft_~). 

Since/dk and ( s  do n o t  have eigenvalues in common, the lat ter  identity implies 
^ 

Ao - fi, o = A-1 - A_I = 0, or in other words Ao = Ao and A-1 = A-1. t-Ience the 
matr ix  polynomials zE(z)  and zE(z)  coincide. 

We now conclude that  E(z) has the factorization (5.2) and hence tha t  the 
bi-infinite mat r ix  A has the factorization (5.1). To find the linear factors in (5.2) 
it is sufficient to find either/dk or/2~. Indeed, if/Ak is known, then 79k = A0 + A1/dk 
and Z:k - -1 T. = (A~TP k ) , i f / :k is known, then 79k = A0 + s  and b/~ = -TP [ lC .  �9 

A similar faetorization can be obtained by assuming tha t  A-1 rather  than A~ 
is nonsingular. In that  case one replaces z by z -1 and changes the roles of A1 and 
A-1 tO arrive at  analogous factorization results. 
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We note that,  starting from the eigenvalues of z2(z),  we can generate several 
k x k matrices L:e and/dk such that  (5.2) is satisfied. For example, if the eigenvalues 
are all distinct we can obtain the triple Z:k, /dk and :De in (~) different ways. 
Moreover, although Theorem 5.1 concerns the spectral factorization of A, it does 
not directly provide information on the existence and the properties o f  L - t  and 
U -1. To this end we establish the following 

THEOREM 5.2. If l:k, 29e and /dk are constructed as previously specified and F 
is the unit circle, then the matrices L and U are boundedly invertible on 12 and 
their inverses L -~ and (U-t)  r are lower triangular block Toeplitz matrices of the 

c~ 
type (Ti-j)i,jez where T~ = 0 for s < 0, To = Ie and ~ j=0  rJllTjll < + o c  for some 
r > 1 .  

PROOF. I f  (5.2) holds for F the unit circle, then s  and Uk both have all of their 
eigenvalues within the open unit disk and hence the series Y-]~j=0 zJ(s and 

O(9 
}-~j=0 z-J(uk) j converge in the norm uniformly in z E {w E C : r - t  < -< T} 
for some r > 1. Moreover, their sums are the inverses of the factors (Ik -- z~e) T 
and ( Ik - z - lUe) ,  respectively. As a result, the bi-infinite Toeplitz matrices having 
these sums as their symbols are the inverses of L and U, and these inverses are 
bounded on 12. The final part, where T~ is either of (z;T) ~ or (/~e) ~ for s _> 0, 
is immediate, because the spectral radii of both s  and/de are less than  1/r for 
some r > 1. �9 

If the bi-infinite matrix A is real and positive definite and the contour F is the 
unit circle, then A0, At and A-1 are real matrices such tha t  A~ r = A_~ and A0 is 
positive definite. Moreover, there exists a unique spectral factorization with real 
coefficients in which/dk = s is nonsingular and Dk is positive definite. Indeed, 
(5.1) and A = A T imply that  (LTU-1)TD = DT(LTU -1) is a block diagonal 
matrix with invertible blocks. Then LTU -1 is the identity matrix and D = D T, 
so that  L = U T and D is positive definite. Hence s = L/k and :Dk is positive 
definite. 

6. C o n v e r g e n c e  of  f in i te  sec t ions  

Consider the aforementioned bi-infinite block tridiagonal Toeplitz matr ix  A. 
We define the semi-infinite block Toeplitz matrices A+ and A_ as follows: 

A1 A0 A-1 1 A0 AI 
(6.1) A+ = A1 A0 A-1 , A_ = A-1 A0 A1 

" . .  " . .  " . .  ' . .  " .  " . .  

Then A+ (resp. A_) are boundedly invertible on the Hilbert space 12 of square 
summable complex sequences (:ci)i~__o if and only if the symbol E(z) = zA1 + Ao + 
z - l A _ l  (resp., E(z -1) = zA_t + Ao + z - lA t )  has the factorization (5.2) (resp. 
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E(z -1) = (Ik - ZEk)Tf)k([k -- Z-llTlk)) where all of the eigenvalues of s and/,/k 
(resp. Ek and L/k) have absolute value less than 1 [9, Theorem XXIV 4.1]. In 
other words, the block Toeplitz matrices A+ and A_ are boundedly invertible on 
12 if and only if there exist k • k matrices /:k, Ek, Uk and/,)k with all of their 
eigenvalues having modulus less than 1 and nonsingular k x k matrices T)k and 
7)k such that 

( 6 . 2 )  = - - -  z - l U g )  = ( I k  - -  - -  

The factors in (6.2) can be found by applying the algorithm of the preceding 
subsection to E(z) and to E(z-1). 

Now we define on I2 the projections Pn of rank nk as follows: Pn(xi)~~176 0 = 
(x0, x l , . . .  , xnk, 0, 0, 0 , . . . ) .  Define the (nk) x (nk) matrices An+ and An- as the 
corresponding left upper blocks of A+ and A_, respectively. Then, according to 
Theorem 2.1 of [10] (also [14, 24]), the matrices An+ and An- are nonsingular for 
sufficiently large n and for every y 6 12 the vector (A~+ly, 0, 0, 0 , . . .  ) converges to 
A+ly in the norm of 12. Similarly, for every y 6 I2 the vector (A~_ly, 0, 0, 0 , . . . )  
converges to A~_~y in the norm of 12. In fact, these two convergence properties 
together are equivalent to the bounded invertibility of both A+ and A_ on 12. 

The semi-infinite matrices given by (6.1) have factorizations A+ = LeD+U+ 
of the form (5.1) if and only if they are boundedly invertible on 12. Then, for 
n large enough, the matrices A,~• corresponding to their (nk) x (nk) left upper 
corners have factorizations of the form 

A~+ -= Ln+Dn+U~+, An- = L~_D~_U~_, 

where Dn+ and D,~_ are block diagonal matrices and Ln+, Ln-, UIT+ and U T_ 
are lower block triangular matrices having Ik as their diagonal blocks. Moreover, 
writing ,:Tn[T] as the semi-infinite matrix obtained from the (nk) x (nk) matrix 
T by adding zero entries, the extended (nk) x (nk) matrices J,~[nn+], Jn[L~:~], 

Jn[D,~+] converge to the respective semi-infinite J~[Un~], fln[U~',~], S~[D~• and -~ 

matrices L• L~: 1, U+, U~ 1, D+ and DT_ 1 in the strong operator topology as 
n --+ c~. To prove these convergence properties, one applies the theory of multi- 
plicative LU-decompositions [9] with respect to the chain of orthogonal projections 
{0, Po, P1,""  , IL~} to the semi-infinite matrices A• where Il2 is the identity oper- 
ator on I~. Using the same multiplicative LU-decompositions with respect to the 
same chain of projections in the Hilbert space of complex sequences (x~)/~0 en- 

dowed with the weighted norm - (~"~ieZ+ r2ilX~12) 1/2 for a suitable r > 1, one proves 

that the above convergence properties also hold with respect to the weighted norm. 
% 

Details will be g.iven in a future paper. 
Similar results hold for the LDU-factorization of a bi-infinite block tridiag- 

onal Toeplitz matrix A. Indeed, let/2(Z) stand for the Hilbert space of square 
summable sequences indexed by the integers and let us define on/2(Z) the projec- 
tion P ~  of rank (2n+l)k as follows: P~(x~)~=_or = (. . .  , O, O, x - n , " "  , an, O, 0 , - . .  ). 
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Next, define the (2n + 1)k • (2n + 1)k matrices Am as the corresponding central 
blocks of A. Then, according to [10], Theorem 3.1, applied for R = S, Am is non- 
singular for sufficiently large n and for every y E/2(Z) the vector (-. �9 , 0, 0, A~ly, 
0, 0,- .-  ) converges to A - l y  in the norm of/2(Z). Actually, this convergence prop- 
erty is equivalent to the invertibility of both A+ and A_ on 12. Moreover, for 
sufficiently large n the matrices Am have a factorization of the form 

A = L~D~Un, 

where D~ is a block diagonal matrix and L~ and U~ are lower block triangular 
matrices having Ik as their diagonal blocks. Moreover, writing J~[T] as the bi- 
infinite matrix obtained from the (2n + 1)k • (2n + 1)k matrix T by adding zero 
entries, t he extended matrices J ~  [L~], J ~  [L~ 1], j ~  [U~], J ~  [U~I], J~-~ [D~] and 
J~+[D~ I] converge to the respective bi-infinite matrices L, L -1, U, U -1, D and 
D -1 in the strong operator topology as n -+ co. The proof of these convergence 
properties follows from the theory of multiplicative LU-decompositions [9] with 
respect to a suitable chain of orthogonal projections. 

When A is real positive definite and hence Ao is real positive definite and 
A T -- A_j for j >_ 1, A+ and A_ are both boundedly invertible on 12, since the 
factorizations (6.2) both exist. In this case the unique solution of the equation 
Ax -- y can be approximated as in the previous two paragraphs. 

If A is a positive definite scalar Toeplitz matrix (i.e., k = 1) several interesting 
properties have been proved for the elements of the Cholesky factors of A+, A, 
A+ 1 and A -1 [17]. In particular, the inequality (3.3) shows that as n -+ co the 
elements of Ja[L,~] decay exponentially to the coefficients of the spectral factor 
7(z). Likewise, it has been proved in [18, (2.16)] that as n -+ oo the coefficients 
of L+ 1 converge exponentially to those of 7(z)-1. 

Our numerical experiments suggest that these properties can be extended to 
the block case. We plan to explore this possibility in the near future. 

7. An  appl ica t ion  

Let P3 be a polynomial of degree 3. A Hermite B-spline of order 2 and 
support [0, 2] is a function B E C1[0, 2] which satisfies the condition [21] 

.J'P3(x), 0 < x < 1 
B(x) 

[ ~ P 3 ( 2 - x ) ,  1 < x < 2 .  

Now let BI and/32 be the following second order Hermite B-splines: 

~z2(3 - 2 z ) ,  0 < x < 1 

Bl(x) -- [ ( 2 x - 1 ) ( x -  2) 2, l < x < 2 ,  

~x2(z - 1), 0 < x < 1 

B2(x) = ~[ (x _ l) (x _ 2) 2, l < x _ < 2 .  
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As B[~)(0) -~ B~)(2) = 0 for ~ = 0,1, BI(1) -- 1 and Bi(1 ) = 0, B~)(0) : 

B~a)(2) = 0 for c~ : 0, 1, B2(1) = 0 and B~(1) : 1, we call them cardinal. 
Furthermore, let B be the two-dimensional vector 

B(x) = J 

and let Bj(x)  := B(x - j ) ,  j E Z, be the j- th integer translate of B. Now, among 
the functional vectors {Bj}, we introduce the inner product 

(7.1) <Bh, Be> := [ ( B I ( ' -  h),BI(- - k)> <BI( . -  h),B2(- - k)}] 
h),BI(, k)> h), k)>] 

where the symbol (-, .) denotes the usual inner product in L2(R). According to 
this definition, Bh is orthonormal to Be if and only if (Bh, Bk} = I26hk, where/2 
is the 2 x 2 identity matrix and 6hk is the Kronecker symbol. 

The vector B, as well as other kinds of vectors of Hermite B-splines, has been 
used in the construction of orthonormal multiwavelets, that is in the construction 
of vectors of wavelets [6]. 

Because the support of each component of the vector Bj  is confined to the 
interval [0, 2], the bi-infinite matrix G := ((Bh, Bk))h,keZ is a symmetric block 
tridiagonal Toeplitz matrix characterized by the 2 x 2 matrices 

1 [ 54  13] ' G o =  1 [3~2 08] 1 [54 2 ]  
G l =  ~ --13 - 4 ~  , G-1 = 4-~ 13 " 

The eigenvalues of the corresponding symbol 

(7.2) Z(z) = zG~ + G0 + z-~G-1 

are the zeros of the equation 

z 4 - 72z 3 + 262z ~ - 72z + 1 = 0. 

It is immediate that the symbol (7.2) is a 2 x 2 matrix polynomial which is 
Hermitian and positive definite on the unit circle and has two eigenvalues inside 
and two outside the unit circle. Hence, the method of Section 3 allows us to obtain 
the factorization of the symbol with respect to the unit circle and, consequently, 
the factorization of G. As G is positive definite, so is D and hence we can write 
G = L L  T, where L = L D  1/2 is the Cholesky factor of G. 

Suppose that n is an integer such that n ___ 2 and m := n -  2. We consider the 
orthonormalization on [0, n] of the sequence Bo, B1, . . .  ,Bm by a Gram-Schmidt 
process. In such a process, for the sake of simplicity, we still define the inner 
product among {Bi} by (7.1), but the symbol (-,-( represents now the usual inner 
product in L 2[0, n]. The process generates the vectors O~', O~, . . .  , O~ such that 

�9 7% 

( O , ,  r, s = 0 , 1 , . . . ,  m. 
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This procedure is well-defined since the corresponding (m + 1) • (m + 1) block 
tridiagonal Gram matrix G(m+l) is nonsingular. It is then straightforward to prove 
that  the functional vectors {O~} can be expressed as follows: 

i 

j = 0  

where L(.~+I) is the Cholesky factor of G(.~+~. 
Now let 

oo 

O(x) = ~ L~-B_j(x), 
j----0 

where {L~-) is the sequence of 2 x 2 matrices defined by the series 

oo 

z) -1/2 (I~ - zC~) -~ = ~ L y .  
j=0 

Furthermore,  as a result of Theorem 5.2, the norms IIL~-H decay exponential ly as 

j --~ oo, i.e. there exist constants e > 0 and r ~ (0, 1) such that  IIs < cr3 for 
all j ~ ~+. 

Our numerical experiments suggest that  O(x) is the limiting profile of the 
sequence {O~}. Hence we conjecture that there exist constants c > 0 and (~ 
(0, 1) such that  for any n _> 2, m as above and 0 < i < m 

Ito~(:~) - o~(x)ll ___ c~', �9 e x+,  

where Oi(x) := O(x - i) and [[f(x)[[ = max{ilA(x)[Ioo, IIA(x)I[~}. Figure 2 gives 
an idea of the behavior of the two components of O~ ~ for some values of i and 
Figure 3 represents the graph of the components of O(x). 

. . . . . . . . .  /11 0 I//L // 
r ~ !! ! i ,! i !1 t l  o-ot/t: /I 

0.4 ~ ! i } i 

;i i! ~ !l fi 

- 0 . 2 ~  

-0  4. 
0 5 10 15 20 

i i ] i 

ii ?: ~. 

5 10 15 20 

Figure 2: Components of 0 2~ i = 0, 1, 2, 3, 9, 15, 16, 17, 18 
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Figure 3: 2nd order Hermite O-splines 

This is a special case of the more general problem concerning the asymptotic  
behavior of the Gram-Schmidt  process for the orthonormalization of a large num- 
ber of vectors of locally supported functions. We plan to s tudy this problem in a 
next  paper. 

8. M u l t i - i n d e x  T o e p l i t z  m a t r i c e s  

As we have seen above, the orthonormalization of B-splines can be reduced to 
the LDU-factorization of a bi-infinite Toeplitz matrix. The generalization of this 
problem to vector-valued B-splines leads to the LDU-factorization of bi-infinite 
block Toeplitz matrices. A different generalization occurs at the orthonormal-  
ization of m-dimensional B-splines, with m _> 2. This problem can in principle 
be reduced to the LDU-factorization for Toeplitz matrices with m indices where 
m _> 2. In this section we study the definition, existence and stability under 
finite section truncation of the LDU-factorization of m-index bi-infinite Toeplitz 
matrices. 

Let 12(Z m) be the Hilbert space of all square summable functions z : Z ~ -+ C 
with norm 

]lxtl2 = E Iz~12' x = (x~)~z.~, 
o~6Z m 

and inner product  

( 5 , y / =  = �9 = y = 

~6Z m 

where z* = (2~)~ez=. Here we have written x~ instead of x(~).  
Introducing the right shift S~ by Sk(xa)~ez,~ = (x~-~(k))aez=, k = 1 , . . .  , m, 

where 7(k) E Z TM is the element of gm with k-th entry 1 and zero for the other 
entries, a bi-infinite Toeplitz matriz  A = (A~-z)~,Zez= is defined as any bounded 
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, S~. Such linear operator  A on 12(Z "~) that  commutes with the right shifts S I , "  " " 

a Toeplitz matr ix  is said to be in the Wiener class if 

Z I ol < 
aEZ,~ 

In that case we define the symbol by 

A(z) = ~ Aoz ~, z = (zl,.-- ,z~) ~ 7, 
aEZ ,,~ 

where z ~ = z~ 1 . - . z ~  ~ for ~ = (~1 , " "  , ~ )  and ~ = {z = ( z l , - - .  , z ~ )  E 
: [zll . . . . .  Izml = 1} is the m-dimensional torus. Clearly, the symbol 

of a bi-infinite Toeplitz matrLx in the Wiener class is continuous on T ~. Using 
s tandard Banach algebra theory [9, Chapter  XXX] one sees immediately that  tile 
bi-infinite Toepli tz matrices in the Wiener class form a commutat ive C*-algebra 
with respect to convolution [i.e., (A* B)~ = ~-~ez~ A~_~Bv] whose multiplicative 

linear functionals are exactly the maps A ~-+ A(z) for z E " ~ .  As a result, a bi- 
infinite Toepli tz matr ix  A in the Wiener class whose symbol A(z) does not  vanish 
for z E T "~, has a bounded inverse in the Wiener class whose symbol is given by 
l lA(z).  

To define the LDU-factorization of a bi-infinite m-index Toeplitz mat r ix  with 
m >__ 2 one needs a linear order _--< on Z ~ which allows one to call a Toepli tz matr ix  
A lower (resp. upper) triangular if A~ = 0 for all ~ E Z m with a -< (0,-- -  , 0) 
(resp. oL >- (0 , - - -  , 0)). This linear order must have the following properties: 

(a) c~ _ / 3 : : : : : ~ + V - < ~ + v ,  and 

(b) (~ _--</~ and c > 0)==~ ca -< c/~. 

The  main problem is that  for m >_ 2 such a so-called term ordering is by no 
means unique. In fact, the lexicographicat order on Z m with respect to any order 
of the "letters" 1 , - . -  , m within the "alphabet" {1, - . -  , m} will do. Wi th  respect 
to _ ,  we call A = (A~-~)~,~ez-~ lower triangular if A~ = 0 for all o~ E Z m with 

-< ( 0 , . . .  ,0), upper triangular if Aa = 0 for all a E Z m with a >- ( 0 , - - - , 0 ) ,  
and diagonal if A~ = 0 for all a E Z m different from (0 , . . .  , 0). 

Consider the linear order -< of Z 'n as specified above. Let us s tudy represen- 
tat ions of A in the form 

(8.I) d = LDU, 

where L = (L~=z)a,,ez.~ is lower triangular with L(0,...,0) = 1, U = (Ua-,)a,~ez-~ 
is upper t r iangular  with U(0,...,0) -- 1, and D -- (D~-~)~,~ez.~ is a diagonal matrix.  
This factorization, which can be proven to exist under very general conditions on 
A, is not unique. To make it unique, we also require D to be invertible (i.e., Do to 
be nonzero) and L and U to be boundedly invertible on i2(Z m) with inverses L - '  
and U -1 tha t  are lower and upper triangular matrices, respectively. In tha t  case, 
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A has to be boundedly invertible on/2(Zm),  but  in general this is not sufficient 
for the existence of an LDU-factorization. A representation of A in the form 
(8.1) where L, D and U have the above additional properties, is called an LDU- 
factorization of A. It is now easily seen that  LDU-factorization of A with factors 
and its inverses in the Wiener class amounts to the factorization 

(8.2) A(z) = L(z) Do U(z), z ~ V ~, 

in terms of the corresponding symbols, where Do is a nonzero constant,  /~(z) - 1 
and L(z) -1 - 1 have Fourier series where all terms proportional to z ~ with a -< 
(0, .--  , 0) vanish, and U(z) - 1 and U(z) -1 - 1 have Fourier series where all terms 
proport ional  to z a with a ~- (0 , . . .  , 0) vanish. 

If A is a bi-infinite Toeplitz matr ix  in the Wiener class and its symbol ,4(z) > 
0 for all z E T ~,  i.e., if A is positive definite on /2(Zm), the factorization (8.2) 
exists. In tha t  case, Do > 0, ~'(z) = L(5-1) *, and therefore 

A(z) = L(z)L(2-1)  *, L(z) = L ( z ) V ~ 0 ,  

leads to a Cholesky factorization of A. 
Generalizing the existence theory for LDU-factorizations using the Wiener- 

Hopf factorization theory for their symbols is not obvious if m _> 2. First of 
all, there is no obvious geometrical criterion for the existence of the factorization 
(8.2) and the construction of the factors as in the case m = 1 where the winding 
number  turned out to be the key to the solution of the problem. Secondly, the 
factorization depends in an essential way on *he choice of the linear order _ on 

The generalization of the previous results for m = 1 will be based on the 
closely related theories of chains of projections in a Hilbert space [15, 9] and of nest 
algebras [8], which have the additional advantage of yielding an LDU factorization 
theory for arbi t rary  bounded linear operators on I2(2~ TM) or on general separable 
Hilbert  spaces. Before defining LDU-factorization with respect to a complete 
chain of orthogonal  projections (using the language of [9, Chapter  XXlI]) or with 
respect to a nest (using the language of [8]), we first introduce the necessary 
preliminaries. 

Let H be a (real or complex) Hilbert space. By a nest A~ we mean a chain of 
closed subspaces containing {0} and H that  is closed with respect to intersection 
and closed linear spans. For every N E A/, PN denotes the orthogonal projection 
onto N. Then  {PN : N E A/} is a chain of orthogonal projections containing 0 
and I tha t  is closed in the strong operator  topology. By a jump we mean a pair 
{PN1, P~2 } where the nest does not contain subspaces between N1 and N2. The 
nest is mazimal if and only if all jumps are one-dimensional. A chain of projections 
is called discrete if every nontrivial subspace N E A/has  a jump on either side in 
the linear order, and continuous if there are no jumps at all. 

Let us give some illustrative examples, characterized by one index ((1)-(3)) 
and by m indexes ((4)-(6)). 
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(1) Let 0 = Po, P 1 , " "  ,P~ = [ be a finite set of orthogonal projections on H 
such that  Im Pj-1 C Pj (j = 1, . - .  , n). This is called a finite chain. 

(2) Let H = 12(N). Define Po = 0, P+o~ = I ,  and 

P~(x~ , . . .  , x ~ , . . . )  = ( z ~ , - . - , z ~ _ ~ , z ~ _ l , z ~ , 0 , o , 0 , . - . ) .  

This sequence is a semi-infinite chain. 

(3) Let H = 12(Z). Define P-oo = 0, P+oo = I,  and 

~ ( . . .  ,~_~,zo,z~,.. .  , z~ , . . . )  = (...  , ~ _ ~ , ~ , o , . . . ) .  

This sequence is a bi-infinite chain. 

(4) For m E N, consider H =/2(Zm),  where Z m is ordered lexicographically (by 
<).  For j = 1 , - - .  ,m  and a = ( a l , ' . .  ,a j )  E Z j we define Q~ by 

/ ~ ,  (Z~, '-- ,9:)  ___ ( ~ , " - , c ~ j )  

Y~ = [o ,  (Z,, '-" ,fl:) > (~1, ' - - ,~j) .  

Then 0, {Qa : a E Z j, j = 1,-- .  ,m} and I form a chain. We have 

(5) In Z "~ we define the term ordering 

(~1 , . . . ,  ~m) -~ (~1, . . . ,  Zm)-~ '.-(~1,.--, ~ )  < (~ 1 , ' " ,  5m), 

where 7j = a l  + - - .  + am and 5j =/31 + " .  + /3 , .  
For j = 1 , . - -  , m  and a = ( a l , . - . , a j )  E Z j, define Pa by 

Y~ = 0, ( ~ , - - - , ~ j )  ~- ( ~ , . - - , ~ j ) .  

Then 0, {P~ : a E Z j, j = 1 , . . .  ,m}  and I form a chain. 
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(6) Put  Z~ = {c~ E Z m : a t > 0, j = 1 , . . .  ,m}. Consider H = / 2 ( Z~ )  with the 
chain consisting of the projections P~ (aj >_ 0, j = 1 , . . .  , m) and I.  This is 
a discrete chain. 

Given the finite chain 7' = {0 = P0, P 1 , " " ,  Pn = I} on the Hilbert space 
H,  consider the bounded linear operator A on H. Then A is called diagonal if 
P A  = A P  for every P E 7~; the diagonal part of A is defined by Adiagonal = 

n 
~ j = l  ( A P t ) A ( A P t ) ,  where A P  t = Pt - Pj-1 (J = 1 , . . . ,  n). Further, d is called 
lower (resp. upper) triangular if P A  = P A P  (resp. A P  = P A P )  for every 
P E P.  Then by an LDU-factorization of A with respect to the chain P we mean 
a representation of A in the form (8.1), where L, D and U are boundedly invertible, 
D is diagonal, L and L -1 are lower triangular with the identity operator as their 
diagonal parts, and U and U - t  are upper triangular with the identity operator as 
their diagonal parts. Moreover, if such a factorization exists, it is unique and the 
factors are given by 

4 %  
7 t  

L = H [I - A P j K P t _ I ( I  - Pj_IKPj_I)  -1] 
j=l  

( - ~  

71 

U =- H [I - (I - P j - I K P j - 1 ) - ' P t - I K A P j ]  
t = t  
/% 

D = - K -  K 5 - 1 ( I  - Pt_IKS_,)-'KI Pj 
(S.3) J=~ 

L -1 = I + ~ A P j K P j _ I ( I  - Pj_IKPj_I)  -1 

T~ 

j=1 

i + ~ - ~ ( i  -1 1 U-1 = .__. - P j _ I K P j _ I )  Pj_ KAPj 

j= l  

D = n P t ( I  - PtKPt)-  Pj, 
t = l  

where I is the identity operator, K = I - A, and the factors in the products 
determining L (resp. U) are to be read from the right to the left (resp. from 
the left to the right). The existence of the bounded inverses (I - P j_IKPt_I )  -1 
(j = 1,-- �9 , n) is a necessary and sufficient condition for the existence of the LDU- 
factorization of A. In particular, if A is positive definite on H (i.e., if 3~ > 0: 
(Az,  x} > ~[[xll 2 for all x e H),  then A has an LDU-factorization. 

The definitions of diagonal, lower triangular and upper triangular operators 
and of LDU-factorizations, all with respect to a (closed) chain P of orthogo- 
hal Projections, can be given by approximating the chain P by finite subchains 
and employing the above definitions. For instance, given the chain T' = {0 = 



332 C. VAN DER MEE, G. RODRIGUEZ, S. SEATZU: LDU factorization results 

P0, P I , " " ,  I} on H =/2(lS 0 [cf. Example (1)] and the boundedly invertible op- 
erator A = I - K on H, the LDU-factorization (8.1) of A exists if and only 
if 

sup I1(I- PjKPj)- IPj I t  < +oo 
J 

and either of the series for L -1 and U -1 below converges strongly. Then the 
factors L, D and U and their inverses when they exist, are uniquely determined 
by A and are given by infinite series and infinite products, which can be formally 
obtained by replacing n by co in (8.3). By a simple approximation argument 
one now easily proves [8, 9] that  a positive definite operator A on/2(N) admits  an 
LDU-factorization and hence a Cholesky factorization A -- L L* where L = LD 1/2. 

If 7 ~ is a general (closed) chain of orthogonal projections on a Hilbert space 
H, one can define diagonal, lower triangular and upper triangular operators and 
LDU-factorizations by approximating the chain by finite subchains and utilizing 
the above definitions for finite chains. For the examples (1)-(6) of chains given 
above, one thus obtains expressions for the LDU-factors and their inverses that  
contain infinite series and infinite products that  converge in the strong operator 
topology (cf. [9]). If the chain is uncountable, the infinite sums and infinite 
products are to be replaced by integrals and so-called multiplicative integrals, 
respectively. 

The following result can be found in [8]. The proof for the special case of 
example (1) given in [9] is easily adapted to examples (2)-(6). 

THEOREM 8.1. Let A be positive definite on H,  and let 7' be a countable chain 
of orthogonal projections in H that  is closed with respect to the strong oper- 
ator topology. Then A has a unique LDU-factorization as welt as a Cholesky 
factorization with respect to 7 ~. 

Theorem 8.1 does not hold for uncountable chains. In fact, given un un- 
countable chain of orthogonal projections in H that  is closed with respect to the 
strong operator topology, then for every r > 0 there exists a compact  operator 
K with ]{K]] < ~ such that  A = I - K is positive definite and does not  have an 
LDU-factorization with respect to the chain. 

Given the chain 7' = (0 = Po, PI," "" , i }  on H = /2(I~1) [eft Example (1)], 
we have derived the expressions for the LDU-factors and their inverses of a semi- 
infinite matrix A above, where the infinite series and infinite products converge 
strongly. When the summations and products run over j = 1 , - . .  , n  instead, 
one gets the LDU-factorization of the compression of A to the range of P,~ with 
respect to the finite subchain ~o(-) = {0 = P0, P1, '" �9 , P , ,  I}, as is apparent  from 
the expressions for the LDU-factors and their inverses in the case of a finite chain. 
In other words, if A has an LDU-factorization, its factors and their inverses can 
be obtained as the strong limits of the LDU-factors and their inverses for the n x n 
finite compression of A as n --+ +oo. Similar results hold for LDU-factorizations 
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with respect to arbitrary countable (closed) chains. It is not obvious how to obtain 
results on the rate of convergence. 

Finally, LDU-factorization for bi-infiaite and semi-infinite Toeplitz matrices 
are easily obtained from the general LDU-factorization results as follows. Con- 
sider H = /2(Z) and let S be the right shift. Then a bi-infinite matr ix  A is 
a Toeplitz matr ix  if and only if AS = SA. Since similarity using S maps the 
sets of lower triangular, diagonal and upper triangular matrices onto themselves, 
the factors in the LDU-factorization of a Toeplitz matrix are themselves Toeplitz 
matrices. Analogously, consider H = /2(Z m) and let S b " - ,  Sm be the elemen- 
tary right shifts. Then a bi-infinite matrix A is a Toeplitz matrix if and only 
if ASj = SjA (j = 1 , . . .  ,m). Since the similarities using $1, . . .  ,Sm map the 
sets of lower triangular, diagonal and upper triangular matrices onto themselves, 
the factors in the LDU-factorization of a Toeplitz matrix are themselves Toeplitz 
matrices. 
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