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Dedicated to M.G. Kre~n, one of the founding fathers of the theory of plus-operators. 

We describe in terms of canonical forms various classes of plus matrices in real and 
complex finite dimensional spaces with indefinite scalar product and study their topological 
structures (such as closure and interior). 

1 I n t r o d u c t i o n  

Let F be the field of real numbers R or the field of complex numbers C. Choose a fixed real 
symmetric (if F = R) or complex hermitian (if F = C) invertible n • n matrix H. Consider 
the scalar product induced by g by the formula Ix, y] = (Hx, y), x, y e F". Here ( .  , �9 ) 
stands for the usual scalar product in F ~, i.e., 

(x, y) = zj ,, 
j= l  

where x and y are the column vectors with components xl," �9 ", x~ and Yl,"" ",Y~, respectively, 
and ~ -- yj if F = R.  The scalar product [ �9 , �9 ] is nondegenerate ([x, y] = 0 for all y E F ~ 
implies x = 0), but is indefinite in general. The vector x E F ~ is called positive if Ix, x] > 0, 
neutral if Ix, x] = 0, and negative if [x, x] < 0. 

Well-known concepts related to scalar products are defined here in an obvious way. 
Thus, given an n x n matrix A over F,  the H-adjoint A[*] is defined by lax, y] = Ix, ANy] 
for all x, y E F ~. In that  case AI*] = H-1A*H, where A* denotes the conjugate transpose of 
A (with A* = A T, the transpose of A, if F = R).  An n x n matrix A is called 
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H-selfadjoint if A[*] = A (or equivalently, if HA is hermitian). An n • n matrix U is called 
H-unitary if [Ux, Uy] = [x, y] for all x, y E F n (or equivalently, if U*HU = H). 

An n x n  matrix X (over F)  will be called an H-plus matrixif [X[*JXu, u] = [Xu, Xu] >_ 0 
whenever [u, u] > 0. Clearly, for an H-plus matrix X we have [X[*]Xu, u] > 0 whenever 
[u, u] > 0. Thus defining 

i t ( X ) =  inf [X[*lXu, u], (1.1) 
[u,~]=l 

we see that X is an H-plus matrix if and only if #(X) > 0 (it is assumed here that the set of 
vectors u such that  [u, u] = 1 is not empty, i.e., H is not negative definite). Then (see [Bo], 
Theorem II 8.1 in the complex case, and [BMRRR2] in the real case) 

[X[*]Xz, z] >_ #(X)[z, z], z E F".  (1.2) 

We call X a strict H-plus matrix if #(X) > 0. The matrix X is called a doubly H-plus 
matrix if both X and X[*] are H-plus matrices. Throughout the paper we denote by 7 ) the 
set of H-plus matrices, by 87) the set of strict H-plus matrices, and by :DP the set of all 
doubly H-plus matrices (the dependence of these classes on H and on F is suppressed in this 
notation). Another class of interest is the set of strongly strict H-plus matrices. A matrix 
X will be called a strongly strict H-plus matrix (notation X E 837 )) if [u, u] > 0, u ~ 0, 
implies that  [Xu, Xu] > 0. In [IKL] the terminology "B-plus operators" is used to describe 
the 887 ) property (in the context of operators in Pontryagin spaces); the class of B-plus 
operators was introduced in [Br]. 

If H is positive definite, every n x n matrix is an H-plus matrix and #(X) is the smallest 
(automatically nonnegative) eigenvalue of X[*]X. Then X is a strict H-plus matrix if and 
only if it is invertible. On the other hand, if H is negative definite, every n x n matrix X is 
an H-plus matrix. In the rest of this paper we will therefore assume that H is indefinite. 

Linear operators on a Hilbert space with indefinite scalar product that transform nonneg- 
ative vectors into nonnegative vectors, have been studied extensively by Krein and Shmul'jan 
[KS1,KS2], who called them "plus operators." The various connections with nonexpansive 
linear operators [Gil, Gi2], the J-modulus [P2], J-contractions and J-expansions ([P1]; also 
[BMRRR2]) as well as the theory of plus operators themselves, including the classes 87), 
T)P and 887), have been discussed in various textbooks [Bo, IKL, AI]. These results, how- 
ever, are formulated in an infinite dimensional setting and hence the term "plus operatog' is 
appropriate. In the present article, as well as in [BMRRR2], we are working exclusively in a 
finite dimensional context and hence we adopt the term "H-plus matrix" instead. 

Recently there has been a flurry of activity on plus operators in a finite dimensional 
context ("H-plus matrices") and its applications to linear optics and relativity theory. In 
linear optics the input-output map can be represented by a real 4 x 4 matrix, the so-called 
Mueller matrix, which is an H-plus matrix for the case when F = R, n = 4 and H = 
diag (1 , -1 ,  - 1 , - 1 )  ([M, MH]). In this case the (1,1)-element must be nonnegative and the 
H-adjoint must also be an H-plus matrix. Another application of H-plus matrices (with 
exactly the same F, n and H) is relativity theory, where the linear transformations leaving 
invariant the sets of time-like and light-like vectors in Minkowski space are H-plus matrices. 

The applications to linear optics and relativity theory involve the matrices leaving in- 
variant the set of vectors (xi, x2, xa, x4) E Tt 4 such that xi >_ (x 2 + x~ + x2) il2. This set is a 
positive cone in R 4 and hence the matrices leaving it invariant can be studied alternatively 
using the Perron-Frobenius theory of positive matrices [Ba, BP]. The obvious generalization 
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of this cone to R ~ is usually called the ice-cream cone (see, e.g., [LS]). Such additional struc- 
ture of H-plus matrices exists if H has only one positive eigenvalue. For more general H the 
theory of H-plus matrices is much more complicated. 

Another recent development relevant to H-plus matrices stems from the successful 
at tempt to generalize the concepts of norm, spectral radius and singular numbers to F n 
equipped with an indefinite scalar product [BG1, BG2]. There turns out to be a close con- 
nection between the G-bound first introduced in [BG1] and strict H-plus matrices. 

A third recent development involves the characterization of the matrices X with given 
X[*]X (i.e., with given X*HX) [BR] and the study of H-polar decompositions, i.e., repre- 
sentations of X of the form X = UA where U is H-unitary and A is H-selfadjoint [BP~, 
BMRRR1, BMRRR2]. Partial results involving the J-modulus [P2] could be generalized and 
interesting special cases, like those of H-plus and strict H-plus matrices, were discussed. In 
particular, characterizations of H-plus and strict H-plus matrices in terms of the canonical 
form of the pair of matrices (X[*]X, H) were given in [BMRRR2]. 

In the present paper we focus exclusively on H-plus matrices. We will solve the following 
problems: 

(a) Characterization of SS'P, ST ~, DT' and P and other classes of H-plus matrices. 

(b) Determination of the interior and the closure of the various classes of H-plus matrices. 
Here, the description of the closure of S:P is still an open problem in general. 

(c) Specialization of the results for the ice-cream cone, i.e., for the case F = 1~ and 
H = diag (1, -1 ,  �9 �9 -1 ) .  

In contrast to the previous works on the class of plus operators and its various subsets (with 
the exception of [BMRRR2]) the main tool in our investigation is the canonical form of 
selfadjoint matrices in finite dimensional spaces with an indefinite scalar product, which is 
recalled in section 2. We consider the real case as well as the complex case; the previous 
works (again with the exception of [BMRRR2]) focused on the complex case. 

In Section 2 we introduce the characterizations of the various classes of H-plus matrices, 
alongside basic definitions and illustrative examples. In Section 3 we study some of the 
topological properties of P, SP, S~qT' and :DP. More precisely, we determine their interiors, 
closures and connectivity properties at least partially. For the ice-cream cone complete results 
are obtained in Section 4. In this section we also introduce the ice-cream cone itself and 
specialize our other results to this case. 

The following notations will be used. The subspace of all eigenvectors and generalized 
eigenvectors of a matrix X corresponding to the eigenvalue A, together with the zero vector, 
is denoted by R~(X). The block diagonal matrix with matrices Z1,. �9 Zk on the diagonal is 
denoted by ZI @ "" @ Zk. The set of eigenvalues (including the nonreal eigenvalues for real 
matrices) of a matrix X is denoted by z(X). Ker A and Im A stand for the null space and 
range of a matrix A, respectively. 

Unless indicated otherwise, the results of Sections 2 and 3 are valid for both the real 
and the complex cases. 
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2 C h a r a c t e r i z a t i o n s  in  T e r m s  o f  C a n o n i c a l  F o r m s  

In this section we characterize the classes P of H-plus matrices, S:P of strict H-plus matrices, 
and SS 'P  of strongly strict H-plus matrices in terms of the canonical form of the pair of 
matrices (X[*]X, H) and give a complete description of certain related classes of matrices. 
Before stating and proving these characterizations we define the canonical form of a pair of 
n • n matrices (A, H) where H is an invertible selfadjoint matrix and A is H-selfadjoint. 

Let Jk(A) denote the k x k upper triangular Jordan block with A E C on the diagonal 
and let J~ (A • i#) denote the matrix 

• i , )  = 

A # 1 0 
- #  A 0 1 

0 0 A # 1 0 
0 0 - #  A 0 1 

" . ,  

1 0 
0 1 

0 0 A # 
0 0 --# A 

where A, # c R, # > 0 and k is necessarily even. Note that although we define two different 
Jk's, it will always be clear from the context which one is meant. We denote by Qk the 
k • k matrix with ones on the south-west north-east diagonal and zeros elsewhere. Then 
the following characterization of pairs (A, H) goes back to Weierstrass and Kronecker (See 
[GLR, T] for a complete proof). 

T H E O R E M  2.1. Let H be an invertible hermitian n • n matrix (over F), and let 
A E F ~• be H-selfadjoint. Then there exists an invertible S over F such that S - 1 A S  and 
S * H S  have the form 

(2.1) 
i f  F = C, where A1, . . . ,  As are real and A~+I,..., AZ are non-real with positive imaginary 
parts; 

S - 1 A S = J k l ( A 1 ) @ . . . @ J k . ( A ~ ) e J 2 k ~ + l ( A ~ + l • 1 7 7  (2.2) 

i f  F = R ,  where A1, . . . ,  A~ are real and #~+1,.. . ,  #8 are positive; 

S * H S  = ClQkl G " "  0 e~Qk~ 0 Q2~+~ |  @ Q2k~ (2.3) 

for  both cases (F  = R or F = C), where the signs e l , . . . ,  e~ are •  For a given pair (A, H) ,  
where A is H-selfadjoint, the canonical form (2.1), (2.3) (for F = C) or (2.2), (2.3) (for 
F = R )  is unique up to permutation of H-orthogonat components in (2.3), and the same 
simultaneous permutation of the corresponding blocks in (2.1) or (2.2), as the case may be. 
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We now discuss the spectral properties of X[*IX valid for H-plus matrices X. The 
following result was proved in [BMRRR2]. 

T H E O R E M  2.2. The n x n matrix X is a strict H-plus matrix if and only if X[*]X 
has the following properties: 

(a)  (zf*lz) c [0, 

(b) There exists It > 0 such that there are no Jordan blocks of order exceeding 1 corre- 
sponding to the eigenvalues of X[*]X different from It. The eigenvectors corresponding 
to the eigenvalues smaller than It are negative; those corresponding to the eigenvalues 
larger than It are positive; 

(c) There do not exist Jordan blocks of order exceeding 2 corresponding to the eigenvalue 
It of X[*]X; the blocks of length 2 have the positive sign in the canonical form of 
(X[*]X,H). 

The matrix X is an H-plus matrix with It(X) = 0 if and only if X[*]X fails to satisfy at least 
one of (a), (b) and (c), and has, in addition, the following properties: 

(d) a(X[*]X) C R; and 0 e a(Z[*]X); 

(e) There are no Jordan blocks of order exceeding i corresponding to the eigenvalues of 
X[*]X different from zero. The eigenvectors corresponding to the negative eigenvalues 
are negative; those corresponding to the positive eigenvalues are positive; 

(f) There do not exist Jordan blocks of order exceeding 2 corresponding to the zero eigen- 
value of X[*]X; the blocks of size 2 have the positive sign in the canonical form of 
(X[*]X, H). 

Other characterizations of strict H-plus matrices in the complex case can be obtained 
using [BG1]; in the terminology of [BG1] G-bounded means the same thing as strictly ( -G) -  
plus in our terminology. Various characterizations of (-H)-bounded matrices can then be 
restated in our terminology as characterizations of strict H-plus matrices. 

The description of other classes of H-plus matrices depends largely on the properties of 
#(X) as an eigenvalue of X[*]X. In this connection we note the following proposition. 

P R O P O S I T I O N  2.3. Let X be an H-plus matrix. Then It(X) coincides with the mini- 
real eigenvalue of X[*] X for which there exists an eigenvector v such that [v, v] _> 0. Moreover, 

It(x) = rain [xE*lx ,u] (2.4) 

if and only if there exists a positive vector u such that X[*]Xu = It(X)u. 
Observe that the set of u E F ~ such that [u, u] = 1 is not compact (if H is indefinite), 

therefore, (2.4) is not guaranteed in general; see (1.1). 
Proof .  The first part is Corollary 3.7 in [BMRRR2]. We prove the second part. If there 

exists a positive vector u such that X[*]Xu = It(X)u, then the minimum in (2.4) is assumed 
for a suitable scalar multiple of u. 
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Conversely, assume there does not exist a positive vector u such that  X[*IXu = #(X)u. 
Because of Theorem 2.2 and the first part  of Proposition 2.3, #(X)  is an eigenvalue of 
X[*]X and R~(x)(X[*]X) consists only of vectors in Jordan chains of length 2 and negative 
eigenvectors; all Jordan blocks of length 2 have the positive sign in the canonical form of 
(X[*]X, H)  and there is at least one such block. Now let {ul, v a , - - . ,  u~, v0~, wl , - .  ", w~} be 
a basis of R~(x) (X[*IX) such that  

{ X[i]Xwi = #(X)wi, [w~, wj] = 0 (i # j), [wi, wi] = -1  

X[ ]Xvo, = #(X)vo, + ui, X[*]Xu~ --- #(X)ui,  [u,, u,] = 0, [u,, Vo,] --- 1, [voi, Vo,] = 0 

[u~, uj] = [ui, v0j] = [v0i, v0j] = 0 (i # j ) ,  [u,, w~] = Iv0,, wj] = 0. 

Assume that  for some vector x we have [x, x] = 1 and [X[*IXx, x] = #(X)[x,  x]. We can 
write 

~" S t 

= Z (~,vo, + Z,-,) + E ~jwj + E ~ ,  
i = 1  j = l  k = l  

for some ~'s, Z", ~'s and ~'s, where X[*)X~ = ~ with ~ e [0, +o~) \ { , (X)} .  Then 

t 

[x, zl = E 2Re~,~, - ~ I;jl 2 + E [~, ~], 
i = l  j = l  k : l  

and 
t 

[X[*]Xx, x] = ' ~  (I a, [2 +2/z(X)Reo~,/~i) - # ( X ) ~  lTj[ 2 + E Ak[v,k,'hk], 
i = 1  j = l  k = l  

which imply 

- - ~  o = [xt . lxx,  53 , (x ) [x ,  x] - i~,l 2 + E ( ~  - , ( x ) ) [ ~ ,  ~], 
, = 1  k~--i 

where the terms in the two sums are nonnegative. As a result, a l  . . . . .  aT = 0 and 
ul . . . . .  ut = 0. Hence x = ~ s ~=1 fliui + ~i=1 7jwj, which has the property [x, x] = 
- E ~ = I  Ivjl 2 and hence cannot satisfy [x, x] -- 1. Contradiction. Thus the mimimum in (1.1) 
is not assumed for any x E F '~ with Ix, x] -- 1. | 

If (2.4) holds instead of the weaker property (1.1), we say that  #(X)  is attained. A 
sufficient (but generally not necessary) condition for attainability of/~(X) is that  X[*]X be 
diagonalizable. However, if H has only one positive eigenvalue, then/~(X) is attained if and 
only if X[*]X is diagonalizable. 

The following connection between the canonical forms of (X[*]X, H) and (XX[*], H) will 
be useful for characterizing the class 7)7) and proving that  SP  C_ 7)P. 

P R O P O S I T I O N  2.4. (a) The pairs (X[*]X, H) and (XX[*], H) have the same canon- 
ical form for the positive eigenvalues of X[*]X (which are also the positive eigenvalues of 
XX[*]), and they have opposite canonical form, i.e., the canonical form with the opposite 
signs, for the negative eigenvalues of X[*]X (which are also the negative eigenvalues of 
xxI*]). 
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(b) Assume that the real eigenvalues (if any) of X[*]X are nonnegative and the Jordan 
blocks of X[*]X corresponding to the zero eigenvalue (if O �9 a(X[*]X)) are all of size 1 and 
have the same sign in the canonical form of (X[*]X, H). Then (X[*]X, H) and (XX[*], H) 
have the same canonical form. 

Proof .  Let us start from the fact that if A and B are n x n matrices such that AB is 
either invertible or has Jordan blocks of order 1 only corresponding to the zero eigenvalue, 
and rank(AB) = rank(BA),  then AB and BA are similar. This follows from the general 
description of the relationship between the Jordan form of AB and the Jordan form of B A  
(see IF]). 

Let 
x0, z l , . . . ,  xp (2.5) 

be a Jordan chain of X[*]X corresponding to a non-zero eigenvalue A: 

(X[*lX - AI)x~ = xj_i; j = 1, . . .  ,p; 

(X[*]X ~I)xo O, xo r O. 

Premultiplying these equalities by X we see that Xxo r 0 and 

Xxo, Xx~ , . . . ,  Xxp (2.6) 

is a Jordan chain of XX[*] corresponding to ~. Now 

[Xxo, Xx,]  = [XE*]Xx0, ~,1 = ~[x0, x,l. 

This shows that the signs in the canonical forms of (X[*]X, H) and (XX[*], H) corresponding 
to (2.5) and (2.6), respectively, are the same if A > 0 and are opposite if .~ < 0. 

For part (b), assume, for example, that all signs of the Jordan blocks of X[*]X corre- 
sponding to the zero eigenvalue are + l ;  let k be the number of such blocks. The number of 
positive eigenvalues of H is equal to k + #(positive eigenvalues of H[~} ,  where Ad is the 
direct sum of root subspaces of X[*]X corresponding to non-zero eigenvalues. Observe that 
dim A/t = n - k. By part (a) of this proposition we have 

#{positive eigenvalues of Hlz4 } = #{positive eigenvalues of Hl~v}, 

where Af is the subspace defined analogously to 3//, but using XX[*] in place of X[*]X. 
By [F] we have dim 34 = dim N'. Letting No = Ker (XX[*]) ", we must have that 
#{positive eigenvalues of HI,o} = k, but also dim N'0 = k. In view of the canonical form of 
(XX[*], H) it follows that the Jordan blocks of XX[*] corresponding to the zero eigenvalue 
are all of size 1 with the sign +1 in the canonical form. Now (b) follows form (a). ! 

The second part of Proposition 2.4 can be easily restated without using the canonical 
form, as follows: Assume that X[*]X has no (real) negative eigenvalues and that [u, u] • O 
for every nonzero u �9 Ker X[*]X (if such u exist). Then there exists an H-unitary U such 
that U-1X[*IXU = XX[*]. 

For a description of the structure of doubly H-plus matrices we have to apply the result 
of Theorem 2.2 with X replaced by X[*], and take into account Proposition 2.4. 

T H E O R E M  2.5. An n x n matrix X is doubly H-plus if and only if it is either a strict 
H-plus matrix or a non-strict H-plus matrix with the following additional properties: 



van der Mee, Ran and Rodman 439 

(i) a(X[*]X) is nonnegative, 

(ii) condition (f) of Theorem 2.2 applies to XX[*] (as well as to X[*Ix). 

Strongly strict H-plus matrices are described in terms of X[*]X as follows. 

T H E O R E M  2.6. The following statements are equivalent for an n x n matrix X: 

(i) x ~ s $ p ;  

(ii) X E 850, X[*]X is diagonalizable, and the eigenvectors of X[*]X corresponding to the 
eigenvalue #(X) are positive; 

(iii) a(X[*]X) C [0, oc), for every eigenvector u of X[*]X the inequality [u, u] 7 ~ 0 holds, 
and if ul, ue are eigenvectors of X[*]X corresponding to the eigenvalues hi < A2, 
respectively, then [ul, ul] > 0 =~ [u2, u2] > 0. 

Proof .  Suppose X c 5 ~ and X[*]X is not diagonalizable or X[*]X is diagonalizable but 
has a real eigenvalue # of indefinite type. Then there exists u ~ 0 such that [u, u] = 0 and 
X[*]Xu = #u. As a result, [Xu, Xu] = 0 and hence X ~ 8850. 

Let X E 8850. Then X[*]X is diagonalizable and the eigenspace corresponding to the 
eigenvalue #(X) is positive (cf. first part of Proposition 2.3 and the observation in the 
preceding paragraph). In fact, it(X) > 0, since for #(X) = 0 and u a (positive) eigenvector 
of X[*]X corresponding to the zero eigenvector we would have [Xu, Xu] = 0, which would 
imply X ~ 887 ). Conversely, assume that X E 850, X[*]X is diagonalizable, and [u, u] > 0 
for every u r 0 such that X[*]Xu = #(X)u. Consider a basic set of H-orthogonal eigenvectors 
u l , ' . . ,  un and corresponding (real) eigenvalues ,~1, '" ,  An, where uj is positive (negative) if 
,~j _> #(X) (,~j < #(X)). Then for u = ul + . "  + us we have 

[xu, xu] = [xHxu ,  u] = E [xE*lXuj, uj] = ~j[uj, uj] 
j = l  j = l  

> ~(x) ~ [~j, uj] = ~(x)[~, u]. 
j = l  

Now if one of the eigenvalues ,~j differs from #(X) and the corresponding uj is nontrivial, 
then ;~j[uj,uj] > #(X)[uy, uj] and hence [Xu, Xu] > 0 whenever [u,u] > O. Further, if 
X[*]Xu = #(X)u  and u r 0, then [Xu, Xu] = #(X)[u,u] > 0. Consequently, if [u,u] > 0 
and u ~ 0, we find [Xu, Xu] > 0 and hence X E 8850. This proves the equivalence of (i) 
and (ii) in the theorem. 

From the canonical form of the pair (X[*]X, H) we derive the equivalence of (ii) and 
(iii), taking into account the description of the class 850 given in Theorem 2.2 and the 
characterization of #(X) as the minimal eigenvalue of X[*]X with a nonnegative eigenvector 
(Proposition 2.3). | 

Combining Theorems 2.2 and 2.6 with Proposition 2.4 it follows that X E 8850 (resp. 
X E 850) if and only if X[*] E 887 ) (resp. X[*] E 87)). 
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The following known inclusion relations follow immediately from Theorems 2.2, 2.5, 2.6: 

SS7 ) C S7 ) C 7:)7 ) __ 7 ) (2.7) 

The inclusion S7) _ 7)7 ) is well-known [Bo, P2]. It can also be derived using that  87 ) = {X : 
X is ( -H) -bounded} ,  since ( -H)-boundedness  is preserved under the operation X ~-~ X[*] 
(see [BG1]). The inclusion 887 ) C 87) is observed in [IKL], Lemma 6.2. The following 
examples show that  the inclusions in (2.7) are strict. 

E x a m p l e  2.1. $7) -~ 7)7 ). Let [0 o] [00 ] 
X =  0 0 I , H =  0 1 0 . 

0 0 0 1 0 0  

Then using X = X[*I and [XNXu,  u] = lual 2 for every u = ul u2 ua ~ F ~, we see 

that  X E 797) \ ST'. 

E x a m p l e  2.2. 7)7) r 7). Let 

0 0 ' 0 - " 

Then X[*]X = diag (0, - 1 )  and XX[*] = diag ( -1 ,  0). Hence X ~ 7) \ ~7). | 

E x a m p l e  2.3. To show that  7)7) is strictly smaller than the set of H-plus matrices with 
spectrum in [0, oc), let 

0 0 0 1 0 0 0 0 
0 0 1 0  0 0 0 0 

H =  X -  
0 1 0 0 ' a b c d  ' 
1 0 0 0  e f  g h  

where a , . . . ,  h are real. One easily computes that  X[*]X = 0, so X is an H-plus matrix. 

Furthermore, if we p u t x =  a b c d a n d y =  e f g h the~ 

0 o 0 0 

XX[*) = 0 0 0 0 
<x, Hy> (x, Hx> 0 0 
(y, Hy) (y, Hx) 0 0 

We can choose x and y so that  (x, Hy> = O, <x, Hx> = - 1 ,  and <y, Hy) = 1, for instance, 

t a k e x : 2 - z / 2 [ 1  0 0 - - 1 ] T a n d y = 2 - 1 / 2 [ O  1 1 0]T .  Then 

0 0 0 0 

XX[ ,  ] = 0 0 0 0 
0 - I  0 0 
1 0 0 0 
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So XX[*]el = e4, and XX[*]e4 = 0, while XX[*]e2 = - e s  and Xx[*le3 = 0. Moreover, 
(gel, e4} = 1, and (He2,-e3) = - 1 .  Thus the canonical form of the pair (XX[*], H)  is 

0100 

0000 
0001 
0000 

0 1 
1 0 

' 0 0 

0 0 

0 0]/ 
0 0 
0 - 1  ' 

- 1  0 

so tha t  X[*] is not an H-plus matrix (by Theorem 2.2). t 

Example 2 0 complex numbers a b lot H = [ 0101] X = [ 0 o 0 0 ]  T en 

~,~ __ I ~ 0~ Ooe veri~o~,~ ~ i~ ~w~s ~ u s  /~ i~ ~m~o ~ ~n ~ nonoe~ve 

subspace), but  X[*] is H-plus  if and only if Re (ab) > 0. Thus X is doubly H-plus if and only 
if Re (ab) > 0. Note that  in this example rank X[*]X # rank XX[*] (unless Re (ab) = 0. t 

E x a m p l e  2.5. Let 

i001] [abe] 
H =  0 i 0 , X =  O d e , 

1 0 0  0 0 f  

where a, b, e, d, e, f are complex numbers. A calculation shows tha t  

I f  e c ]  [ -fa -fb+~d -fc+]e]2+gf ] 
X [*] = 0 d b , X[*]X = 0 Id] 2 3e + ~f . 

0 0  ~ 0 0 f ~  

Now Theorem 2.2 shows tha t  X C S P  if and only if one of the following two sets of equations 
and inequalities is satisfied: 

0 < f a  = ]dl 2, f b + g d  = 0, f c +  ]el 2 + g f  > 0. 

Theorem 2.6 shows that  X is never in SSP. Thus, SST' ~ SP. | 

Theorem 2.5 shows tha t  if X E :P then X E :D~ ) \ S P  if and only if 

(a) a(X[*]X) C [0, c~), and 0 e a(X[*]Z), 

(b) X[*]X has only H-posit ive eigenvectors corresponding to its strictly positive eigenvalues 
(if any), 

(c) X[*]X has Jordan blocks of order at most two with the zero eigenvalue, and all signs 
in the canonical form of (X[*]X, H)  corresponding to the Jordan blocks of order two 
with the zero eigenvalue are +1, 
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(d) XX[*] has Jordan blocks of order at most two with the zero eigenvalue, and all signs 
in the canonical form of (XX[*], H) corresponding to Jordan blocks of order two with 
zero eigenvalue are all +1. 

One might think that the following would hold: if X E P then X E :D5 ~ \ ,95 D if and only 
if (a), (b), (c) above hold and only the first part of (d) is required, i.e., only the fact that 
XX[*] has Jordan blocks of order at most two with zero eigenvalue. Example 2.3 shows that 
this conjecture fails. 

If X E P \ 8 ~  then in general condition (d) above will not hold, but we can say the 
following about the canonical form of (XX[*], H): 

(i) Corresponding to the zero eigenvalue the total algebraic multiplicities of X[*]X and 
XX[*] are the same (this follows from IF] as well as from the fact that this is obviously 
true for all nonzero eigenvalues of X[*]X and XX[*]). 

(ii) The Jordan blocks of XX[*] with zero eigenvalue have order at most 3 (this follows 
from [F] as well as from the identity (XX[*]) a = X(X[*]X)2X[*]). 

(iii) The signs in the canonical form of (XX[*], H) corresponding to Jordan blocks of order 
three with zero eigenvalue are all +1. 

To prove part (iii), let r # 0, z2, xa be a Jordan chain of length three for XX[*], i.e., 
XX[*]xl = O, XX[*]x2 = xl,  and XX[*]x3 = x2. Then we have X[*]XX[*Ixl = O, X[*]XX[*]x2 
= X[*]Xl, and X[*]XX[*]xa = X[*]x2. As X[*]X has Jordan blocks of order two at most corre- 
sponding to the zero eigenvalue, it follows that X[*]xl = 0, and X[*]x2, x[*lxa form a Jordan 
chain of length two as X[*lx2 ~ 0. The sign in the canonical form of (XX[*], H) correspond- 
ing to this Jordan chain of length three is given by the sign of (Hx2, x2) = (HXX[*]xa, x2) = 
(HX[*]xa, X[*]x2). As the signs in the canonical form of (X[*]X, H) corresponding to Jordan 
blocks of order two with zero eigenvalue is +1, we see that (HX[*]xa, X[*]x2) = 1. This proves 
(iii). 

Observe, by the way, that the above argument can be applied (with obvious modifica- 
tions) to prove the following. Let k be the largest size of a Jordan block corresponding to 
the zero eigenvalue in the canonical form of (X[*iX, H), and let there be p signs § and q 
signs - 1  in the canonical form of the blocks of size k corresponding to the zero eigenvalue. 
Then the number of signs +1 in the canonical form of the pair (XX[*], H) corresponding to 
the blocks of size k + 1 with zero eigenvalue does not exceed p, and the number of signs - 1  
corresponding to the blocks of size k + 1 does not exceed q. 

To study the topological structure of the classes S~,  7)5 D and T' in the next section, we 
introduce some additional sets of H-plus matrices. Given an H-plus matrix X, let A,I(X) be 
the set of all nonnegative numbers # such that 

[xt*Ixz, z] > U[z, z], z e F". 

Clearly, M ( X )  is non-empty, because #(X) e M(X ) .  In fact, Ad(X) is a closed interval, 
possibly consisting of one point only. Define 

= { x  c M ( x )  = {u(x)}} ;  

DT,  = { x  e • ( x )  = {u (x ) } } ;  
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-p, = { x  e p :  M ( x )  = { , ( x ) } } .  

The classes S-P,, :D-P, and -P, are distinct and differ from the respective classes S-P, 
:D-P and -P. The next theorem gives a complete description of the classes S'P,, :D-P, and -P,. 
Moreover, we prove that  887 ~ = 87 ) \ ,g-p,. 

T H E O R E M  2.7. We have 

S-P~ = 

S-P \ S -P .  = 

P P .  = 

- p .  = 

{X  E ,57) : R,(x)(X[*Ix) is indefinite}; 

{X  E SP  : Rt,(x ) (X[*IX) is positive} = SS-P; 

(~-p \ s-p) u sp.; 

(7, \ s -p)  u s p . .  

P r o o f .  Because #(X)  is the infimum of [Xu, Xu] over all u with [u, u] = 1, one sees 
immediately tha t  # (X)  is the maximum of J~ (X) .  So, if t t(X) = 0 then AA(X) = {#(X)} = 
{0}. This proves the part  of the theorem concerning :D-P, and -P,. 

I t  remains to prove the equality 

S-P \ S'P, = {X  E S-P: R~(x)(X[*Ix) is positive}. 

Suppose X is in ,..qP \ S'P,, and let #1 < it(X) be another number in AA(X). Assume first 
tha t  X[*]X has a block of order two corresponding to #(X) .  Consider a vector x which is 
constructed as follows. Let S be a matr ix  that  transforms the pair (X[*]X, H)  to canonical 
form, and let y be a vector which has zeros everywhere, except in the two positions corre- 
sponding to a Jordan block of order two for X[*]X, where it has (1, a) T. (For simplicity, we 
take a real.) Then we take x = S-ly .  We obtain 

,xxxxl=,xE,lxxxl ,[~ 1]I10  ,x,0  ,x,1 ][1] Elo 
But [Xx, Xx] > #1Ix, x] = 2#1a. So, we get that  for all real a the following should hold: 
a 2 + 2 # ( X ) a  > 2#1a. However, it is clearly possible to choose a such tha t  this fails. This 
shows tha t  X[*]X cannot have a Jordan block of size two corresponding to #(X) .  

Next, assume that  X[*Ix  has two Jordan blocks of size one with opposite signs in the 
canonical form. Construct a vector y in a similar way as in the previous paragraph, except 
tha t  the non-zero entries now correspond to the two blocks of order one with opposite signs, 
and let again x = S- ly .  Then 

[ xx ,  x x ]  = [xt*IXx, x] = < o - o # ( x )  ~ ' 

As before, this should be larger than or equal to #l[x,x] = #1(1 - a2), and clearly it is 
possible to choose a such tha t  this is violated. So, we have shown that  if X is in ,hP \ S-P,, 
then the generalized eigenspace of X[*]X corresponding to t t(X) is not indefinite. In view of 
Proposit ion 2.3 this shows tha t  Rt,(x ) (X[*]X) is positive. 
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Conversely, let Ru(x ) (X[*]X) be positive. Then with respect to a suitable basis we have 
that  

0 A2 ' 0 - ' 

where AI is a diagonal matrix with diagonal entries that are larger than or equal to #(X), 
and A2 is a diagonal matrix with diagonal entries that are strictly smaller than #(X). Let # 
be any number smaller then #(X) and larger than #_ (X) :-- max a(A2). Let x be any vector 

in C '~, and decompose x as x = Xl x2 , corresponding to the decomposition of X[*]X 
above. Then 

[ X x ,  x x ]  = ( A l x l ,  - (A2x , - = U[x, x]. 

Observe that  this shows that  .M(X) _D [#_(X), #(X)]. This proves the proposition. I 

All seven classes S S ~ ,  SP ,  D~ ,  P ,  ,97~, ~D~ and ~,~ are invariant under H-uni tary 
equivalence (two matrices Y and Z are called H-unitarily equivalent if Y = UZV for some 
H-uni tary  matrices U and V). Remark also that #(X)  = #(Y) if X and Y are H-unitarily 
equivalent H-plus matrices. The verification of these facts is straightforward. 

We conclude this section with some results on the multiplicative structure of the various 
classes of H-plus matrices. We start with a lemma closely related to Theorem 2.7 of [BG1]. 

L E M M A  2.8. If the matrices X and Y are in one of the sets 7), SP,  737 ), SS7 ~, then 
the product X Y  is in the same set. Moreover, 

# (XY)  >_ #(X)#(Y) .  (2.8) 

P roo f .  Let X, Y C P.  Then for every x E F ~ we have 

[XYx,  XYx] >_/~(X)[Yx, Yx] >_ p(X)#(Y)[x, x]. (2.9) 

This verifies (2.8) and proves Lemma 2.8 for the sets 7 ) and SP .  If X, Y E 73T', then the 
inequality 

u((xy)E*1) =  (yE,1XE,1) > u(VI*%(XE*I) 
implies that  (XY)[*] E P.  Therefore, X Y  E 7)7 ), as required. Finally, to prove Lemma 2.8 
for 8S7 ) observe that  

M ( X Y )  Z_ M ( X )  . M ( Y ) ,  

which can be proved analogously to (2.9). Now apply the equality ,.qS7 ~ = S P  \ $P~ proved 
in Theorem 2.7. Incidentally, this proves that X Y  E ,9SP if both X and Y belong to $7 ~ 
and at least one of them belongs to SS7 ~. I 

Let us now characterize the subgroups of the semigroup P.  Consider the set 

G = {c U : c > 0, U is H-unitary}. 

Clearly, G is a multiplicative group contained in P .  It turns out that  every subgroup of 
is contained in G. This follows from the description of invertible H-plus matrices having 
H-plus inverses (this description appears in [Bo], and in [LS] for the ice-cream cone). 

T H E O R E M  2.9. The following three statements are equivalent: 
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(a) X is an invertible n • n matrix such that both X and X -1 are H-plus matrices. 

(b) X is an H-plus matrix and every v E F n such that [% v] _> 0 can be written in the 
form v = X u  where [u, u] > O. 

(c) x 9. 

Proof .  [(e) ~ (a)] and [(c) ==~ (b)] are obvious. 
[(a) ==~ (c)] Let X be an invertible matrix such that X, X -1 6 7). Since #(X) is an 

eigenvalue of X, we must have that both/~(X) and #(X -1) are positive, i.e., X and X -1 are 
strict H-plus matrices. Apply Theorem 2.2 to the strict H-plus matrix X. Let Y = X[*]X. 
It follows that there exists a positive number # such that every eigenvalue A+ of Y which 
is larger than # has an H-positive eigenspace, whereas every eigenvalue A_ of Y which is 
smaller than # has an H-negative eigenspace. (Note that by Theorem 2.2 and invertibility 
of Y all eigenvalues of Y are positive). But then the eigenvalue A+ 1 of y - 1  having an H- 
positive eigenspace is smaller than ~-1 which in turn is smaller than the eigenvalue A -1 of 
y - 1  having an H-negative eigenspace. This contradicts Theorem 2.2 applied to the strict 
H-plus matrix X0 = (X- l )  [*] (note that  y -1  = X~*]X0), unless # is the sole eigenvalue of 
Y. Now or(Y) -- {#}, and by Theorem 2.2 the Jordan blocks in the Jordan form of Y may 
be of size 1 or 2 only, and the blocks of size 2 (if any) must have the positive sign in the 

canonical form of (Y, H). The equality 1 # = 0 /~-1 shows that the Jordan 

blocks of size 2 in the Jordan form of y -1  have the negative sign in the canonical form of 
(y -a ,  H). This again contradicts Theorem 2.2 applied to X0, and we must conclude that 
there are no Jordan blocks of size 2 in the Jordan form of Y. In other words, Y = #I ,  and 
therefore X E G. 

[(b) ~ (a)] Let X E P have the property that every v E F '~ such that [v, v] _> 0 can 
be written in the form v = X u  where [u, u] > 0, and let 

: Ix, x] > 0}. 

Then X[K:] =/(: .  Also X[-K:] -- -K: and X[/C + (-/C)] -- K: + (-/C). Since F ~ =/C + (-K:), 
the matrix X is invertible and X -1 E 7). | 

3 I n t e r i o r s  a n d  C l o s u r e s  

In this section we determine the closure and the interior of the three sets ST', 7)7) and P. 
First, in Theorem 3.1 we discuss the closures of these classes of H-plus matrices. Theorems 
3.2 and 3.3 are devoted to the interiors of these sets. 

T H E O R E M  3.1. The sets 7) and 7)7) of H-plus and doubly H-plus matrices are closed. 

Proof .  Let {X,~},~__I be a sequence of H-plus matrices that converges to a matrix X. 
By (1.2) we have 

___ e F " .  
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Further, #(X,~) is an eigenvalue of X[~]Xm (see Proposition 2.3). The sequence {X[v~]Xm}~=l 
X o~ is obviously bounded, therefore the sequence {#( m)}m=l is bounded as well. Passing to 

X o~ X oo a subsequence of { r~}m--1, if necessary, we can assume tha t  the sequence {#( m)}m=l 
converges to some # > 0. Now clearly the matrix 

H(X[*]X - #Z) (3.1) 

is the limit of the sequence of positive semidefinite matrices 

H(X~]X , ,  - #(Xm)Z), m = l, 2 , . . . ,  

and therefore (3.1) is itself positive semidefinite. The positive semidefiniteness of (3.1) easily 
implies tha t  X is an H-plus  matrix. In other words, 7 ~ is closed. 

The fact tha t  OT) is closed is now immediate from the identity 

/~P = P n {XE*] : x ~ p} ,  

which completes the proof. ! 

In contrast, the set 87) of strictly H-plus matrices is not closed. Indeed, take X E $7). 
Then ~X E 8 5 '  for all d > 0, but the zero matrix is not strictly H-plus. 

The closure of S P  is obviously contained in DT). Our conjecture is that  the closure of 
S P  coincides with 737 ~. In Section 4 we will prove this for the case when H has only one 
positive eigenvalue. For more general H,  the problem is open. 

T H E O R E M  3.2. The set 887)  is open. 

P r o o f .  Let X E 887).  Using Theorem 2.6(iii) and a general result on perturbations 
of H-selfadjoint matrices (Theorem III . l .1  in [GLR]), it follows tha t  there are a positive # 
(in fact, one can choose any positive # < #(X))  and a positive e such tha t  if []Y - X[[ < e 
then the spectrum of Y[*]Y is real with # ~ a(Y[*]Y), Y[*]Y is diagonalizable, and every 
eigenvector of Y[*]Y corresponding to an eigenvalue A > # (resp. A < #) is positive (resp. 
negative). Fix such an Y. Write any nonzero vector u in the form u -- ul + ' "  + u,~, where u~ 
is an eigenvector of Y[*]Y corresponding to the eigenvalue Aj, and the eigenvalues A1, �9 �9 Am 
are distinct. In particular, the vectors Ul , . . . ,  um are H-orthogonal.  Now 

[Y[*]Yu, u] = E Aj[uj, uj] = # E [ u j ,  uj] + E ( A j  - #)[uj,uj] _> #[u,u]. 
J J J 

It  follows tha t  Y E $7 ). By Theorem 2.2, Y[*]Y cannot have negative eigenvalues, hence by 
Theorem 2.6(iii) in fact Y e SS7). ! 

For the interiors we have the following result. 

T H E O R E M  3.3. The interiors of each of the sets S7), 737) and 7) consist of precisely 
those elements of $7 ) which do not belong to SP~. 

P r o o f .  In view of the equality S P  \ $7)~ ---- S,~qT) (Theorem 2.7) and Theorem 3.2, we 
only have to show that  every X E ,-qT)~ and every X E 7) \ S7) can be approximated by 
matrices not belonging to 7 ) . 
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We start with X E 8P=, and assume that (X[*Ix, H) is given in canonical form. Then 
the restriction of X[*]X to RKx ) (X[*]X) has the following canonical form: 

(9 1 ] 0 #(X) @ diag (# (X) , . . . ,  #(X), #(X) , . . . , / z (X)) ,  
(3.2) 

, ,  , , )  
1 0 "' " "  ' 

where there is at least one Jordan block of length 2 or a negative and a positive eigenvectors 
corresponding to the eigenvalue #(X) of X[*]X (in other words, if there are no Jordan blocks 
of length 2, then s > 1, t _> 1, where s and t are the number of l 's and the number of 
- l ' s  in the diagonal matrix in (3.2), respectively). Now let A be the H-selfadjoint matrix 
defined by the properties that Au = v ~ u  for every eigenvector u of X[*IX corresponding 
to an eigenvalue a :/= I~(X), whereas the restriction of A to the generalized eigenspace 
RKx ) (X[*]X) has the form 

r 0 

1] 
2 ~ / ~  |  ~ / ~ ) .  

Clearly, A 2 = X[*Ix. Then there is an H-unitary matrix U such that X = UA. In fact, cA 
is the modulus (in the sense of Potapov [P2]) of cX, where the positive constant c is chosen 
so that cX is an -H-contraction, see [P2], Lemma 3.1 and Theorem 2.4 in [BMRRR2]. Fix 

e, 0 < e < ~ ,  and define the matrix A~ by letting 

= 2 ~ 7 X -  ~ | 

@ diag ( ~  - e, �9 �9 ~ - ) -  e, V / - ~  + e, �9 �9 ~ X - )  +7) )  

on the subspace R v , 7 ~ ( A  ) = Ru(x)(X[*Ix) and A~ = A on all other generalized eigenspaces 

of A. Let 
X~ = UA~. (3.3) 

(v 2 5 + v TX) +r 

@ diag (#(X) - e , . . . ,  >(X) - e, #(X) + e , . . . ,  #(X) + e). 

If a 2 x 2 Jordan block is present in (3.2) this matrix has the complex eigenvalues ( V / ~  -) + 

e) 2 - ( e / 2 ~ X - ) ) +  i ( ~ / ~  + e ) ( 2 e / ~ )  i/2. If there is no 2 x 2 Jordan block in (3.2) 

We compute 



448 van der Mee, Ran and Rodman 

this matrix has positive eigenvectors at the eigenvalue # ( X )  - E and negative eigenvectors 

at the eigenvalue #(X)  + c. Thus X~ r 7 ) for alI e e (0, ~ ) .  
Now let X ~ 7 ) \ SP .  If X ~ 7) has negative eigenvalues, then approximating X by 

invertible matrices X~, one sees that  X!*]Xr has eigenvalues in the open left half-plane and 
is invertible for nonzero e small enough. According to Theorem 2.2, Xr ~ 7) for nonzero e 
small enough. 

Now let X E 7) \ $7) have only nonnegative eigenvalues. Then X is not invertible, Take 
0 ~ y E l~ '~ and take v C K e r X  with 1]v][ = 1. Put  X~ = X + cyv*. Then 

[Xr X v] = [Xv, Xv] +  llvl?[y, +  ll l?[Xv, y] + dllvJ?[y, y] 
_- 

Thus if iv, v] # 0, it suffices to choose y with [y, y] < 0 to prove that X~ ~ 7). It remains to 
consider the case where every nontrivial v E K e r X  satisfies iv, v] < 0. By Proposition 2.3 
there is a vector v e K e r X N X  with ]IvlI = 1 and iv, v] >_ 0. Hence v r Ke rX ,  and therefore 
[Xv, y] < 0 for some vector y. Now take X~ = X + cy v*. We obtain 

[xo , x,v] = 2r [xv, y] + d[y, y]. 

Then for ~ > 0 small enough we have [X~v, X~v] < 0. Consequently, Xr ~ 7 ) for e > 0 small 
enough, which completes the proof. I 

Although a description of the closure of 87 ) remains an open problem in general, the 
perturbation used in the proof of Theorem 3.3 allows us to show that  the sets 87 ) and 
S S P  have the same closure. Indeed, in view of Theorem 2.7 we have only to see that  every 
X E ,SP~ can be aproximated by matrices in S S P .  To this end, we use formula (3.3), where 
now e is close to zero but negative. In the vicinity of #(X),  the matrix X!*]X~ has now only 
real eigenvalues 1 • e and 

C Am=(l+e) 2-~-4-(1+e) - ~  

(for every 2 • 2 Jordan block present in (3.2)); we assume for simplicity of the formulas 
that  #(X)  = 1. A calculation shows that  the eigenvectors of X!*]X~ corresponding to the 
eigenvalue A+ (resp. A_) are positive (resp. negative). By Theorem 2.7, X~ E SS:P. 

4 S p e c i a l  C a s e :  H H a s  O n e  P o s i t i v e  E i g e n v a l u e  

In this section we specialize some results of the previous sections to the cases when H has 
only one positive eigenvalue and F = R. 

Let F = R and n _> 2, and let H have exactly one positive eigenvalue. With no loss of 
generality, we take H --- diag (1, - 1 , . . . ,  -1 ) .  Then the set 

C = {x = ( x l , ' " , x , )  c R ~ :  [z,z] >_ 0, xl >_ 0} 

is a positive cone in R ", i.e., u + v E C and Au E C whenever u, v E C and A C [0, oc). The 
cone C is called the ice-cream cone. We refer the reader to [LS] for more information about 
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this cone, and to [BP], Section 1.3, and [Kr] for the properties of the ice-cream cone that 
follow from the Perron-Frobenius theory; see also Section 4 in [BMRRR2]. 

Obviously, the set of H-nonnegative vectors is given by C U -C.  Thus X C 7) if and only 
if X(C u -C) c_ C t2 -C.  

The following result has been established in [BMRRR2]. 

T H E O R E M  4.1. Let F = R and H = diag (1, - 1 , - . . ,  -1) .  Then a real n • n matrix 
X = [Xij]i,j=l satisfies X(C) C C if and only if it is a doubly H-plus matrix with X l l  > O. 

Thus, 97) coincides with the set of real n • n matrices X for which either X(C) C C or 
X(C) C (-C). 

A characterization of the class S P  in terms of C is easily given: A matrix X is a strict 
H-plus matrix if and only if X maps C \ {0} into either the interior of C or the interior of 
-C.  Note that  the interior of C is simply {x = (x l , . . . ,  x~) E R ~ : Ix, x] > 0, xl > 0}, and 
analogously for the interior of -C.  

Consider an invertible H-plus matrix X. Then, since X is an H-plus matrix, we have 
X(C U -C) C C U -C. The invertibility of X implies that X(C) C_ C or X(C) C_ -C.  Indeed, 
choose x E C, x ~ 0. Then either X x  E C or X x  C -C. Since C \ {0} is connected and 
X(C \ {0}) C (C \ {0}) U ( -C  \ {0}), we obtain that X(C \ {0}) C_ C \ {0} in the former case 
and X(C \ {0}) _ - g  \ {0} in the latter case. 

P R O P O S I T I O N  4.2. The closure of the set of invertible H-plus matrices coincides 
with the set of matrices X such that either X(C) C_ C or X(C) C_ -C. 

Consequently the closure of S7), as well as the closure of 337 ~, is :DT). 

Proof .  In view of the remark before the statement of the proposition, we only need to 
show that X(C) C C or X(C) C - C  implies that X can be approximated by invertible H-plus 
matrices. If X(C) C_ C, then X + eI, c > 0, e $ 0 is such an approximation. If X(C) C -C,  
then X - d ,  c > 0, e $ 0 is such an approximation. 

Theorem 2.2 implies that invertible H-plus matrices are strictly H-plus. In other words, 
in view of Theorem 4.1 we can approximate every doubly H-plus matrix by strictly H-plus 
matrices. Hence, if F = R and H has exactly one positive eigenvalue, the conjecture stated 
in the preceding section is true, i.e., the closure of S7) is :DT). For the closure of 887:' see 
the remark at the end of section 3. I 

We finish this section with a few remarks concerning connectedness. 

P R O P O S I T I O N  4.3. The set S P  has two connected components, being { X  ] X(C \ 
{0}) C_ int C} and { X  I X(C \ {0}) c_ - int C}. 

Proof .  One easily sees that the set of matrices X for which X(C \ {0}) _ int C is 
itself a convex cone, and hence is connected. Likewise for the set of matrices X for which 
X(C \ {0}) C_ - int C. Therefore in view of the characterization of the set S P  given above, 
S P  has at most two connected components. It remains to show that these two sets are indeed 
not connected. Suppose the contrary. Then there exist X E SP,  a sequence Y,~ E S T  and a 
sequence Zm C 87 ) such that Ym -+ X, Zm --+ X, and Y,~ (resp. Zm) maps the set C \ {0} 
into int C (resp. into - int C). By continuity, X maps C into the closure of the interior of 
C, which is equal to C. By the same token, X(C) C -C.  Thus, X(C) C C N (-C) = {0}, a 
contradiction with X E $7). I 
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We conclude with a simple observation that the sets P and :DP are connected (this 
observation applies also to the complex case and to the cases when H has more than one 
positive eigenvalue). Indeed, any X E P is connected to zero, which belongs to P, by tX, 
0 < t < 1, and analogously for any X 6 7)7 ~. 
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