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Integral Equations
and Operator Theory

INVERSE SCATTERING IN ONE-DIMENSIONAL NONCONSERVATIVE MEDIA
Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee
Dedicated to M.G. Krein, one of the founding fathers of inverse scattering theory.

The inverse scattering problem arising in wave propagation in one-dimensional non-
conservative media is analyzed. This is done in the frequency domain by considering the
Schrddinger equation with the potential ikP(z) + Q(z), where k? is the energy and P(z)
and Q(z) are real integrable functions. Using a pair of uncoupled Marchenko integral equa-
tions, P(z) and Q(z) are recovered from an appropriate set of scattering data including
bound-state information. Some illustrative examples are provided.

0. INTRODUCTION

The wave propagation in a one-dimensional medium, where energy absorption or gen-
eration may occur, can be described in the frequency domain by the generalized Schrédinger

equation

P (k,2) + kYt (k,z) = (kP (2) + Q(z)] v (k, z), zeR, (0.1)

where R is the real line, the prime denotes the derivative with respect to the spatial
coordinate z, k is the wavenumber, &? is the energy, P(z) represents the energy absorption
or generation, and Q(z) represents the restoring force density. By changing the sign of
P(z) in (0.1) we obtain the associated equation

v (k) + kY7 (k,2) = [~ikP(z) + Q(z)]¥~ (k,2), =z €R, (0.2)

whose scattering data are to be used along with the scattering data from (0.1) in order to
recover P(z) and Q(z).

Let LE(I) denote the measurable functions f(z) such that [, dz (1 + |z))?|f(z)? is
finite. Note that we have LP(I) = Lf(I). We will assume that Q(z) is real valued and
belongs to Li(R) and that P(z) is real valued and satisfies P € L*(R). We will use }|f||,
to denote the norm on LP(R) and write [|f||1,q for [7_dz(1+ |2[)2(f(z)|. We will later
impose further restrictions on P(z) and Q(z).

The scattering solutions of (0.1) and (0.2) comprise those behaving like @ or e~thz
as ¢ — =00, and such solutions occur when k? > 0. Among the scattering solutions are the
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Jost solution from the left fft (k,z) and the Jost solution from the right f(k, z) satisfying
the boundary conditions

ek + o(1), x — 400,
fl:l:(ka :I?) =

1 . L*k) _, 0.3
Ti(k) ezk:c Tigk; e-—zkm + 0(1), z — —00, ( )
1 —ike Rj: k ika
FE (k) = { T=(k)° T ngk;ek Toll), == oo, (0.4)
e~z 4 0(1), T — —00,

where T (k) is the transmission coefficient and R* (k) and L¥ (k) are the reflection coef-
ficients from the right and from the left, respectively. The scattering matrices ST (k) and
S~ (k) associated with (0.1) and (0.2), respectively, are given by

SE(k) =

T*(k) R*(k)
LE(k) T=(k) |
Let [F; G| = FG'—F'G denote the Wronskian. The scattering coefficients can be expressed
in terms of Wronskians of the Jost solutions of (0.1) and (0.2) as

2tk

-ﬁ_(ﬁ)_’ k GF, (05)

[ (k, 2); £ (R, 2)] =

_ 2ikL*(k) 2k RT(—k)

[fli(k,w);fj(_hx)] = T=(k) == T#(—k) ) keR,
ik R i -
S I
We have [JJ76a,AKV97]
S*(—k) =8*(k), keR, (0.6)
St (k)ST(-k)f=1,  kcR, (0.7)

where I is the 2 x 2 unit matrix, the superscript # denotes the matrix transpose, and the

overline denotes complex conjugation. From (0.7) we get
LE(k) TT(—k) + T*(k) RF(~k) =0, EkER, (0.8)

T*(k)TT(=k) =1- RE(k)R¥(-k), keR. (0.9)

The bound-state solutions of (0.1) and (0.2) are those nontrivial solutions belonging
to L2(R). Such solutions correspond to the values of k € C* at which the Jost solutions
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from the left and from the right are linearly dependent. For detailed information on the
bound states of (0.1) and (0.2), we refer the reader to [AKV97] and the references therein.
When P(z) = 0, from (0.1) and (0.2) we get

B (k, 2) + K40k, 2) = Q@) 9 (k,a), @ ER. (0.10)

Let fl[O](k, ) and f(k,z) denote the Jost solutions of (0.10) from the left and from the
right, respectively. The zero-energy Jost solutions f;5(0,z) and fZ(0,z) of (0.1) and (0.2)

are determined by Q(z) alone, and we have
f£0,0) = f2(0,2),  fF(0,2) = £%(0,2). (0.12)
Let SI°l(%) denote the scattering matrix associated with (0.10):

TOk) RI(k)
SCl(k) = [L[Ol(k) T (k)

3

where T'% (k) is the transmission coefficient and RI%(k) and LI% (k) are the reflection coeffi-
cients from the right and from the left, respectively. Generically flm] (0,z) and fﬁo] (0,z) are
linearly independent and T[O](O) = 0. However, in the exceptional case these two functions
are linearly dependent and T1°(0) # 0; in this case, let us define

_ #%0,2)
£21(0,2)
Then -y is a nonzero real constant determined by Q(z) alone.

As for (0.10), the generic case for (0.1) and (0.2) occurs if TI%(0) = 0 and the
exceptional case occurs if T1%(0) # 0. In the generic case we have [JJ76a,AKV97]

(0.12)

T=(0)=0, R*(0)=L*(0) = -1,

and in the exceptional case T7(0) and 7~ (0) are both nonzero. From Propositions 4.2,
5.1 and 5.3 and Theorem 5.2 of [AKV97], we have the following result.

THEOREM 0.1 Assume P,Q € L*(R) and 1/T%(k) does not vanish for k € R\ {0};
then S* (k) is continuous for k € R\{0}. In the generic case, S (k) is continuous atk = 0 if
we further assume Q € L}(R). In the exceptional case, let us further assume P,Q € Li(R);
then 8= (k) is continuous at k = 0 if and only if [, dz P(x) F1%0, 2)2 # +(v2 +1), where
v 4s the constant defined in (0.12).

The inverse scattering problem for (0.1) considered in this paper consists of the re-
covery of P(z) and Q(z) from an appropriate set of scattering data. To stay in touch with
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the scattering data traditionally adopted [JJ762,JJ76b,Ja76,S595], we use as our scatter-
ing data the two reflection coefficients R™ (k) and R~ (k) from the right, the bound-state
energies or equivalently the poles kj' of TT(k) in C* for j = 1,--- ,N* and the poles k;
of T=(k) in C* for j = 1,-.- , N7, the multiplicities n;" and n; for each of these poles,
and the bound-state constants c;:s for s =0,--- ,n;." —1and ¢;, for s = 0,--- g — 1
defined in Section 4. In that section, we relate these bound-state constants to the ratio of
the Jost solutions in a neighborhood of each bound-state wavenumber by generalizing the
relationship between the Jost solutions of (0.10) and the so-called bound-state norming
constants. In order to have a unique solution of the inverse problem, the total number of
bound-state constants must agree with the total number of bound states including multi-
plicities. Let N{P, Q) and N(—P, Q) denote the number of bound staies of (0.1) and {0.2),
N

respectively, including multiplicities. We then have N(£P,Q) = 5 =1 n;t Thus, the total

pumber of bound-state constants in our scattering data is N(P,Q) + N(—P, Q).

We recover P(z) and Q(z) as follows. In terms of the scattering data, we first
evaluate the two real-valued functions $;(z) and ] () defined in (5.4). These functions
are used to obtain the two kernel functions Kz+ (z;y,2) and K| (2;y,2) defined in (5.12).
Then, the pair of uncoupled Marchenko equations (5.14) with kernels K" (z;y,2) and
K[ (z;y,2), respectively, is solved, and from their solutions a (z,y) and a; (z,y), the
functions b; (z,y) and b; (z,y) are constructed by simple integration as in (5.19). The
four functions a; (z,y), a; (z,y), b (x,y), and b, (z,y) are used to recover P(x) and Q(z)
as indicated in Theorem 5.5. Note that in order to obtain our uncoupled pair of Marchenko
equations, we first convert the Riemann-Hilbert problem given in (5.2) into the pair of two
coupled Marchenko integral equations (5.9) and (5.10). We then further decouple the two
equations (5.9) into the pair of uncoupled Marchenko equations (5.14).

In the inverse scattering problem for the Schrédinger equation (0.10), the scattering
data usually consist of a reflection coefficient, N(0, Q) bound-state energies, and N(0, Q)
bound-state norming constants [Fa64,DT79,C589]. In this comparatively easy case, the
poles of the transmission coefficient TIl(k) in C* are all simple and located on the imag-
inary axis. The scattering matrix SI%(k) can be uniquely constructed [Fa64,DT79,CS89)]
from a reflection coefficient and the poles of TI%(k) in C*. The poles of T (k) in C¥,
however, are not necessarily restricted to the imaginary axis, and the multiplicity of each
such pole may be larger than one. The scattering matrix S*(k) is not unitary and cannot
be constructed from a reflection coefficient and the poles of T (k) in C*. On the other

hand, from (0.7) we see that

1 TH(k)? - L*(-k) Rt (k)

=) T (=h) , k eR, (0.13)
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—LT(~k)
T+(—k)Z — L+ (-k) R (—k)’
_ —R* (k)
T TF(“k)2 = LT (k) R*(—k)’

R(k) = k€ER, (0.14)

L= (k) k€R.

If S*(k) is continuous and invertible for k € R, using (0.13) we can uniquely construct
1/T~ (k) in C* by an analytic continuation from R to C*. Thus, with the help of (0.13)
and (0.14) we can construct the scattering data {R*(k), R™(k), k] , k., nf ng, ¢l emat
by using S¥ (k) for k£ € R and a set of N(P,Q) + N(—P,Q) constants, where N(—P,Q) is
equal to the number of zeros in C* of the analytic continuation of the right-hand side of
(0.13). Thus, it is possible to formulate and solve the inverse scattering problem for (0.1)
without using (0.2) but by using the scattering data consisting of S*(k) for k € R and a
set of N(P,Q) + N(—P, Q) constants.

Let us now discuss the history of the inverse scattering problem for (0.1). In the radial
case, when there are no bound states, Jaulent and Jean presented an inversion method
[JJ72] when P(z) is complex and Q(z) is real. In [JJ76a,JJ76b] they applied their method
to solve the one-dimensional inverse problem with real Q(z) and imaginary P(z); Jaulent
[Ja76] also applied this method when P(z) is real, although many details were not given.
As indicated in Section IV of [Ja76], in this method, in our own terminology, using the
scattering data {R*(k), R~(k)}, a pair of coupled Marchenko integral equations similar
to our (5.9) and (5.10) was obtained. From the solutions of one of these pairs, by solving
a differential equation, P(z) and Q(z) were recovered. This extra differential equation
was needed in the solution of the inverse problem; in our own notation this is because the
coupled Marchenko equations given in (5.9), in addition to containing the two unknown
functions B (z,y) and B (z,y), also contain the unknown function ¢(z) defined in (1.2).
In [Ja76] no details and no proofs were given in the one-dimensional case with real P(z),
and it was only mentioned that the results could be obtained analogously to the radial
case,

When P(z) is purely imaginary and ffooo dz P(z) = 0, Sattinger and Szmigielski
[5595] showed that one can simplify the method of Jaulent and Jean and recover P{z)
by solving an algebraic equation rather than a differential equation. The pair of two
coupled Marchenko equations (3.5) and (3.6) of [SS95] corresponds to our (5.20), and
the algebraic equation of [SS95] corresponds to our (5.25). If P(z) is purely imaginary,
then the scattering matrix S= (k) is unitary, the reflection coefficient R*(k) cannot exceed
one in absolute value, and 1/T*(k) cannot vanish on the real axis. If P(z) is real and
nontrivial, then ST (k) is no longer unitary, R*(k) is not necessarily bounded by one in
absolute value, and 1/7%(k) may vanish on the real axis. Thus, the analysis of the inverse
scattering problem with real P(z) is more complicated than with purely imaginary P(z).
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We should also mention the study by Kaup [Ka75] on the direct and inverse scattering

problem for

&+ [kg + 4—22] ¢ = [ikP(z) + Q(z)]¢, (0.13)

where 3 is a positive constant and P,@ € Li(R). Under additional assumptions on P(z),
Tsutsumi [Ts81] analyzed the direct problem for (0.15) with 8 = 1/2 by using a 2 X2 matrix
analog of (0.1) with k replaced by vk2 + 1. When 3 = 1/2, [, dz P(z) = 0, and P(z)
and Q(z) are in the Schwartz space, Sattinger and Szmigielski [SS96] studied the inverse
scattering problem for (0.15) by analyzing an associated Riemann-Hilbert problem. Equa-
tion (0.15) is important for the solution of the initial-value problem to a coupled system
of two nonlinear evolution equations by the inverse scattering transform [Ka75,5596].

This paper is organized as follows. In Section 1 we introduce the auxiliary functions
ni (k, z) and niF (k, ) in terms of the Jost solutions of (0.1) and (0.2), establish their analyt-
icity in C™, and obtain their large-k asymptotics. In Section 2 we study various properties
of the Fourier transforms of nli(k,:c) — 1 and n¥(k,z) — 1. In Section 3 we analyze cer-
tain properties of the scattering coefficients and their Fourier transforms. In Section 4
we analyze the bound states of (0.1) and (0.2) and define the bound-state constants. In
Section 5, using the results of the prior sections, a pair of uncoupled Marchenko integral
equations is obtained, the compactness of the corresponding integral operators is analyzed,
and the recovery of P(z) and Q(z) from the solutions of the uncoupled Marchenko equa-
tions is described. In Section 6 we present some conditions for the unique solvability of
the Marchenko equations. Finally, in Section 7 we present some examples illustrating the
recovery of P(z) and Q(z).

1. PROPERTIES OF SOLUTIONS
In terms of the Jost solutions of (0.1) and (0.2), let

(k@) = e = (R, 2), (k) = SRR (R, @), (1.1)
where we have defined
¢=((x) = % /:0 dz P(z), p= %/:: dz P(z). (1.2)
Since P(z) and Q(z) are real, from (0.1)-(0.4) and (1.1) we get
nE (ko) =nf(he),  ni(-ke)=ni(ke), kER. (1.3)

The functions 7;"(k,z) and nF(k,«) will be used to formulate the coupled Marchenko
equations (5.9) and (5.10). In this section we analyze certain properties of niE (k,z) and

771:}:(14’ z).
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Using (0.1)-(0.3), (1.1), and (1.2) we obtain
nE" (kyz) + [2ik £ P(2)|ni (k, 2) = W=(z) ni° (k, z), z€R, (1.4)

ni(k,+o0) =1,  n(k,+00) =0, (1.5)

where we have defined
1 1
WE(z) = Q(z) F 5P'(a:) - ZP(m)z. (1.6)

Note that, if P(z) is piecewise continuous, then the discontinuities of P(z) lead to Dirac
delta contributions in (1.6). We will elaborate on this at the end of Section 3.
Let pE(k, z) = e2#**F%, Multiplying (1.4) by uif(k,z) we obtain

Wik, 2) mi (k,2)) = pif (k,z) W=(z) f (k,z), =z €R. (1.7)

Integrating (1.7) and using (1.5) we get

P = [ ar B ) ), (19)

Integrating (1.8) and using (1.5) once again, we find
(k) = 1 +/ dt/ ay P (k . A Y) s 1, (1.9)
Changing the order of integration in (1.9) we have

niE (k) =1+ / " dy G (ks 2 ) W () it (), (1.10)

&z

where we have defined

k Y i _ Y
Gtsan) - [ a3 [ oo

L | aik(y-a)£[* P 1 [ 2ik(y—t)+ [* P (L11)
_ ik(y—a . _ o ik(y— . .
- {e 1] :F%k/m dtP(t)e
Similarly, using (0.1), (0.2), (0.4), (1.1), and {1.2) we obtain
" (k,z) — [2ik £ P(e)] 07" (k, z) = W () 77 (k, ), (1.12)

nE(k,—00) =1,  nE(k,—o0) =0. (1.13)
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Integrating (1.12) twice and using (1.13) we get

z - 2k (z— ®p
' (k) = / dy W (y) it (hyy) =007 (1.14)
nE (k) =1+ / dy G (ks 2, 9) W™ () 7 (k. ), (1.15)

where we have defined

GE(k;z,y) =f deJEeE[ P
Yy

_ 1 [ aik-w)=["P 1 [ 2ik(t~y)x [ P

THEOREM 1.1 Assume P € L}*(R) and Q € LY(R). Then, for each fired x € R, the
functions nfc(k, ) and nF (k,z) are analytic in Ct and continuous in C+, and
n(k,z) = 1+ o(1), nE(k, ) = 1+ o(1), k — oo in CT.
If we further assume that W+ W~ € L*(R), then
nF(k,z) =1+0(1/k), nf(k,z)=1+0(1/k), k- ocoinCT. (1.16)

Proor. We only prove (1.16) because the rest of the proof is given in Theorem 3.1
of [AKV97]. Note that for y > =z, from (1.11) we get

GE (ks 2, 0)] <

T ke CT\ {0}, (1.17)

14

K (1+1IPih) ”P”1> . Thus, iterating (1.10) and using (1.17) we obtain

DOt

where C' =

i (k,z) — 1E<lk| U dﬂwi(t]exp</ dz |WE( )|), ke C*\ {0},

from which we have (1.16) for n;°(k, z) whenever Wi € LY(R). The proof of (1.16) for
n=(k,z) is obtained in a similar manner. B
From Theorem 1.1 we obtain the following result which will be used in Section 2.

COROLLARY 1.2 Assume Q € L}I(R) and P,WT,W~ € L*(R), where W™ (z) and
W (z) are the functions defined in (1.6). Then, for each fized z € R, the functions
7 (,2) — 1 and nE(-,z) — 1 belong to the Hardy space H2 (R), and thus their Fourier
transforms defined in (2.1) are L?-functions having their support on the positive half-line.
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Using (1.10) and (1.15), it is possible to improve (1.16) and prove that, for each fixed
z€R, as k — oo in CT we have

nEkyz)=1- ﬁ /*00 dy W=(y) + o(1/k), (1.18)
i) =15 [ W) +o/b). (1.19)

Similarly, from (1.8) and (1.14), as k — oo in C¥ we get

it (k@) = — / dy W(y) S0P L o(17m), (1.20)
0t (k,z) = / dy W () FEIELE L o). (121)

2. FOURIER TRANSFORMS OF SOLUTIONS

In this section we analyze the properties of the Fourier transforms of nli (k,z)—1 and
nE(k,z) — 1.

Assume @ € L3(R) and P,W*,W~ € L}(R). Define

Biew) =g [ dbe™iE(e) — 1, BiGy) =5 [ dke MinE(hz) - 1)
—00 T J o
(2.1)

From Corollary 1.2 it follows that, for each fixed z € R, the functions Bli(m, -) and B (z, ")
belong to L?(R), and moreover we have B (z,y) = B=(z,y) = 0 for y < 0. Thus,

o<} o
nt(k,z) =1 +/ dy eV B (z, ), nE(k,z) =1+ / dye™BF(z,y).  (2.2)
0 0

Using (2.2) in (1.10) and (1.15), we obtain the integral relations

t

B(a,y) = = / W (t) e e
2 Jetur (2.3)
1Y e L[ P ‘
+- [ dz dt W=(t) Bi"(t,y — z) e Jt-=/2",
2 0 z+z2/2

z—-y/2 t+v/2

BZ(a,y) = & aw= () e ).
2 /‘ e (2.4)

1 1Y z—2/2 t4z/2
+ 5/ dz/ dWF(t) BE(t,y — 2) et e .
0 —00
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THEOREM 2.1 Assume P € LY(R), Q € LI(R), and W+, W~ € L1, (R) for some
a > 0. Then, for each fized © € R, the functions B (z,-) and BZ(x,-) are continuous in
y € [0,+00) and are o((1 +y)~17%) as y ~ +co. Moreover, for each fired x € R, we have

C " c
B (2,9)] < = 0@ +9/2) S @, [BE(z,9)| < T oz +y/2) ST @, (25
2 2

where C = ellPllr gnd
tw=[ awrel o=/ awo) (2:6)

@)= [ - W, @)= [ ae-gwTel

—00

PrOOF. Let us iterate (2.3) by writing
(z,y) = Z B (@), (2.7)
where we have
+ :l:fi P
Bln+1:1:y dz dtW=(¢) B (t,y~z)e t=z/2" n=0,1,---, (2.8
z2/2
and Bf’to(m, y) is given by the first term on the right-hand side of (2.3). Note that
B (2, )] < ~/ dt (W= (t)| = —a, = (2 +y/2).

Starting from the induction hypothesis

B @)l < S o (e u/2) )

and using (2.8) and the fact that dv;*(z)/de = ~0;"(z), we obtain (2.5) for B#(z,y). The
proof of (2.5) for B (z,y) is similar. For each fixed z € R, usmg (2.8) and W* € LI(R), we
see that Bj n(w, y) are continuous in y € {0,+oc0). Since o] Z(z) and ¥ (z) are decreasing
functions of z, it follows that for each fixed z € R, the terms B[, n(:c, y) are uniformly
bounded in y € [0,+00). Thus, for each fixed z € R, the series in (2.7) is uniformly
convergent and hence Bli(m,y) are continuous in y € [0,+00). From (2.5}, (2.6), and
W e L1 (R), we get B (z,y) = o((1 +y)~'"*) as y — +00. The proof for B (z,y) is

similar.
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From (2.3) we obtain

OB (2,)
Ox

x+y/2
+ Wz +y/2)eifm P

Y z+z/2 (29)
:—/ deﬂ:(n:+z/2)Bl:t(a:+z/2,y—z)eifw
0

Using (2.5) in (2.9), we get

2aBli(may) :l:f:+y/2P

e <@ o (@) o (e +y/2).  (2.10)

+WH(z +y/2)e

In a similar way, using (2.4) we obtain

@

+
28_B7M — W:F(:E _— y/2) e:t fm—y/ZP

oz (2.11)

Y z
= / deWF(z ~ 2/2) BE(z — 2/2,y — z) e:t'fz—z/2 d
0

and using (2.5) in (2.11) we get

LB (2,9)

- <%0 o2y ot (w —y/2).  (212)

W - y/2)

As in the proof of Theorem 2.1, one can show that if P € L'(R) and Q, W*, W~ € L}(R),
then the left-hand sides of (2.9) and (2.11) are continuous in y > 0 for every z € R.

PROPOSITION 2.2 Assume P € L'(R), Q € Li(R), and WH, W~ € L}, (R) for
some a > 0. Then, for each fized x € R, the functions B{(z,-), BX(z,-), 0B (z,-)/dz,
and 8BZE(z,-)/0z belong to LL(R™T).

ProOOF. Note that

] oo 2(z—=z)
/0 dy (1 + )0 (@ +1/2) = / de / dy (1 + )2 W*(2)|

it (2.13)

< 1+ max{0, —z}]"** Wl 140

l+a

Using (2.13) in (2.5) we sce that Bi*(z,-) and B¥(z,-) are in L1(R™¥). Similarly, using

(2.13) in (2.10) and (2.12) we see that 8B;"(z, -)/0z and B (z,-)/8z belong to L1 (R*). B
From (2.3) and (2.4) we have

'z

" 1 f
B (2,04) = 5/ dtW=E(2), BE(z,04) = %/ dtWT(t), (2.14)
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and from (2.2) and (2.14) it follows that

ik[1 =" (k,2)] = %/wdtWi(t)+/o dy e* _%*338(; 1Y)

ik[1 — ¥ (k, z)] /dtW*(t /dy Q%ﬁ‘?’_y_)
Y

3. SCATTERING COEFFICIENTS

In this section we analyze certain properties of the scattering coefficients and their
Fourier transforms. At the end of the section we discuss the large-k behavior of the
reflection coefficients in case W*(z) or W~ (z) contains some delta-function terms.

For o > 0 let W, denote the set of all functions ¢(k) of the form ¢(k) = ¢ +
[5°_ dtei*th(t) where ¢ is a complex constant and A € LL(R). Then W, endowed with
the norm

Jollw, =lel+ [ a1+ i)*lace)

is a commutative Banach algebra with unit element. Its multiplicative linear functionals
are the maps ¢ — ¢ = ¢(+oo) and, for every &k € R, ¢ — ¢(k). We have the following
result ([GRS364]; Example (c) in Section XXIX.2 and Example (vii) in Section XXX.1 of
[GGKI3]).

PrOPOSITION 3.1 If ¢ € W, and ¢(k) # 0 for every k € R and ¢(+o0) # 0, then the
function 1/¢ belongs to Wy,
From (6.3) and (6.4) of [AKV97] we have

+
_ 2k R¥(k) _ e~ BRI (% (1) 0 (—k, 2)], KR, (5.1)
T=(k) :
2ik Li(k) — 2ikptpT2 _+ o F L
TEE)© ik, 2)inT (—k,2)], kER, (3.2)
2tk . __
T;(Tg) =P = [2ik £ P(x)] 5" (k, 2) 0 (k, 2) + [ (B, <)imi (ky2)], ke CF. (3.3)

PROPOSITION 3.2 Assume P,Q, W+ W~ € L*(R). Then

) 1 oo . .
RE(k) = 5= / dy WF(y) e 228 L o(1/k),  |k] = oo in R, (3.4)

LE (k) = — / dy WE(y) e2*vF2W) £ o(1/k), k| = +oo in R, (3.5)
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and as k — oo in Ct we have
I 1 [
FPTE(R) — 1= — / dy W=(y) + o(1/k) = — / dy W () +o(L/k).  (3.6)
2tk J_ o 2k J_

PROOF. When P,Q,WT, W~ & L'(R), for each fixed z € R, one can show that
(1.18)-(1.21) hold as k — oo in C* when |k| > a for any positive constant a. Using
(1.18)-(1.21) in (3.1) and (3.2), we get

%&f)}g) = e*p/ dy W (y) e 2Rv=X W) 1 o(1), |k| = 400 in R, (3.7)

. 4 =)
g%@()_k_)_ = —eip/ dy W (y) eXRvFXE) 1 o(1), k| - 400 in R, (3.8)

and as k — oo in C¥, using (1.18)-(1.21) in (3.3) we obtain

+p oo o
< 5= _oodyWi(y)+o(1/k)=1—% [ wwr o, 69

Thus, from (3.7)-(3.9) we obtain (3.4)-(3.6). §

PROPOSITION 3.3 Assume P,W* W~ € L'(R), Q € L}(R), and 1/T*(k) does not
vanish for k € R\ {0}; then in the generic case, the three functions e¥PT* (k) — 1, R*(k),
and L= (k) belong to L*(R). In the ezceptional case, these three functions belong to L?>(R.)
if we further assume that P € L}(R) and [ dz P(z) l[o] (0,2)% # £(v% + 1), where v is
the constant defined in (0.12).

Proor. From Proposition 4.2 of [AKV97], it follows that TF(k), R™(k), and L+ (k)
are continuous for k € R\ {0} if we assume that P,Q € L*(R) and 1/T*(k) does not
vanish for k¥ € R\ {0}. By Proposition 3.2 we see that e ?T* (k) —1, R*(k), and L* (k) are
O(1/k) as k — +oo in R if we further assume W+, W~ € L*(R). From Proposition 5.1 of
[AKV97] we see that T (k), RT(k), and L*(k) are continuous also at k£ = 0 in the generic
case when P € L'(R) and Q € L}(R). In the exceptional case, when P, @ € Li(R), these
three functions are continuous at k = 0 if and only if [*_dz P(z) f;7(0,2)% # 2 + 1, as
shown in Theorem 5.2 of [AXV97]. The proof for the three functions related to (0.2) is

obtained in a similar manner. J

THEOREM 3.4 Assume P € L*(R), Q € L}(R), and W+,W~ € L1, (R) for some
a > 0. Then, the quantities 2ik[1 — e™P/T*(k)|, 2ikR* (k)/T*(k), and 2ikL* (k) /T= (k)
are Fourier transforms of real functions in L (R).

PrOOF. From Proposition 2.2 it follows that the right-hand sides in (3.1) and (3.2)
belong to W, and vanish as |k| — +oo0 in R. On the other hand, the right-hand side of
(3.3) equals 2ik plus a function in W,, that vanishes as k — co in CT. §
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THEOREM 3.5 Assume P € L'(R), Q € Li(R), and WF, W~ € L} (R) for some
o > 0, and suppose 1/T*(k) does not vanish for k € R\ {0}. Then, in the generic case
T*(k) — e*P, RE(k), and L= (k) are all Fourier transforms of functions in LL(R).
Proor. Note that

k€P i 1 e?
S | A —. " v | J—_— .
PR ki zhga) 2k [1 T+(k)] (3.10)
Using Theorem 3.4 we see that the left-hand side of (3.10) is the Fourier transform of a
function in LL(R). Using Proposition 3.1 and the absence of zeros of k/[(k + )T+ (k)]
for k € R, we see that [(k +¢)/k]TT (k) is €® plus the Fourier transform of a function in
LL(R). Hence T (k) — e? is the Fourier transform of a function in LL(R). Similarly, since

. . +
RA(k) = L k+i .. 2kRY(k)

1 k+i
2i(k+1i) k () T+(k) ’ i

2kLT (k)
LH(k) = —— . S A
(k) 2i(k+1i) k& (k) T+(k) °
using Theorem 3.4 and the fact that W, is an algebra, we conclude that the inverse Fourier
transforms of R* (k) and L™ (k) belong to L (R). The proof for the quantities related to

(0.2) is obtained in a similar manner. §

THEOREM 3.6 Assume P,Q € L}(R) and W+, W~ € L}, (R) for some o > 0, and
suppose 1/T*(k) does not have any real zeros. Then, in the exceptional case TE(k) — e*P,
R=(k), and L*(k) are oll Fourier transforms of functions in L1 (R).

PROOF. Let a caret denote the Fourier transform, and let f(k) denote the left-hand
side of (3.10). From the proof of Theorem 3.5, we know that f € L1, (R), where f is the
inverse Fourier transform of f. Define

§(k) = —1+ b Zz [1+ F(%)] (3.11)

Using [7 dt f(t) = F(0) = —1 in (3.11), we obtain

oo o0 ikt
o) = [ aemie - [t s

:/_0; azte““f(t)—/ooo dz e*= /:o dtf(t)—i—/_oco dz e*= /_oo dt f(t).

Since f € L}, ,(R), from (3.12) it follows that §(k) is the Fourier transform of a function in
LL(R). Because 1/T*(k) is assumed not to have any real zeros, it follows that T (k) — e?
is the Fourier transform of a function in L1 (R). Using Theorem 3.4 and an argument
similar to that used for T (k), one sees that R™(k)/T* (k) and L*(k)/T* (k) are Fourier
transforms of functions in L1 (R). In the exceptional case, 1/7F(k) is continuous on R,

(3.12)



Aktosun, Klaus and van der Mee 293

and since 1/7" (k) is assumed not to have any real zeros, it follows that R+ (k) and L* (k)
are also Fourier transforms of functions in L} (R). The proof for the quantities related to
(0.2) is obtained similarly. i

Using (3.5) and (3.6), we see that if W (z) or W~ (z) contains any delta-function
terms, the coefficients in those terms can be obtained from the large-k asymptotics of the
reflection coefficients. For example, assume that Q(z) contains the delta-function term
go 0(z) and that P{z) is discontinuous at z = 0 resulting in the delta-function term for
P'(x) given by pj d(z). In other words, py = P(0+) — P(0~). Then, from (1.6) we see that
W=(z) contains [go F p}/2] 6(z). Using (3.5) and (3.6) we obtain

lim 2k RE(k) = [qg :I:EQ} exp (i / dzP(z)) , (3.13)
[k]—++o00 2 0

! o]
lim 20k LE(k) = [qg ¥ &] exp (:F/ dz P(z)) .
|Fe|—+o0 2 0

We will use (3.13) in Section 7.

4. BOUND STATES

In this section we analyze the bound states of (0.1) and (0.2) and introduce the bound-
state constants which will be used in the scattering data to solve the inverse scattering
problem. Recall that the bound states of (0.1) correspond to the zeros of 1/7+(k) in C*
and that such zeros are either situated on the positive imaginary axis or are symmetrically
located with respect to the positive imaginary axis; moreover, the multiplicity of each such
zero may be larger than one [AKV97]. If P € L}(R), @ € Li(R), and there are no zeros
of 1/T*+(k) for k € R, then the number of zeros (including multiplicities) of 1/7+(k) in
CT is finite [AKV97].

Let k;t for j =1,.-- , N* correspond to the poles of T*(k) in CT and let n;L“ denote
the multiplicity of the pole of T*(k) at k. Let us also define

__ 1 s fEko)
&k, z) = PR =¥ FEhz) (4.1)

Note that, in case fl:t (k]i, ) vanishes at some z, then f (ls:]i ,z) also vanishes at the same
x because fli (kji, z) and fF (kf, z) are linearly dependent.

PROPOSITION 4.1 Assume P € L'(R), Q € L}(R), and suppose 1/T*(k) has a zero
at l»cJi € C*t of multiplicity nJi Then, in the Taylor series of c*(k, ) and d*(k,z) at k;.*L,
the first n;“ coefficients do not depend on .



204 Aktosun, Klaus and van der Mee

ProOF. From (0.5) and (4.1) we get

0= (ko) _ uplfi (ho)s S (kya)] _  —2ik 1
oz frke)? e TPTER) fE(k,2)?

Hence, we have
5 () w05 0@ =] [(3) s

Since the value of —2ik/T™* (k) and its first n;t — 1 derivatives at kf vanish, from (4.2) we
see that asci(k;:,m)/aks vanish for s =0,1,--- ,n?c — 1. Thus,

oo

cE(k,z) = cf,(z) (b~ kF)°, (4.3)
s=0
where c;-*to, e ,cfn#_ ) do not depend on z € R. Note that in the expansion
)
d(k,z) = df, () (k ~ k)",
s=0
each coeflicient d;-'fs(m) can be expressed in terms of cjfo (), ,c;-'; {z) because we have
§
Y @) di, (@) =080,  $=0,1,-- ,nf -1, (4.4)
m=0

where §;,, is the Kronecker delta. Hence, the first n;*‘ coefficients in the expansion (4.4)
are independent of z if and only if the same is true for the expansion (4.3). §

Note that we can construct ¢ T (k) and e?T~(k) uniquely in terms of R¥(k),
R~ (k), k;’, k., n;’, and n, where j=1,--- ,NT and s = 1,--- , N~. Let us write (0.9)

in the form
[eFPTE(k)] [e*PTT(~k)] =1 — R*(k) RT(—k), kcR. (4.5)

Recall that ke=?/[(k -+ i) T*(k)] is analytic in C™, is continuous in C+, and approaches 1
as k — oo in CT. The construction of e¥PT* (k) can be carried out by solving the scalar
Riemann-Hilbert problem (4.5). Having constructed e ?T* (k) and e?T~(k), one can also
construct eT?PL* (k) using (0.8). As we will see later, the constants {c;.lfo, e ,c;,fn#_ .} for
j =1,---, N* play the role of the bound-state norming constants in the inverse scjattering
problem for the usual Schrodinger equation [Fa64,DT79,Ne80,CS89,AKV93]. As seen in
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the proof of Proposition 4.1, knowledge of these constants is equivalent to knowledge of
the set {dfo’ ,d;fn?_l} forj=1,---,N*.
Let us define the reduced transmission coefficients T (k) and 7 (k) by

’ . NE k_'k'j{ ny
T*(k) = Ty (k) [ | = (4.6)

j=1

Note that T;°(k) is analytic in C*. We have

N:{:nji—l

+

eTPT*(k) = z;z; s ki s+1+Fi(k), (4.7)
1= §=
where
1 dnji—l—s n
B —1_5)'{ S [ﬁ”Ti(’“)("’“’“?)”’” |

dk™s —

and F*(k) is analytic in C*, is continuous in C+, and tends to 1 as k — oo in CT.
Note that the parameters t sand i, are uniquely determined when one knows R™ (%),
R‘(k),k+ ko, -,andn ,wherej——l ,N"";m-—-l,---,N‘;S:O,---,n;'—l;
andu=0,---,n, — 1

Recall that for each z € R, the functions nfc (k,z) and nF(k,z) are analytic in C¥,

and hence we have the convergent expansions
oo oo
ntkz) =Y nih (@) (k—k5)'  nE(Re) =) 05 (@) (k) (4.8)
5=0 s=0
valid for |k — ki| < Im&;". Using (1.1), (2.1), (4.1), and (4.3) in (4.8), we get

2) 2ikta 2ix
nEs (z) = eFHE@ ZZ( ST () (4.9)

m=0 n=0

Using (2.2) and (4.8), we also have

[so] . K] L+
@) =00+ [ as B2 (4.10)
4

o s
(12)°
n;b;j,s (z) =ds0 +/(; dz € *BE(z,z2).
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Using (4.7) and (4.8) we get

N:tn ln —~1—s

:l:
FPTE (k) rE (ky ) — 1 = HE(ky2) + 3 3 Z Teism () G (4.11)

T )
ji=1 s=0 m=0 (k k s+1

NE n;t lnf:—l s

A— 3: 77 T ySTm
FPTE(R) 0 (kyz) — L= HE(ky2) + > > > _”k%%“

j=1 s=0 m=0

where for each z the functions H, ,i’(k, z) and HE(k,z) belong to the Hardy space H? (R).
Let us define 1 e
Af(z,y) = %/ dk e [eFPTE (k) nt (k, 2) — 1], (4.12)
-0

AE(z,y) / dk €Y [6FPT (k) = (, ) — 1].

From (0.6) and (1.3) it follows that A (z,y) and A (z,y) are real valued. Using (4.11) in
(4.12), for y > 0 we obtain

N* nf—l ngi—l s

Z Z Z 7 zk ¥( 'Ly)sn:.t;j, (z )tgi,s+m (4.13)

7=1 s=0 m=0
Using (4.9) in (4.13), for y > 0 we can write AF(z,y) as

Ali(m, y)

+ *
n; —1n] —1-—-s me—u

_ e Zem (ers) N Y zm:

s=0 m=0 wu=0 n=0

22w m—u—n :h
)| ],S—i'm'r’lju(x) §,n’

v (4.14)
Note that we can write (4.14) as
Af(=,y)
S
N= n]—ln] ly—sw—s—u wsu
— T2 () ikE (2z+y) (1y)* (2iz) N
- ;e J wz:s% 1;) st (w—s—u— n)' Jﬂvnl,au(z)c',n-
(4.15)
Using
an:—an w8 w-s—u ;Elwwswsn n; =1 4 wenw—s—n 7L W s

35 S5 MDD 3D HISIED 3D 3D 3D SED 3D 3 SIS I

s=0 w=s w=0 n=0 w=0 s=0n=0 u=0 w=0 n=0 u=0 w=0 n=0 vu=0 s=0
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we can simplify {4.15) to

z zi -l 2(11+y wmumn
A (2, ) = 167 )Zek (20-+3) Z Z MZ%u (___u)_]__n)_ (4.16)
j=1 :

where y > 0. In a similar manner, we obtain

NE w-—
. z sk (— 2x + w—u—mn
o) = i St aenn B N
j=1 :

w=0

where y > 0 irrespective of the sign of z. Note that e*%(®) A (z, y) and e (@) AE (z, y)

are functions of 2z + y and —2z + y, respectively.
When P(z) < 0 in (0.1), there are notable simplifications. In this special case,
1/T7 (k) cannot have any real zeros and hence S (k) exists for all £ € R. We have

T(®)P +ILF(®R)? <1, ITHER)P+IRT(K)P <1, keR.

The number of poles of T*(k) in C* is equal to N(0,Q), and each such pole is simple
and located on the imaginary axis. Let us order these poles such that Im k+ < Im kj_-i-l
Then the Jost solutions fﬁ'(k;,m) and ff (k]'",m) each have exactly N(0, Q) — j zeros,
and hence from Theorem 10.4 of [AKV97] and (1.1) we conclude that the common sign
of i (k,—00) and nf (k] ,+00) is the same as the sign of (—1)N(%@)~4, Therefore, in
this case the quantity ¢¥( ;’, z) is a nonzero real constant, usually called a bound-state

norming constant, whose sign agrees with that of (—1)N(0:@)~7,

5. MARCHENKO EQUATIONS AND THE INVERSE PROBLEM

In this section, we derive the two uncoupled Marchenko integral equations (5.14) and
show that the corresponding integral operators are compact and have the same nonzero
eigenvalues. We also describe the recovery of P(z) and Q(z) from the solutions of these
Marchenko equations.

When k € R, the quantities f;” (—k,x) and f(—Fk,x) are also solutions of (0.1), and
hence, they can be expressed as linear combinations of f;7 (k,z) and f;(k,z), unless the
latter functions are linearly dependent. Using (0.3) and (0.4) we obtain

lif?(—k, m)} _ T*(k) —Ri(k)] {f?(k,m)]
fﬁ:(—ka :E)

—LE(k) T*(k) | | £k, 2)
Using (1.1), we can write (5.1) in the form
[m*(-k, m)} _ [ FETER)  -REH) emm«w)} [n?(k, ")

WE(ka) | [ STEEe e e | (e )

keR. (5.1)

} . (5.2)
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For z € R, define

N 1 o0 . ~ 1 o0 ;
RE(2) = 5 /_ . dke™® RE(k), L*(2) = o /_ dk e L*(k), (5.3)
nE-1
_1 m
A= 1,k
55 (2) = —zze DY mz o ok, (5.4)
m=0 s=0
ES n¥-1
N N Nl (zz)
SE(2) = eFPLE() — 4 Z oty Z j’mz S)' ]’ (5.5)
i=1 m=0 5=0

Note that 87(z) and 5F(z) are real valued because of (0.6) and the real-valuedness of
A¥F(z,y) and AZ(z,y). Let us write (5.2) in the form

07 (—hy2) — 1 = TP TE(k) g (hy2) — 1 — RE(k) 9475 (k. 0), (5.6)
nE(=k,z) — 1= TP T=(k) " (k) — 1 — L¥(k) e 24T 5XCI 2 (g 2). (5.7)
With the help of (2.1), (4.12), and (5.3), the Fourier transform of (5.6) gives us for y > 0

B (z,y) = A (z,y) — 7@ {f%li(Qm + ) -+-/£ dz B (22 +y + z) B (2, z)] . (5.8)

Using (4.10) and (4.16) in (5.8), we obtain the coupled Marchenko equations

o0
BF (z,y) = —eT¥® [Sli(2:c +y) -}-/ dz 8F(2z +y + 2) B (z, z)} , y>0. (5.9)
0
In a similar way, applying the Fourier transform to {5.7) we obtain the coupled Marchenko
equations
BF(z,y) = —e* %@ [Sri(—Zm +y)+ / dz 8F (=22 4y + 2) Bf(m,z)} , y >0,
0

(5.10)
where 5F(z,y) and BF(z,y) are the quantities defined in (5.5) and (2.1), respectively.
In (5.9) and (5.10) the coupling refers to the fact that the quantities pertaining to (0.1)
and (0.2) appear in the same equation; for example, both B;"(z,) related to (0.1) and
B (z,y) related to (0.2) appear in the same equation.

We will only analyze the pair of coupled integral equations (5.9). The analysis of
(5.10) is similar. Note that §°(2) and §F(2) given in (5.4) and (5.5), respectively, can be
constructed uniquely in terms of the scattering data consisting of the reflection coefficients
R*(k) and R~(k), the bound-state energies corresponding to the kj each with multiplicity
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nS and the k;, each with multiplicity n,, and the corresponding bound-state constants cf,

and ¢

m,u?
PROPOSITION 5.1 Let g € LL(R™) for some o € [0,1]. Then, for every p € [1, +00)
and for every B € [0, ], the integral operator O, defined by

wherej=1,--- ,N*;m=1,.-- ,N™;5=0,... ,nj‘——l;anduzO,--- s — 1.

(Ogf)(z) = /U mdyg(r +y) fy)

is @ compact operator on LP(R™) and on LE(RWL). In all of these cases, the operator norm
of Oy is bounded above by ||g||1,5.

ProoF. Since the Fourler transform §(k) of g(z) is continuous and vanishes as
k — 4o0 in R, the compactness on LP(RT) follows from the Hartman-Wintner theorem
on the compactness of Hankel operators (Theorem 1.4 and the discussion following (1.1)
of [Po82); Corollary 4.7 of [Pa88]). Here we give an independent proof. The convolution
product of a function in L*(R™*) and a function in LP(R*) belongs to L?(R™), and hence
the norm of O, is bounded above by ||g{l1. The convolution product of two functions
in L%;(R*-’) is again in Lé(R*’), and hence the norm of O, is bounded above by ||g]]; 5.
Approximating g by integrable step functions in the norm of either LP(R™) or LL (R1), we
approximate O, in the operator norm by compact operators, which implies the compactness
of Oy. B

Let us introduce the integral operators Mli’(m) and Klj: (z):

M () h){y) = /0 i SE(2x+y+2)h(z), y>0, (5.11)

Kli(m;y,z):f dugf(2x+y+u)§f(2:c+u+z), y,z >0,
¢ (5.12)
KE@HW) = [ de ki@, bz, y>o.

We may then decouple the system of equations (5.9) to obtain the two uncoupled equations
o0
B (z,y) — / 2 K (9, 2)Bf (2, 2) = ~eT*®)I5F (22 + y) + Ki*(239,0),  y>0.
0

These equations are not convenient for solving the inverse scattering problem, because
their right-hand sides contain the unknown quantity $(¢). However, letting

Bi(z,y) = —e**®)af (z,) + bf (z,y), (5.13)

we can obtain Bl:t (=, ) by using e¢(®) and the solutions of the equations

a (z,y) —/0 dz K (z;y,2) af (2, 2) = §F (22 +y), y >0, (5.14)
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(e}
b (z,y) — /0 dz KiF (z;y, 2) b (2, 2) = K (z;9,0), y >0, (5.15)

where the right-hand sides are now known in terms of the scattering data. Note that the
coupled Marchenko equations (5.9) are equivalent to the uncoupled equations (5.14) and
(5.15). We will refer to (5.14) and (5.15) as the uncoupled Marchenko equations.

PROPOSITION 5.2 In the generic case, assume that P € L*(R), Q € LY(R), 1/T7 (k)
and 1/T~ (k) do not vanish for k € R\ {0}, and W+, W~ € L}, (R) for some a > 0.
In the exceptional case, assume that P,Q € LI(R), 1/T*+ (k) and 1/T~ (k) do not vanish
fork € R, and W+, W~ € Lj (R) for some a > 0. Then, for each z € R, the integral
operators M (z) and M (z) defined in (5.11) are compact on LL(R™).

Proor. From Proposition 5.1 and Theorems 3.5 and 3.8, it follows that the operators
corresponding to the kernels R*¥(z) and L*(z) are compact on LL(R™). Since 5(z) —
RE(z) and §%(z) —e¥?PL*(2) correspond to degenerate kernels, it follows that the integral
operators in (5.9) and (5.10) are compact on LL(R™). R

In the next theorem we show that the Marchenko integral operators in (5.14) and
(5.15) are compact perturbations of the identity. Thus, the uncoupled Marchenko inte-
gral equations (5.14) and (5.15) are uniquely solvable if the corresponding homogeneous

equations do not have any nontrivial solutions.

THEOREM 5.3 Under the assumptions in Proposition 5.2, the kernels K;" (z;y, z) and
K, (m;y,z) defined in (5.12) are real valued and satisfy

Ki(z;y,2) = K{ (z;2,9),  y,2>0. (5.16)

Moreover, the operators K (z) and K[ (z) are compact on L3(R™) for 8 € [0,a] and have
the same nonzero eigenvalues, and these eigenvelues are real.

Proor. Since S’f’(z) and S’f(z) are real valued, it follows that K; (z;y,z) and
K; (x;y,7) are real, and from (5.12) we get (5.16). The compactness of M; (z) and
M; (2) on Lz(R") follows from Propositions 5.1 and 5.2. From (5.11) and (5.12) we have

Kli(cc) = M5 (z) My (), (5.17)

and hence Kj (z) and K; (z) are compact operators on Ly(R™) having the same nonzero
eigenvalues. By Theorems 3.5 and 3.6 we have Rt, R~ e LL(R™); thus, using Proposition
5.1 and an argument as in the proof of Proposition 5.2, we can conclude that M™(z)
and M~ (z) and hence K*(z) and K~ (z) are compact operators on both L(R™) and
L?(R7). Then a simple Fredholm argument implies that the nonzero eigenvalues of K*(z)
on L3(R*) and on L?(R™) are identical. However, as a result of (5.16) and the realness of
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KT (z;y,2) and K~ (z;y, 2), it follows that K¥(z) and K~ (z) are selfadjoint operators on
L%(R) that are each other’s adjoints. Thus the nonzero eigenvalues of K*(z) and K~ (z)

are all real. |

PrOPOSITION 5.4 Under the assumptions in Proposition 5.2, if the integral equations
(5.14) are uniquely solvable in L*(RT), then so are (5.15).

Proor. This follows from Theorem 5.3 and the fact that (5.14) and (5.15) are
uniquely solvable if and only if 1 is not an eigenvalue of Kli (z). 1

From (5.17) we have

M7 () K (¢) = K7 (¢) M (2). (5.18)

From Proposition 5.2 it follows that M (z) is a bounded operator on L*(R*), and hence
M7 (z) ai°(z, -) belongs to L* (R™) whenever i (z,-) € L*(R*). Applying Mj (z) to (5.14)
and using (5.18), we see that M (z) a* (2, -) satisfies (5.15), and hence the unique solution
aif (z,y) of (5.14) leads to the unique solution b;"(z,y) of (5.15) given by

bt (z,y) = M (z) aj (z,)|(y) = /Ooo dz8F 2z +y+2)af(z,2), y>0. (5.19)

Note that (5.14) and (5.15) are equivalent to the linear system of coupled Marchenko

equations

[ee]
ali(x,y)—/o szli(2m+y—!—z)bli(w,z)=Sf:(2:c+y), y >0,
o (5.20)
bli(:r:,y)—/ dz 87 (2z +y + 2) aff (2, z) = 0, y > 0.
0

Under the general assumptions of this section, we have § . S’l_ € Li(R). This means that
the integral terms in (5.20) are continuous in y € (0,-+o0) whenever aj (z,-) and b(z, -)
belong to L*(R™). Thus, from (5.20) we see that for each z € R, the discontinuities of
aif(z,y) and Si(2z + y) coincide for y > 0 and that b5 (z,y) is continuous in y > 0.

The functions ali (z,y) and bf (z,y) appear as elements of the 2 X 2 resolvent kernel
matrix I'(z; y, 2) of the linear system of integral equations

alz,y) — /0 dz 5,"‘(29: +y+ 2z)di(z, z) = RHS:(y), y >0,
(5.21)

dl(m,y)—/ dz 87 (22 +y + ) iz, 2) = RAS(y), y >0,
0
where RHS; (y) and RHS2(y) denote nonhomogeneous terms. In fact, if (5.20) are uniquely
solvable, then the unique solution of (5.21) is given by
[Cz(-’ﬂa y)J _ |RHS:1(y)
di(z,y) RHS:(y)

RES:(2) | (5.22)

oo
+/ dzT'(z;y, 2)
0
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Then (5.20) implies

b () o (z,y)

a (z,y) b (2,9)

Indeed, using the short-hand notations N(z) and I‘(Aml for the integral operators on the
[ 0 S (22 +y + 2)

57z +y+2) 0

P(z;y,0) = [ . (5.23)

half-line with respective kernels l- } and D(z;y, z), one

gets from (5.21) and (5.22)
I—N(z)] ! =1+T(2),
and hence

[1— N(2)] D(z) = N(z). (5.24)

Let [M];m stand for the (j,m)-entry of a matrix M. Rewriting (5.24) in the form
[T(m;y,w)]lj - [) dz g?_(2$ +y+2) [(z; 2, w)]Zj =[NQ2z +y+ w)hj )
£00
[T(z; 9 w)l; — /O dz 87 (22 +y + 2) [D(z; 2,w)]; = [N(22 + 5+ w)ly;,

where j = 1,2,y > 0, N2z +y+ w)]y; = NQz+y+w)ly, =0, [NQ2z +y +w)|, =
5 (2z +y + w), and [N(2z +y +w)]y; 57 (22 + y + w), and comparing the latter
systems for w = 0 with (5.20), we obtain (5.23). Finally, we remark that the resolvent
kernels T (z;y, 2) and I (z;y, 2) of the integral equations (5.14) are given by [I'(z;y, 2)},;
and [T'(z;y, )] 44, respectively. Moreover,

r I'*(z;y,2) / duSi(2z +y+u) T (z;u, 2)
0

D(ziy,2) = | poo
/ duS; (22 +y +u) T (z;u, 2) I~ (z;y,2)
)

In the next theorem we show how the unique solutions of the pair of uncoupled
equations (5.14) lead to the solution of the inverse scattering problem.

THEOREM 5.5 Suppose that, for each z € R, the two integral equations (5.14) have
unique solutions aj (z,y) and o] (z,y) belonging to L*(R™). Then e*¢(®) | P(z), and Q(x)
can be obtained from alJ“(:L',y) and a; (z,y) as follows:

(e, . (.-
260 I+ < al‘(:c, ) >+ < bl+(:z:, ) >7 (5.25)
4 < aj (z,-) >+ <b (z,-) >
where b= (z,y) is the quantity in (5.19) and < f >= I dy f ),
1 deX(=
—_— ! — ——————t —
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1 1
Qz) = d—d— B af (z,0+) — b (=, O-i—)} + EP'(m) + ZP(w)z. (5.27)
ProoOF. From {0.11), (1.1), and (2.2) it follows that

eC(z)fl(O, ) nf((),x) 1+ < Bf'(a:,-) >

2¢(=)
2¢(@) — - = . 5.28
<@ f0,2) =n;7(0,z) 1+ < By (z,7)> (5.28)
Furthermore, from (5.13) we have
< Bif(z,") >= —e*¥@) < oF (2,-) > + < b (z,-) >. (5.29)

Eliminating < B (z,-) > from (5.28) and (5.29), we get (5.25). Next, from (2.3) we get
(5.26), and from (1.6), (2.14), and (5.29) we get (5.27). K

In order for the inversion algorithm contained in Theorem 5.5 to lead o real potentials
P ¢ [}(R)and Q € L}(R), the right-hand side of (5.25) should be positive for every z € R,
the derivative in (5.26) should exist for all but finitely many =z € R, and the derivative in
(5.27) should exist almost everywhere. Even then, restrictions on the scattering data are
usually necessary to assure that the potentials P(z) and Q(z) thus obtained satisfy the

general conditions of this article.

6. UNIQUE SOLVABILITY OF THE MARCHENKO EQUATIONS

In this section we present some conditions on the scattering data for the unique
solvability of the Marchenko integral equations (5.14). The assumptions for the results in
this section to hold are the same as those stated in Proposition 5.2. That is, in the generic
case, we assume that P € L*(R), @ € L}(R), W+, W~ € L1, (R) for some o > 0, and
1/T*(k) and 1/T~ (k) do not vanish for & € R\ {0}; in the exceptional case, we assume
that P,Q € L}(R), W, W~ € L}, (R) for some a > 0, and 1/T+(k) and 1/T~ (k)
do not vanish for £ € R. Under these conditions, as we have seen in Theorem 5.3, the
Marchenko integral operators are compact perturbations of the identity acting on Lk (RY)
for any 8 € [0,qa], and hence the unique solvability of the two uncoupled Marchenko
equations (5.14) follows from the nonexistence of nontrivial solutions of the corresponding
homogeneous equations.

Using (5.4) let us define

+

+n] -1 m
SE(k) = / dz e~ 5 (2) = RE (k) - ;T; m;z e )m —. 6D

Because S;°(y) is real valued, we have the symmetry relation

SE(k) = S7(~k), ke€R. (6.2)
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The Banach space WB of Fourier transforms of functions in L}; (R) can be decomposed
in a natural way as Wg = W§’+ D Wg’—, where )/Vfg’i denotes the Banach space of Fourier
transforms of functions in L(R*). The projection IL. of Wg onto Wg’i is bounded with
unit norm if we endow this space with the norm |[h||Wg = ||hfj1,3. We write

hy =T4h,  heW]. (6.3)

In our analysis of the uncoupled Marchenko equations (5.14) and (5.15), h will be one of
a*(z,-) and b*(z,-) extended to the full line.

Let Z(k) be a continuous matrix function for ¥ € R tending to the identity as
|k| — +oc0 such that its entries belong to Ws for some 3 > 0. Then by a right canonical
Jactorization of Z(k) we mean a representation of Z(k) in the form Z(k) = Z(k) Z_(k),
such that for j,m € {1, 2} we have

[Z+(Yjm = 6m €EWG™,  [22() jm — Gjm € Wo™. (6.4)

By a left canonical factorization of Z(k) we mean a representation of Z(k) in the form
Z(k) = Z_(k) Z(k), where Z, (k) satisfies (6.4). Right and left canonical factorizations
are unique when they exist.

The next theorem will be proved by converting (5.20) into a Riemann-Hilbert prob-
lem whose unique solvability can be reduced to the existence of a canonical Wiener-Hopf
factorization following a procedure given in [Fe61,FGK94].

THEOREM 6.1 Under the assumptions of Proposition 5.2, the scalar 1 is not an eigen-
value of the integral operator Kli (z) defined in (5.12) if and only if the matriz function
Z*(-,z) defined by

i SF (k) e2tkz
Z* (k,2) = . o (6.5)
—Sf(=k)e 1~ S (k) 57 (k)
has both a right canonical factorization and a left canonical factorization.

Proor. Note that (5.20) is valid only when y > 0. Let us extend (5.20) to y € R by

letting
af (z,y) = af(e,y) + aX(z,y), b (z,y) = bi(z,y) +bE(z,y),
where af(m,y) = bf(w, y) =0 for y < 0 and a®(z,y) = bE(z,y) = 0 for y > 0. Thus, we

have

af(fb‘,y)+&f($,y)—/ d2 §F (2 +y +2)bi(z.2) = §7 (22 +y), yER,
o (6.6)
bﬁ(m,y}—{—bf(az,y)—/ dzSF(2z +y+2)aT(z,2) =0, yeR.

— o0
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Let us define
r pco . +o0
di(k, z) = I / dya?:(m, Y) e’ky i/o dyal (z,y)e ’ky, (6.7)
LY —OC 4
. r poo . +oo
bi(k,z) =TI+ / dy b7 (z,y) e = / dy b’ (z,y) €, (6.8)
L/ —oo J 0
r (o] 3 7 :Foo N .
i) =1z | [~ dyatepen| =7 [ e, @)
-~ [ oo . 7 :!:w .
bi(k, z) =g / dy blﬂ:(w, y) et = :F/ dy bf(m, y) ey, (6.10)
LS —o0 d 0

where IT,. and II_ are the projections given in (6.3). Applying the Fourier transform to
(6.6) and using (6.7)-(6.10) we obtain

di o &i z) — Y e—Zikw:l:__ z) = o e~ 2ike
{+(k,)+~(k,) SE(—k) bi(~k,z) = S (—k) , (6.10)

b (k, ) + b (k, ) — ST (—k) e™%*2 43 (—k, z) = 0.
Substituting —k for k in (6.11) we get

{ ( k 112) +ai( ]{7 iL‘) Sl:t(k) 2ikax b:l:(k ZE) _ S:t(k)ezﬂcm,

b (—k, @) + bE(—k, 2) — SF (k) 2ik= a3 (k, z) = 0. (6.12)

Letting A _
ai(k,z) SE (k) ik
Bf(k, z) 0

~d ! Yi(k’ m) = + —2ik

8= (—k,z) S (—k)e2®

1
b (—k, 2) 0

X*(k,z) =

1 0 0

0 1 0

0 _Sl:f:(_k) e—-Zikz 1

—S (—k) e~ 2tke 0 0
0

1

0

0

H O OO

0 ~SE (k) e?k= 1
_Sl?(k) eZikz 0
1 0
0 1

RE(k,z) =

[T e B ]

we can write (6.11) and (6.12) together as the single system

LE(k,z) XE(—k,z) + R*(k,2) X (k,z) =Y*(k,z), keR. (6.13)
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From Theorem 5.3 it follows that, for each fixed z € R, the entries of the vector function
X=(-, ) belong to Wg”L, where 3 € [0, ). Thus, finding X*(k, ) in terms of the scattering
data constitutes a Riemann-Hilbert problem. Let us define

0 -1 0 0 0 100
6 0 1 0 1o o001
M1‘1000’M2‘0010
g 0 0 1 -1 00 0
Tt can be verified that
My L5 (k,2) P RE (k) My = ZF(k,2) ® ZF(k, )%, (6.14)

where Z%(k,z)* denotes the conjugate transpose of Z*(k,z). Multiplying (6.13) on the
left by My £*(k,2)~! and using (6.14), we can write (6.13) as the pair of Riemann-Hilbert

problems

(ko —bE (k2
{ bt (~k, )]—e-Zi(k,m)[ bZ(—k, )}:Li( 0 } keR, (6.15)
£

a=(k, z) &t (k,z) k)e~2ike

[&f(w,x)} - [af(—k,as)} [ Sk e J cer (016
bk, 2) o we | LSFEwsEm ] - @19

It is known [GF71] that the two problems described by (6.15) and (6.16) are uniquely
solvable if Z*(k,z) and Z*(k,z)* both have a left canonical factorization, or equivalently,
if Z%(k,z) has both right and left canonical factorizations. Thus, we have shown that
(5.20) is uniquely solvable if Z*(k,z) has both right and left canonical factorizations.

We will next prove that if (5.20) is uniquely solvable, then Z*(k, z) has both right
and left canonical factorizations. Let us replace (6.6) with the system

o) +atey) - [ a8Eey+ )R =), veR,
o (6.17)
b= (2, ) + b5 (2, y) — / d:5F (20 +y+2)at(z,2) = 7E@), yER,

where 73,75 € Llla(R). Writing rji(k) = f_oooo dy e *¥7;(y) for j = 1,2 and following the
above procedure, instead of (6.15) and (6.16) we get for k € R

b= (—k,z) 7k ){—iﬁ(——k,m)}-{ —rE(—k) } (618)
[ ) | et | W)+ SER) et ()

at(—k,z at(—k,x (=
{T( & )}+Z:&(k,m)*{f( ’ )}={ i k)_ } (6.19)
bZ(k, z) b3 (k, =) ry (k) + S (—k) e"2*=r (k)
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Analogously, replacing (6.17) by the linear system

a* (2, ) + 0% (2,9) + / dz5F (20 +y+2)bi(e,2) = iE(y),  yeR,
oo (6.20)

o}

bf(x,y)+bf(a:,y)+/ dz8F (e +y+2)ai(z,2) =Fi(y), y<R,

—0oQ

where 75,73 € L5(R), we get instead of (6.18) and (6.19) for k € R

Ai(——k,m) L |:Bf(—k,$):| [ Tit(—k) :l
+Z k,il? - 3 }

[aé(k,m) 2 at (k, x) vy (k) = S (=k) e r7 (k)

aE(—k, at(~k,z rE(—

[“‘i( 6 +Zi(k,a:)*[ - )}z[ A }

—bE(k, z) —bE(k, ) =y (k) + 87 (—k) e r3=(—k)

The systems (6.17) and (6.20) are uniquely solvable if and only if Z*(k, z) has both right
and left canonical factorizations. Thus, we see that the existence of both right and left
canonical factorizations of Z*(k,z) is equivalent to +1 and —1 not being eigenvalues of

the linear operators [cf. (5.11)]

0 Mi(z)
defined on L;(R") ® Li(R™). From (5.11) and (5.12) we have
[I—AzKli(w) 0 } _ [ I ,\M;‘E(m)] { I —AM ()
0 I—22K7(z) AMF (z) I —~AM7 (z) I )

Note that none of the three matrices in (6.22) can be one-sided invertible unless they are
two-sided invertible. Hence, from (6.22) we see that the nonzero cigenvalues of Ki(z),
which coincide with the nonzero eigenvalues of K[ (z), are exactly the squares of the
nonzero eigenvalues of the two operators defined by (6.21). Hence the existence of both
right and left canonical factorizations of Z*(k, ) is equivalent to 1 not being an eigenvalue
of Ki(z).

PROPOSITION 6.2 Suppose

sup |S;" (k) + S; (k)] < 2, (6.23)
kER

where S;" (k) and Sy (k) are the quantities defined in (6.1). Then the matriz function
Z*%(k,z) given in (6.5) has both right and left canonical factorizations.
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Proor. Let 1
C*(k,z,e) = 3 [Zi(k, z) + Zi(k,m)*] — eI,

where ¢ is a positive parameter. From Proposition III 1.2 and Theorem II 6.3 in [CG81],
it follows that the matrix Z*(k,«) has both right and left canonical factorizations if and
only if for some small e the matrix C(k, z, ) is selfadjoint and nonnegative for all k € R.
Note that C*(k, z, ) is selfadjoint for any real ¢. To show that C*(k, z,¢) is nonnegative,
it is enough to show that the determinant and the trace of C*(k, ,0) are positive. Using
(6.2), from (6.5) we get

det O (k, 2, 0) = 1 — %|sz(k) + SF(R)P, (6.24)

1
tr CF(k,z,0) = 1 + Z[Sli(k) ~ S (k)|> + det C=(k, z, 0). (6.25)

From (6.2), (6.24), and (6.25) we see that C*(k,z,0) has positive trace and positive
determinant if and only if |Si* (k) +8;7 (k)| < 2 for k € R.. Hence, if (6.23) is satisfied, then
C*(k, z,¢) is selfadjoint and nonnegative for sufficiently small positive ¢. §

From Theorem 6.1 and Proposition 6.2 we have the following.

COROLLARY 6.3 Assume that (6.23) is satisfied. Then, under the assumptions of
Proposition 5.2, the uncoupled Marchenko equations (5.14) and (5.15) are uniquely solvable
in Ly(RT) for B € [0,a].

Consider the function

k2

2 d
(k : 1) [1-R*(k)R™(-k)], keR, (6.26)

where d = 0 in the exceptional case and d = 1 in the generic case. Let w denote the
winding number of the graph of the function in (6.26) as k varies from —oo to +oc on the

real axis.

THEOREM 6.4 Suppose R (k) and R~ (k) are continuous in k € R. Then, the winding
number w of the graph of the function defined in (6.26) is given by

w=N(-P,Q) - N(P,Q), (6.27)

where N(P, Q) and N(—P, Q) are the number of bound states of (0.1) and (0.2), respectively.
ProoOF. Using (0.9) and (4.6) we have

Nt _r ny N™ -\ "
1~ BF(K)R™ (k) = TJ(k)H(:_:?r) [T&(—k)ﬂ('”’“’) } keR,

i=1 k+k;
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where [(k + 1)/k]T5 (k) are continuous in k € C¥, are analytic in k € C*, do not vanish
in C+, and have nonzero limits as ¥ — oo in CF. Thus the winding number w of (6.26)
is equal to Zjv:—l ny — Zj\:; nj Note that N(+P, Q) coincides with the number of poles
of T*(k) in C* including multiplicities, and hence N(+P,Q) = Zjv:l n;t Thus, (6.27)
holds. §

From Theorem 6.4 we see that (0.1} and (0.2) must have the same number of bound
states if the winding number of the function in (6.26) is zero. Conversely, if neither (0.1)

nor (0.2) have any bound states, the winding number must be zero.

7. EXAMPLES
In this section we present some examples illustrating the recovery of P(z) and Q(z)

by the Marchenko method outlined in Section 5.

ExaMPLE 7.1 Consider the inverse scattering problem with no bound states, where
R~(k) = 0 and R*(k) satisfies some mild technical conditions that will be apparent as
we proceed. From (4.5) we get TF(k) = e*P. Thus we are in the exceptional case. Using
(5.12) we see that K;"(z;y,2) = 0. Solving (5.14) and using (5.19) we get

af (z,y) =BTz +y), o (z,y) =b(z,9) = b (z,y) =0,
so that

o0
(@ (z,-)) :/2 dyR (), oy (2,-) = (6 (2,-) = (b (=2,)) = 0.
Then from (5.25) we get e2¢(®) =1 + for dy R*(y), from which we see that, in order to
have P € L*(R), our scattering data need to satisfy infyer fy. dy Bt(y) > —1. When this
condition is satisfied, as outlined in Theorem 5.5, we obtain

2R*+(22)
1+ [or dy R+(y)’

2RY (22 3 Bt (2z)?
P(a) = Q) = [ g p T ey
2 WEW) 14 [ ay e ()]
Note that if we further require that B* € L*(R) and (R")?, Rt" € L}(R), then we have
PcI*R) and Q € Li{R).
EXAMPLE 7.2 Let us consider the inverse scattering problem with the scattering data
consisting of the reflection coefficients

ic(k+ia) i(e — a)(B + €)(k +1i6)

+ o e - pammn)
B (k)‘(k—iﬁ)(kﬂ‘a)’ Bk ek —ia)k+i(B—a+e)
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where c is a nonzero real constant and «, 3, € are positive parameters such that S—a+e > 0.
Let us also assume that neither (0.1) nor (0.2) have any bound states. We construct
eT? T (k) by using (4.5) and obtain

L k+ i _ k+i8
W= TRy

In fact, using (0.8) we also construct eT?PL*(k) and get

_ i(e — +e) _ ic
e 2Pk :ﬁi_?_)(_ﬁ___, k)= — "

(k) c(k + ie) ¢ Q k+i(8~a+e) (7.1)
From (7.1) we see that eT??L*(k) belongs to the Hardy space H2 (R), and hence from
(5.10) we conclude that BX(z,y) = 0 for z < 0, and thus P(z) = Q(z) = 0 for = < 0.
Now let us find P{z) and Q(z) for z > 0. We will do so by using the procedure outlined

in Theorem 5.5. With the help of (5.3) and (5.4) we obtain

S5f(z)=R"(2) = —%e‘ﬁz, z>0, (7.2)
57(z) =R (z) =—cHa+B)(e-a)e ™,  z2>0. (7.3)

Using (7.2) and (7.3) in (5.12) we get

+ -
Kf(wy) = ﬂﬁ ZL(EE Jerettieg-pres, y 2ng,
Kl—— (.’E; Y, z) — (a + /8)(5 — 0&) e—-2(a+ﬂ)me—ay-—ﬁz, ¥,z > 0.

B+e
Thus we have the two uncoupled Marchenko equations (5.14) for z > 0 given by

We—z(a+ﬁ)z—ﬁy/ dze™** af (z,2)
1]

a?_(z,y) - IB—}"E

(7.4)
_ _Me—ﬂ(zwy) y>0
ﬂ + E b b

_ o+ E— Q) oy z—ay, e ~Bz —
a; (z,y) — (—ﬁ’l—f—e-Q)—e 2etB) J/o dze a; (z,2) (7.5)
=—cl{a+pB)(e—a) g (2zty) y>0.

The solutions of the Marchenko equations (7.4) and (7.5) are given by

—c(a + B)eP2=+y)

af (z,y) = B0 G _atems V>0 (7.6)
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—cHa+pB)(e—a)(B +¢) e 2lety)

al—(m’ y) = (IB + E) . (5 . a)e_2(a+l@)$ b y > 0- (7»7)
Substituting (7.6) and (7.7) in (5.19), we obtain
" _ (a+PB)(e — a) e~ Hathz—cay
bl (w7 y) - (,6 + E) _ (6 . a)e_z(a_l_ﬁ)m H y > 0) (7-8)
_ _ (a+B)(e - a)eatB)z—Fy
bl (337 y) - (/8 + 8) _ (E - a)e“Q(a‘*‘B)”” ’ Yy > 0. (79)

Using (7.6)-(7.9) in (5.25) we get for z > 0

af(f +¢) — cala+ B) e 4 o (e — a) e~ Hath)e

2¢(z) __
© T BBt~ Blar B~ o)(B +e) et 1 iz — @) e HarPe

(7.10)

Note that the right-hand side in (7.10) must be positive for > 0, and this forces us to
impose certain additional restrictions on the parameters o, 8, ¢, ¢ if we want P € L'(R).
For example, by choosing ¢ < 0 and £ > «, we see that both the numerator and the
denominator of the right-hand side in (7.10) are positive. On the other hand, the choice
o = ¢ results in the scattering data e¥PT*(k) = 1, R=(k) = 0, and R (k) = ¢/(k — ip).
Note also that since P(x) = 0 when z < 0, from (7.10) we see that

o2 aB(B+e) —cala+ )+ (e —a)
of(B+e)—c ' Bla+B)(e—a)(B+e)+ A e—a)

Since R*(k) is O(1/k) but not o(1/k) as k — -+oo, from the argument leading to (3.13)
we see that Q(z) and P’'(z) contain delta-functions at z = 0. In fact, from (3.13) we get

(7.11)

go = —ce” P —cHe —a)(B +¢) e, po = —2ce™? +2c7 (e ~ a)(B +¢) e, (7.12)

where € is the constant given in (7.11). Hence g and p) given in (7.12) are completely
determined by the scattering data. Thus, using (5.26), (5.27), (7.10), and (7.12), we get
P(z) and Q(z) also for = > 0.

ExXAMPLE 7.3 Let us consider the inverse scattering problem with R*(k) = R~ (k) =
0, when (0.1) has a bound state at k = ia™ with the bound-state constant ¢t and (0.2)
has a bound state at k = ¢a~ with the bound-state constant ¢~, where o and a~ are
some positive constants. Using (4.5) and (4.6) we obtain eTPT% (k) = (k+ia¥)/(k—ia¥).
With the help of (4.7), from (5.4) we obtain S*(2) = (o™ +a7) cfe=**z_ From (5.12), for
z € R, we obtain

Kli(a:, y,2) =c ¢ (o +a7) 6_2(°‘++°‘_)2'°‘iy—°‘;z, Y,z > 0.
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The two uncoupled Marchenko equations (5.14) are given by

af(z,y) — cTe (ot + a“)e“z(“++°‘—)m‘°‘iy/ dze™*" % o (z,2)
‘ 0 (7.13)
=cF(aT +a7) e 2oty

The solutions of the Marchenko equations (7.13) are

ot +a7) e—o (2uty)

+ _
a‘l (m’y) - 1—C+C_ 6_2(a++a_)¢ 3 yER+, fBER.
Using (5.19) we get
4 — — + -\ T
4 _ ¢t (at + a7 )e HaTHaT)emaTy
b (z,y) = PR ——T v P , Yy E R+, z € R.

From (5.25) we obtain

2@ ota~ +cta (ot +a7)e27e 4 e (ot )2em2at+aT)e

T atam +emat(at +a)e 2T 4ot (o )2em2(atraT)e’ z€R. (1.14)

Proceeding as in Theorem 5.5, from (7.14) we compute P(z) and Q(z). Note that, when
the bound-state constants ¢™ and ¢~ are positive, we are assured that the numerator and
the denominator in (7.14) are positive for all z € R. Then, letting 2 — —oo in (7.14) we
see that P € L}(R) and e? = at/a~.

Note that the integral equations (7.13) are not uniquely solvable when c¢te™ > 0
and z = z9, where zg = In(ct¢™)/[2(a™ + a~)]. However, for ¢*,c~ > 0 the right-hand
side of (7.14) is well defined and ((z) remains continuous as z — zo. Moreover, tedious
but straightforward analysis shows that P(z) and Q(z) are continuously differentiable
everywhere (also at zg) and exponentially decreasing as z — £oo.

EXAMPLE 7.4 Consider the inverse problem with R*(k) = ia™/(k — i8) with 8 > 0
and 32 > a"a~. Assume that there are no bound states. Let ¢ = /32 — ata~. From (4.5)
we obtain eTPTE (k) = (k-+ie)/(k+iB). Using (5.3) and (5.4) we get §7°(2) = —aFe™P70(2),
where 6(z) is the Heaviside function.

When z > 0 we proceed as follows. From (5.12) we obtain

+
K& (zyy,2) = a2; g~ ¥e—Blyt+z), z,y,z > 0. (7.15)

Using (7.15) we write the Marchenko equations (5.14) as

tor %
ali(w,y) e e~ Bldaty) /(; dze™P* ali(a:,z) = —qf e B22ty) z,y >0,

26
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whose solutions are

—4B%2a% A2ty

+ —
o (z,y) = I —ata o z,y > 0. (7.16)
From (5.19) and (7.16) we get
28a+a— e~Bd=+y)
bli(:c,y) = foTa” e z,y > 0. (7.17)

432 — ata~ e~402’

Hence, using (7.16) and (7.17) in (5.25) we obtain

GZC(E) _ 4ﬁ2 _ 4a+ﬁ e~2Pz L oytam e~

482 — 4o~ B e~26% 4+ gt~ e—462’ z > 0. (718)

Note that the numerator and the denominator in (7.18) are positive when ot and o~ have
the same sign and are each bounded in absolute value by 8. As outlined in Theorem 5.5,
we obtain P(z) and @(z) for z > 0 explicitly.

When z < 0, using (5.19) we get

+ . —
e« e~ Ply== 0 < min{y, 2} < —2z,
E(,. _ 26
Ki(zy,2) = otan (7.19)
76“4&'&(?’“), min{y, z} > —2z.

Using (7.19) we write the Marchenko equations (5.14) as

4 ata” [ (¥ [T % ~Bly—2|
ai (z, y)——2—ﬂ— A -+ + , dze ai (z,z) =0, 0<y< -2z (7.20)
y -2z

+ - -2z
a(ey) - LT [ dee bz, 2)
0

20 (7.21)
fo— oo :
— a2g g Plaz+y) , dze P*af(z,2) = —ate PRty y > —2z.
The solution a;*(2,y) of (7.20) and (7.21) have the form
+ ey _ g—e —Ey} _
z) |e e s 0<y<—2z
aj (z,y) = { P [ B+e Y ’ (7.22)
wF(z) e Py, y > —2z,

where p*(z) and w*(z) are to be determined. Using (7.22) in (7.20) and (7.21) we get
(a:t)zaq: e2e;c

r(z)

280 e=B22+y)

r(z)

[(B+)e¥ — (B—)e], 0<y<—2a,
ai*(w,y) = (7.23)

[(B+e)* = (B—e)’e*], y> -2,
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where r(z) = (8 +¢)® — (8 — €)%e***. Using (7.23) in (5.19) we get

+ —_
O;(Z) [(ﬂ +e)fe ~ (8- E)Qes(uﬂ)] , 0<y < -2,
b (@) = (7.24)
! 4Beart o e?er—B2e+y)
7(z) ) y > —2x.
Using (7.23) and (7.24) in (5.25) we obtain
62C(m) — (/8 - a+)(ﬂ =+ 6)3 -+ 2(a+)2a”’(ﬂ _— a—) 626:1: + (ﬂ _ a-i—)(ﬁ _ 8)3 e4sa: 0
(B=—a ) (B+ep +20 (e )2(B—at) e + (B—a-)(f _e)peres <Y
(7.25)

As in (7.21), the numerator and the denominator in (7.25) are positive when o and o~
have the same sign and are each bounded in absolute value by (. Letting £ — —oo in
(7.25) we see that P = (8 — a™)/(8 — a7). As outlined in Theorem 5.5, we can write
P(z) and Q(x) for z < 0 using (7.23)-(7.25).

Since 2ikR* (k) approaches ~2a* as k — +oo, from (3.13) we see that Q(z) and
P'(z) contain Dirac-delta distributions at © = 0 with coefficients

go = —a~ e _ gt %0O) ph = 2" X — 2qFe~HO) {7.26)

where

20 _ 487 —da" B+ ata
462 — 4o~ + ata~
Thus, having go and pj in (7.26), we have completed the recovery of Q(z) and P{z) for all
z € R. In the special case o = a~, from (7.18) and (7.25) we get () = 0 for = € R. Note
that in the limiting case 82 = a*a~, i.e. when £ = 0, we are in the generic case and we
must have &~ = o™ = B in order to have R¥(0) = —1; in this case we get Q(z) = —236(z)
and P(z) = 0.

Finally, we remark that the solution of the inverse scattering problem in the last three
examples can also be obtained by solving the Riemann-Hilbert problem in (5.2) directly.
In fact, whenever the scattering coefficients are rational functions, the Riemann-Hilbert
problem in (5.2) can be solved explicitly, leading to the recovery of P(z) and Q{z).
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