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INVERSE SCATTERING IN ONE-DIMENSIONAL NONCONSERVATIVE MEDIA 

Tuncay Aktosun, Martin Klaus, and Cornelis van der Mee 

Dedicated to M.G. Krefn, one of the founding fathers of inverse scattering theory. 

The inverse scattering problem arising in wave propagation in one-dimensional non- 
conservative media is analyzed. This is done in the frequency domain by considering the 
Schrbdinger equation with the potential ikP(x) + Q(x), where k 2 is the energy and P(x) 
and Q(x) are real integrable functions. Using a pair of uncoupled Marchenko integral equa- 
tions, P(x) and Q(x) are recovered from an appropriate set of scattering data including 
bound-state information. Some illustrative examples are provided. 

0. INTRODUCTION 

The wave propagation in a one-dimensional medium, where energy absorption or gen- 

eration may occur, can be described in the frequency domain by the genera]ized Schrbdinger 

equation 

r  x) +k2r = [ikP(x) +Q(x)]r x E R,  (0.1) 

where R is the real line, the prime denotes the derivative with respect to the spatial 

coordinate x, k is the wavenumber, k 2 is the energy, P(x) represents the energy absorption 

or generation, and Q(x) represents the restoring force density. By changing the sign of 

P(x) in (0.1) we obtain the associated equation 

r  + k 2 r  = [-ikP(x) + Q(x)]r x E R,  (0.2) 

whose scattering data are to be used along with the scattering data from (0.i) in order to 

recover P(x) and Q(x). 

Let L~q(I) denote the measurable functions f(x) such that  fx dx (1 + Ixl) q If(x)] p is 

finite. Note tha t  we have LP(I) = L~(I). We will assume that  Q(x) is real valued and 

belongs to Lll(R) and that  P(x) is real valued and satisfies P E L i (R) .  We will use ]]f]lp 

to denote the norm on LP(R) and write Ilflll,q for f-~oo dx (1 + Ixl) a [f(x)l. We will later 

impose further restrictions on P(x) and Q(x). 

The scattering solutions of (0.1) and (0.2) comprise those behaving like e ~k~ or e - ~  

as x --+ • and such solutions occur when k 2 > 0. Among the scattering solutions are the 
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3ost solution ~rom the left f/~ ($z, x) and the Jost solution from the right f~(k ,  z) satisfying 

the boundary  conditions 

• ~ e ikx § o(1), x -+ §  

fl (k' x) = I 1 ik~ L• e_ik ~ . . (0.3) 
T--~(k) e + ~ + o(i),  x --> - ~ ,  

1 -ik~ R• ik~ 
f~(k ,  x) -- T---~(k) e § T--T-~(k) e § o(1), x -+ +co,  (0.4) 

e -~k= + o(1), x -+ --ec, 

where T• is the transmission coefficient and R• and L• are the reflection coef- 

ficients from the right and from the left, respectively. The scattering matrices S + (k) and 

S - ( k )  associated with (0.1) and (0.2), respectively, are given by 

FT• R• 
S• = [L• T •  " 

Let [F; G] = F G ' - F ' G  denote the Wronskian. The scattering coefficients can be expressed 

in terms of Wronskians of the 3ost solutions of (0.1) and (0.2) as 

2ik 
[f~(k,x); f~(k,x)] - k �9 C+, (0.5) 

T•  ' 

[f?(1r x); f~(-k,  x)] - 

[ f~(k ,  x); f Z ( - k ,  ~)] - 

We have [JJ76a,AKV97] 

2ikLi (k )  2ikR:F(-k) 
- h E R ,  

T• T:~(-k) ' 

2ikn•  _ 2ikL~=(-k) k e R. 
T• T ~ ( - k )  ' 

S •  = S• ~ e It, (0.6) 

S• S ~ ( - k ) '  = I, ~ e R, (0.7) 

where I is the 2 x 2 unit matrix, the superscript t denotes the matrix transpose, and the 

overline denotes complex conjugation. From (0.7) we get 

z • T v ( - ~ )  + T • (k) RT(--}) = 0, ~ e R, (0.s) 

T •  TT(-k)  = 1 - R• R~( -k ) ,  k c R. (0.9) 

The bound-sta te  solutions of (0.1) and (0.2) are those nontrivial solutions belonging 

to L 2 (R). Such solutions correspond to the values of k E C + at which the 3ost solutions 
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from the left and from the right are linearly dependent. For detailed information on the 

bound states of (0.1) and (0.2), we refer the reader to [AKV97] and the references therein. 

When P(x)  = O, from (0.1) and (0.2) we get 

r x) + k2r = Q(x) r x), x e R. (0.10) 

Let f[0] (k, x) and f[0] (k, x) denote the Jost solutions of (0.10) from the left and from the 

right, respectively. The ~ero-energy Jost solutions fd(0, ~) and fy(0, ~) of (0.1) and (0.2) 
are determined by Q(x) alone, and we have 

f~(o ,x)  = f[~ x), f~(o,x)  = f?l(o,  x). (0.11) 

Let S [~ (k) denote the scattering matrix associated with (0.10): 

[TCol(k) REol(k)] 

SE~ = LLCOl(k) TIol(~) ' 

where T [~ (k) is the transmission coefficient and R [~ (k) and L [~ (k) are the reflection coeffi- 

cients from the right and from the left, respectively. Generically f/o] (0, x) and riO] (0, x) are 

linearly independent and T [~ (0) = 0. However, in the exceptional case these two functions 

are linearly dependent and T [~ (0) ~ 0; in this case, let us define 

f[O3(o,x) 
7 - f?l(0, x )  (0.12) 

Then 7 is a nonzero real constant determined by Q(x) alone. 

As for (0.10), the generic case for (0.1) and (0.2) occurs if T[~ = 0 and the 

exceptional case occurs if T [~ (0) ~ 0. In the generic case we have [JJ76a,AKV97] 

T• = 0, R• = L• = -1 ,  

and in the exceptional case T+(0) and T - ( 0 )  are both nonzero. From Propositions 4.2, 

5.1 and 5.3 and Theorem 5.2 of [AKV97], we have the following result. 

THEOREM 0.1 Assume P, Q E LI(R)  and 1/T•  does not vanish for k E R \ {0}; 

thenS•  k ) is continuous fork  e R\{0} .  In the generic case, S• is continuous ark = 0 if  

we further assume Q c L~(R). In the exceptional case, let us further assume P, Q e L~(R);  

then S • (k) is continuous at k = 0 if and only if f_~ dx P(x)  f~0] (0, x) 2 r •  + 1), where 

7 is the constant defined in (0.12). 

The inverse scattering problem for (0.1) considered in this paper consists of the re- 

covery of P(x)  and Q(x) from an appropriate set of scattering data. To stay in touch with 
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the scattering data traditionally adopted [JJ76a,JJ76b,Ja76,SS95], we use as our scatter- 

ing data the two reflection coefficients R+(k) and R-(k) from the right, the bound-state 

energies or equivalently the poles k f  of T+(k) in C + for j = 1 , . . . ,  N + and the poles k~- 

of T-(k) in C + for j : 1,..o , N - ,  the multiplicities n + and n~- for each of these poles, 

and the bound-state constants c+j,s for s = 0 , . . . ,  n + - 1 and cj-~s for .s : 0,-- .  , n~- - 1 

defined in Section 4. In that  section, we relate these bound-state constants to the ratio of 

the Jost solutions in a neighborhood of each bound-state wavenumber by generalizing the 

relationship between the Jost solutions of (0.10) and the so-called bound-state norming 

constants. In order to have a unique solution of the inverse problem, the total number of 

bound-state constants must agree with the total number of bound states including multi- 

plicities. Let N(P, Q) and N(-P, Q) denote the number of bound states of (0.t) and (0.2), 

respectively, including multiplicities. We then have N(• Q) ~'~'Y• Te • = z-.j=1 j �9 Thus, the total 

number of bound-state constants in our scattering data is N(P, Q) + N(-P, Q). 

We recover P(x)  and Q(x) as follows. In terms of the scattering data, we first 

evaluate the two real-valued functions S+(z) and Sz-(z) defined in (5.4). These functions 

are used to obtain the two kernel functions K+(x; y, z) and K~-(x; y, z) defined in (5.12). 

Then, the pair of uncoupled Marchenko equations (5.14) with kernels Kz+(x;y,z) and 

K[-(x;y, z), respectively, is solved, and from their solutions a+(x,y) and a~(x,y), the 

functions bl+(z, y) and b-((x,y) are constructed by simple integration as in (5.19). The 

four functions az+ (~, y), a~-(x, y), b + (z, y), and b~-(x, y) are used to recover P(x) and Q(x) 
as indicated in Theorem 5.5. Note that in order to obtain our uncoupled pair of Marchenko 

equations, we first convert the Riemann-Hilbert problem given in (5.2) into the pair of two 

coupled Marchenko integral equations (5.9) and (5.10). We then further decouple the two 

equations (5.9) into the pair of uncoupled Marehenko equations (5.14). 

In the inverse scattering problem for the Schrbdinger equation (0.10), the scattering 

data usually consist of a reflection coefficient, N(0, Q) bound-state energies, and N(0, Q) 

bound-state norming constants [Fa64,DT79,CS89]. In this comparatively easy case, the 

poles of the transmission coefficient T [~ (k) in C + are all simple and located on the imag- 

inary axis. The scattering matrix S [~ (k) can be uniquely constructed [Fa64,DT79,CS89] 

from a reflection coefficient and the poles of T[~ in C +. The poles of T+(k) in C +, 

however, are not necessarily restricted to the imaginary axis, and the multiplicity of each 

such pole may be larger than one. The scattering matrix S+(k) is not unitary and cannot 

be constructed from a reflection coefficient and the poles of T+(k) in C +. On the other 

hand, from (0.7) we see that 

1 _ T + ( - k )  2 -L+(-k).R+(-k) 
T-(k) T+(-k)  , e R, (0.13) 
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-L+( -k )  
R-( } )  = T+(-k)2 - L + ( - k ) R + ( - k ) '  k e R, (0.14) 

-R+( -k )  k e a.  L-(k) = T+(_k)  2 _ L+(-k) R+(-k) ' 

If S+(k) is continuous and invertible for k e R, using (0.13) we can uniquely construct 

1/T-(k) in C + by an analytic continuation from R to C +. Thus, with the help of (0.13) 

and (0.14) we can construct the scattering data {R+(k), R-(k), k +, k~, + - + nj , nm, Cj,s, am,u} 
by using S + (k) for k e 1% and a set of g(P, Q) + N(-P,  Q) constants, where N(-P,  Q) is 

equal to the number of zeros in C + of the analytic continuation of the right-hand side of 

(0.13). Thus, it is possible to formulate and solve the inverse scattering problem for (0.1) 

without using (0.2) but by using the scattering data consisting of S+(k) for k ~ R and a 

set of N(P, Q) + N(-P,  Q) constants. 

Let us now discuss the history of the inverse scattering problem for (0.1). In the radial 

case, when there are no bound states, Jaulent and Jean presented an inversion method 

[JJ72] when P(x) is complex and Q(x) is real. In [JJ76a,JJ76b] they applied their method 

to solve the one-dimensional inverse problem with real Q(x) and imaginary P(x);  Jaulent 

[Ja76] also applied this method when P(x) is real, although many details were not given. 

As indicated in Section IV of [Ja76], in this method, in our own terminology, using the 

scattering data (R+(k),  R-(k)} ,  a pair of coupled Marchenko integral equations similar 

to our (5.9) and (5.10) was obtained. From the solutions of one of these pah's, by solving 

a differential equation, P(x) and Q(x) were recovered. This extra differential equation 

was needed in the solution of the inverse problem; in our own notation this is because the 

coupled Marchenko equations given in (5.9), in addition to containing the two unknown 

functions B+(x,  y) and B~-(x, y), also contain the unknown function r defined in (1.2). 

In [Ja76] no details and no proofs were given in the one-dimensional case with real P(x),  

and it was only mentioned that the results could be obtained analogously to the radial 

case. 

When P(x) is purely imaginary and f~_~ dzP(z) = O, Sattinger and Szmigielski 

[SS951 showed that  one can simplify the method of Jaulent and Jean and recover P(x) 
by solving an algebraic equation rather than a differential equation. The pair of two 

coupled Marchenko equations (3.5) and (3.6) of [SS95] corresponds to our (5.20), and 

the algebraic equation of [SS95] corresponds to our (5.25). If P(x) is purely imaginary, 

then the scattering matrix S • (k) is unitary, the reflection coefficient R • (k) cannot exceed 

one in absolute value, and 1/T• cannot vanish on the real axis. If P(x) is real and 

nontrivial, then S• is no longer unitary, R• is not necessarily bounded by one in 

absolute value, and 1/T • (k) may vanish on the real axis. Thus, the analysis of the inverse 

scattering problem with real P(x) is more complicated than with purely imaginary P(x). 
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We should also mention the study by Kaup [Ka75] on the direct and inverse scattering 

problem for 

r + [k2 + ~--~] r = [ikP(x) + Q(x)]r (0.15) 

where fl is a positive constant and P, Q e Lll(R). Under additional assumptions on P(x),  

Tsutsumi [Ts81] analyzed the direct problem for (0.15) with/3 = 1/2 by using a 2 x 2 matrix 

analog of (0.1) with k replaced by v / ~  + 1. When fi = 1/2, fF~ d~ P(x) = 0, ~nd P(~) 

and Q(x) are in the Schwartz space, Sattinger and Szmigielski [SS96] studied the inverse 

scattering problem for (0.15) by analyzing an associated Riemann-Hilbert problem. Equa- 

tion (0.15) is important for the solution of the initial-value problem to a coupled system 

of two nonlinear evolution equations by the inverse scattering transform [Ka75,SS96]. 

This paper is organized as follows. In Section 1 we introduce the atLxiliary functions 
•  V~ ( ~ x) and V i (k, x) in terms of the Jost solutions of (0.1) and (0.2), establish their analyt- 

icity in C +, and obtain their large-k asymptotics. In Section 2 we study various properties 

of the Fourier transforms of ~ ( k , x )  - 1 and ~(k,x) - 1. In Section 3 we analyze cer- 

tain properties of the scattering coei~icien~s and their Fourier transforms. In Section 4 

we analyze the bound states of (0.i) and (0.2) and define the bound-state constants. In 

Section 5, using the results of the prior sections, a pair of uncoupled Marchenko integral 

equations is obtained, the compactness of the corresponding integral operators is analyzed, 

and the recovery of P(x) and Q(x) from the solutions of the uncoupled Marchenko equa- 

tions is described. In Section 6 we present some conditions for the unique solvability of 

the Marchenko equations. Finally, in Section 7 we present some examples illustrating the 

recovery of P(x) and e(x). 

I. PROPERTIES OF SOLUTIONS 

In terms of the Jost solutions of (0.1) and (0.2), let 

~f(k, x) = e - ~ •  x), 

where we have defined 

/) 1 dz P(z), 

~(k ,  x) = ~ T ~ , ~ ( ~ ,  ~), (1.1) 

f i dz P(z). (1.2) 
P= 2 oo 

Since P(x) and Q(x) are real, from (0.i)-(0.4) and (I.i) we get 

~ ( - k , ~ )  = ~f(k,x) ,  ~ ( - k ,  x) = ~t(k, x), k c R. (I.3) 

The functions ~ ( k ,  x) and ,~(k,x)  will be used to formulate the coupled Marche~o 
equation~ (5.9) and (5.10). In this ~ection we analyze certain properties of ~ ( k ,  ~) and 
~ (k, x). 
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Using (0.1)-(0.3), (1.1), and (1.2) we obtain 

= ~l (k, ~), ~ e R, (1.4) 

4-"1r +~)  0, (1.5) ~7~(k,+oo) = 1, ~t t , = 

where we have defined 

W~:(x) -- Q(x) q: 1p'(x)  - l p(x)2. (1.6) 

Note that ,  if P(x) is piecewise continuous, then the discontinuities of P(x) lead to Dirac 

delta contributions in (1.6). We will elaborate on this at the end of Section 3. 
4- k e 2/k~T2~'. Let #I ( , x) = Multiplying (1.4) by #~(k,  x) we obtain 

I#~(k ,x)v t  ( , x ) l ' = # t  ( , x ) W 4 - ( x ) V ? ( k , x ) ,  x e R .  (1.7) 

Integrating (1.7) and using (1.5) we get 

•  x) f~o 
~h ( ,  = -  d y - -  ,{(k, y) w+(u),[(k, y). (1.8) 

Integrating (1.8) and using (1.5) once again, we find 

= d #l ( ,Y) w +, , ~ ( k , x )  1 +  dt y ~  ~yj ,~(k,y) .  (1.9) 

Changing the order of integration in (1.9) we have 

rll • ( k, x) = 1 + dy G[(k;x,y)  W+(y)~h+ ( k ,y), (1.10) 

where we have defined 

(1.11) 
1 e 2ik(y-~)4-f.-~P- 1 :~ dtP(t) 

2ik 

Similarly, using (0.1), (0.2), (0.4), (1.1), and (1.2) we obtain 

•  [ 2 i k •  W ~ ( ~ ) ~ ( k , ~ ) ,  (1.12) zlr (x, -- ---- 

, ? ( k , - ~ )  = 1, n ~ ' ( k , - ~ )  = 0. (1.13) 
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Integrating (1.12) twice and using (1.13) we get 

/ ~  (k, y) ~?'(k,x)  = dyW~:(y)~?? fi P, (1.14) e 2 i k ( x - - y ) - -  

O 0  

f_ ~ ( k , ~ )  = 1 + dyG~(k;x ,~)W~(y)V?(k ,y ) ,  (1.15) 

where we have defined 

j~y x i t 

a ~ ( k ; x , y )  = dte2~k(t-y)=f: e 

2ik 

THEOREM 1.1 Assume P C LI(R) and Q E L~(R). Then, for each fixed x C R~ the 

functions • k Vz ( % x) and V~=(k,x) are analytic in C + and continuous in C +, and 

r]?(k:x)- - - l+o(1) ,  ~r~-(/~,x)=l+o(1), k - - + o c i n C  +. 

If  we further assume that W + , W  - E LI(R), then 

V ~ ( k , x ) = l + O ( 1 / k ) ,  ~ ( k , x ) = l §  k - - + o o i n C  +. (1.16) 

P~ooF.  We only prove (1.16) because the rest of the proof is given in Theorem 3.1 

of [AKV97]. Note that for y > x, from (1.11) we get 

C 
IGf(k; ~, y)l -< ~ ,  k e C+ \ {0}, (1.17) 

) where 6' = ~ 1 + (1 + Ilplll)elIPll~ . Thus, iterating (1.10) and using (1.17) we obtain 

T I (/: ) c dt tW~(~)l e~p d~ IW• k �9 C+ \ {0}, IUf(k, x) -- 1[ < ~ x 

from wlfich we have (1.16) for ~hi(lc, x) whenever W • �9 LI(R). The proof of (1.16) for 
q- 

UC-(k, z) is obtained in a similar manner. | 

From Theorem i.I we obtain the following result which will be used in Section 2. 

COROLLARY 1.2 Assume Q �9 L~(R) and P , W + , W  - �9 LI(R),  where W+(x)  and 

W - ( x )  are the functions defined in (1.6). Then, for each fixed x C R,  the functions 
• X - -  ~lt ( ' , )  1 and ~ ( . , x )  - 1 belong to the Hardy space H~_(R), and thus their Fourier 

transforms defined in (2.1) are L2-functions having their support on the positive half-line. 
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Using (1.10) and (1.15), it is possible to improve (1.16) and prove that ,  for each fixed 

x C R,  as k --+ oo in C+ we have 

1/f 
~7~(k, x) = 1 - ~ k  dyW• §  (1.i8) 

77r ~ (k, x) = 1 - ~zk dy W ~: (y) + o(1/k). (1.19) 
~o 

Similarly, from (1.8) and (1.14), as k --+ oo in C + we get 

L ~  . y 
~[ ' (k ,  ~) = - @ w4-(v) J'~(~-~)4-f: ~ + o( l /k) ,  (1.20) 

4-1 i )  ~' ~ (~, ~) = @ w T ( y )  e"~(~-~)4-f~ ~ + o( l lk ) .  (1.21) 
oo 

2. FOURIER TRANSFORMS OF SOLUTIONS 

In this section we analyze the properties of the Fourier transforms of ~ (k, ~) - 1 and 

~ (k, x) - 1. 

Assume Q E L~(lrt) and P , W + , W  - E LI(R) .  Define 

el? B?(x ,y )  = ~ dke-~kY[~7?(k,x ) - 1], B ~ ( x , y )  = ~ dke-~kY[~7~(k,x ) - 11. 

(2.1) 
From Corollary 1.2 it follows that ,  for each fixed x E R,  the functions B~(x ,  .) and B~(x,  .) 
belong to L~(R), and moreover we have B ? ( ~ , y )  = B,~(~, y) = 0 for y < 0. Thus, 

/o /o ~77(k, x) = 1 + dyeikYB~(x,y), ~7~(k,x) = 1 + dyeikYB~(x,y). (2.2) 

Using (2.2) in (1.10) and (1.15), we obtain the integral relations 

f f  ' 
1 d~ W • (t) e4- f~-~-  P 

1 ~ ~ z) e4- s ~, (2.3) 
+-2 L d z L  dtW• B ~ ( t ' Y -  

+z/2 

1 f z  y/2 4-ft+~12_p 
B~(x ,y )  = -2 J-co dtWm-(t)e ~' 

(2.4) 

f F -=1~ i.<+=/= 1 Ydz dtWV(t)  B~( t , y - z ) e+~< P 
+ 2 j o  J - o o  
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THEOREM 2.1 Assume P E L I ( R ) ,  Q e L~(R),  and W +, W -  E L I + ~ ( R )  for some 
c~ > O. Then, for each fixed x e R, the functions B~(x,  .) and B~(x,  .) are continuous in 
y E [0, +cx)) and are o((1 + y) - l -a )  as y -+ +oo. Moreover, for each fixed x C R,  we have 

- 2  

where C = e Ilplh and 

/7 ~r~(x) = dt IW• 

/7 ~/~(x) = dt (t - x ) I W •  

PROOF. Let us i terate (2.3) by writing 

where we have 

l ~ ( x )  = dt IW~=(t)i, 
o o  

f 7 ~ ( z )  = dt (~ - t ) l w ~ ( t ) l .  
o o  

(2.5) 

(2.6) 

Bz~m+l(x,y) = ~ dz dtW+(t)B[~.n(t ,y-z)e+f~-~/2p,  n =  0 , 1 , . . .  , (2.8) 
+ z / 2  

and B~o(X, y) is given by the first term on the right-hand side of (2.3). Note tha t  

c / ~  c ~(x  + y/2). 
_ d t  t W ~ = ( t ) l  = -~ I B & ( x ' Y ) I  < 2 +u/2 

Start ing from the induction hypothesis 

Cn+l 

and using (2.8) and the fact tha t  d3'~(x)/dx = - ~ ( x ) ,  we obtain (2.5) for B~(x,  y). The 

proof  of (2..5) for B~(x,  y) is similar. For each fixed x E I t ,  using (2.8) and W + e L I ( R ) ,  we 

see tha t  B ~ ( x ,  y) are continuous in y E [0, +c~). Since cry(x) and 7~(x)  axe decreasing 

functions of x, it follows tha t  for each fixed x E R,  the terms B~,n(x, y) are uniformly 

bounded in y E [0, + ~ ) .  Thus, for each fixed x E R,  the series in (2.7) is uniformly 

convergent and hence B~:(x,y) are continuous in y C [0,+oo). From (2.5), (2.6), and 

W • C L~+~(I~), we get B ~  (x, y) = o((1 + y ) - l - a )  as y -+ +e~. The proof  for B ~  (x, y) is 

similar. | 

c o  

B~(=, y) = ~ ,  B~,(=, v), (2.7) 
n=O 
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From (2.3) we obtain 

2 aBe(x, ~) + W• + y/2) ~ J:+~'~ ~ 
Ox 

foy • ['~+~/~ p 
= - ~z w • + z/2) B~(x + z/2, y - ~) e o o  

(2.9) 

Using (2.5) in (2.9), we get 

2coB~ x' Y) + W• + v/2) ~• fZ § <_ c~e ~ ( ~ )  ~{(x) ~{(x + v/2). (2.10) 

In a similar way, using (2.4) we obtain 

2 o8~(x, v) w~=(x - v/2) ~• ~Z.,~ ~ 
Ox 

fo • 
= U d z W T ( x - z / 2 ) B ~ ( x - z / 2 ,  y - z ) e  f~-~/2 P, 

(2.11) 

and using (2.5) in (2.11) we get 

• ~ •  ~ p[ 
2 ~ W ~ ( x - y / 2 ) e  ~o-~,~ < C ~ e c ~ ( ~ ) ~ ( x ) ~ ( x - y / 2 ) .  

cOx 
(2.12) 

As in the proof of Theorem 2.1, one can show that i f P  ~ LI(R) and Q, W +, W -  E L~(R), 

then the left-hand sides of (2.9) and (2.11) are continuous in y > 0 for every x ff R. 

PROPOSITION 2.2 Assume P E L*(R), Q E L~(R), and W+,W - E L~+~(R) for 
some a > O. Then, for each fixed x e R, the functions B~(x, .), B~(x, .), cOB~(x, .)/cOx, 
and aBe(x, .)/Ox belong to L~(R+). 

PROOF. Note that 

dy(l § +y/2)-:  dz dy(l  +y)~lW• 

21+" [1 + m ~ { 0 , - x } ]  1+~ lIw• 
-< 1 +---~ 

(2.13) 

Using (2.13) in (2.5) we see that B~(x,.) and B~(x,.) are in L~(R+). Similarly, using 

(2.13) in (2.10) and (2.12) we see that OB~(x, .)/cOx and cOB~(x, .)/cOx belong*o L~(R+). | 

From (2.3) and (2.4) we have 

1/5 i f  BF(x,o+)  : ~ dtm• B#(x, 0+) = ~ dtWT(t), (2.14) 
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and from (2.2) and (2.14) it follows that  

ik[1 - ~t• x)] = ~1 ~ d t  W• ) § ~o~dye~ky OB~(x,y),oy 

ik[1 - ~7~(k, x)] = ~ J-] dt W:~(t) + 
JO Oy 

i 

3. SCATTERING COEFFICIENTS 

In this section we analyze certain properties of the scattering coefficients and their 

Fourier transforms. At the end of the section we discuss the large-k behavior of the 

reflection coefficients in case W+(x) or W-(x) contains some delta-function terms. 

For a _> 0 let W~ denote the set of all functions r of the form r = c +  

f ~  dte~th(t) where c is a complex constant and h E L~(R).  Then l~Va endowed with 

the norm 

F l[r = Ic] + dt (1 + Itl)~]h(t)] 
OO 

is a commutative Banach algebra with unit element. Its multiplicative linear functionals 

are the maps r ~ c = r 1 7 7  and, for every ~ ~ R, r ~ r We have the following 

result ([GRS64]; Example (c) in Section XXIX.2 and Example (vii) in Section XXX.1 of 

[aGZ93]). 

PROPOSITION 3.1 If r E YY~ and r ~ 0 for every k E R and r 1 7 7  ~ 0, then the 
function 1 / r  belongs to YY~. 

From (6.3) and (6.4) of [AKV97] we have 

2 i k R •  _ 

2ik L• _ j~kx~:p:~2r177 x~" T• ~, ,~, ,  . v ~ ( - ~ , ~ ) l ,  k e R,  (3.2) 

2ik 4- k, x • C +. (3.3) r•  ap = [2ik•  + [r]~ ( );V~ (/r k E 

PROPOSITION 3.2 Assume P, Q, W +, W-  E LI(R) .  Then 

R• = ~ dy W• -2i~v•162 + o(1/k), Ikl--+ +ec in R, (3.4) 
O D  

_ 1 f ~  L• 2ik j _  dy W• e 2i~vT2r + o(1/k), Ikl -+ +c~ in R,  (3.5) 
r  
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and as k -+ oc in C+ we have 

emPT• - 1 = ~ k  dyW•  + o(1/k) = ~ k  dyWm(Y) + o(1/k). (3.6) 
O 0  O 0  

PROOF. When  P , Q , W + , W  - E L I ( R ) ,  for each fixed x C R,  one can show tha t  

(1.18)-(1.21) hold as k --+ oc in C+  when ]k] > a for any positive constant a. Using 

(1.18)-(1.21) in (3.1) and (3.2), we get 

/? 2ikR•  - e mp dyWm(y)  e -2iky•162 + o(1), [k] -+ +co  in R,  (3.7) 
T• 

2ikL• 
T•  -- e• dyW• e2iky:F2r + o(1), ]k I --+ +oo in R,  (3.8) 

and as k -+ oo in C+,  using (1.18)-(1.21) in (3.3) we obtain 

1 F 1 F T•  ~ -- 1 - ~ k  ~ dyW•  +o(1/k)  = 1 -  ~ k  ~ dyWm(y)  +o(1/k) .  (3.9) 

Thus, from (3.7)-(3.9) we obtain (3.4)-(3.6). | 

PROPOSITION 3.3 Assume P, W+, W - E LI (R) ,  Q E L~(R),  and 1/T•  does not 

vanish for k E a \ {0}; then in the generic case, the three functions emPT• - 1, R• 

and L• belong to L2(R).  In the exceptional case, these three functions belong to L2(R)  

if we further assume that P e L~(R) and f_~ dxP(x)  f}~ x)2 # •  + 1), where 7 is 

the constant defined in (0.12). 

PROOF. From Proposi t ion 4.2 of [AKV97], it follows tha t  T+(k), R+(k), and L+(k) 

are continuous for k E R \ {O} if we assume tha t  P, Q 6 L I ( R )  and 1/T+(k) does not 

vanish for k E 1%\ {0}. By Proposit ion 3.2 we see tha t  e-PT+(k) - 1 ,  R+(k) ,  and L+(k) are 

O(1/k) as k -+ +oc  in R f fwe further assume W + , W  - E LI (R) .  From Proposi t ion 5.1 of 

[AKV97] we see tha t  T+(k), R+(k), and L+(k) are continuous also at k : 0 in the generic 

case when P e L 1 (1%) and Q E L~ (R). In the exceptional case, when P, Q c L~ (R),  these 

three functions are continuous at  k : 0 if and only if f _ ~  dxP(x )  f+(0 ,  x) 2 # 0 ,2 + 1, as 

shown in Theorem 5.2 of [AKV97]. The  proof for the three functions related to (0.2) is 

obtained in a similar manner.  II 

THEOREM 3.4 Assume P E L I ( R ) ,  Q E L~(R),  and W+, W - E L~+a(1%) for some 

a > O. Then, the quantities 2ik[1 - e•177 2ikR•177 and 2 ikL•177  

are Fourier transforms of real functions in L~(R) .  

PROOF. From Proposi t ion 2.2 it follows tha t  the right-hand sides in (3.1) and (3.2) 

belong to V?~ and vanish as Ikl --+ +co  in R.  On the other hand, the r ight-hand side of 

(3.3) equals 2ik plus a function in ]4;~ that  vanishes as k -+ oo in C+.  | 
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THEOREM 3.5 Assume P e LI(R),  Q E L~(R), and W +, W -  E L~+~(R) for some 

a > O, and suppose 1/T• does not vanish for k E R \ {0}. Then, in the generic case 

- e ~ , R• and L•  are all Fourier transforms of functions in L~(R).  

PROOF. Note that 

k + i T + ( k )  1 - k + i  2i(k +~)2ik  1 T~(k )  ~ . (3�9 

Using Theorem 3.4 we see that the left-hand side of (3�9 is the Fourier transform of a 

function in L~(R).  Using Proposition 3.1 and the absence of zeros of k/[(k  + i)T+(k)] 

for k E R, we see that [(k + i ) /k]T+(k)  is e p plus the Fourier transform of a function in 

L~(R).  Hence T + ( k ) -  e p is the Fourier transform of a function in L~(R).  Similarly, since 

1 k+iT+(k). 2ikR+(k) L+(k)=  1 
R+(k)= 2i(k+i) k T+(k) ' 2i(k+i~ 

�9 2ikL+(k) �9 k + Z T + ( k  ) . 
k r+(~) 

using Theorem 3.4 and the fact that )A;~ is an algebra, we conclude that the inverse Fourier 

transforms of R+(k)  and L+(k) belong to L~(R). The proof for the quantities related to 

(0.2) is obtained in a similar manner�9 | 

THEOREM 3.6 Assume P, Q c L~(R) and W +, W -  E L~+~(R) for  some ~ >_ O, and 

suppose 1 / T •  does not have any real zeros. Then, in the exceptional case T •  - e • 

R •  and L•  are all Fourier transforms of functions in L~(R). 

PROOF. Let a caret denote the Fourier transform, and let f ( k )  denote the left-hand 

side of (3.10). From the proof of Theorem 3.5, we know that f E LI+~(R),  where f is the 

inverse Fourier transform of f .  Define 

~ + i  [ l+f (k) ] .  ~(k)=-l+-g- (3.11) 

Using f~_~ dt f( t )  = / ( 0 )  = - 1  in (3.11), we obtain 

F F ~(k) = dt ei~tf(t) - dE ei~t - 1 f ( t )  
~ ik 

/5 75 F ; ; = dt e ikt f ( t )  - dz e ik~ dE f ( t )  + dz e ikz dE f ( t ) .  

(3.12) 

Since f E L~+~ (R), from (3.12) it follows that t~(k) is the Fourier transform of a function in 

L~(R).  Because 1/T+(k) is assumed not to have any real zeros, it follows that T+(k)  - e  p 

is the Fourier transform of a function in L~ (R). Using Theorem 3.4 and an argument 

similar to that  used for T+(k), one sees that R+(k ) /T+(k )  and L + ( k ) / T + ( k )  are Fourier 

transforms of functions in L~(R). In the exceptional case, 1/T+(k)  is continuous on R, 
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and since 1/T+(k) is assumed not to have any real zeros, it follows tha t  R+(k) and L+(k)  

are also Fourier t ransforms of functions in L~(R) .  The  proof  for the quantities related to 

(0.2) is obtained similarly. | 

Using (3.5) and (3.6), we see tha t  if W+(x) or W - ( x )  contains any delta-function 

terms,  the coefficients in those terms can be obtained from the large-k asymptot ics  of the 

reflection coefficients. For example, assume tha t  Q(x) contains the delta-function te rm 

q0 5(x) and tha t  P(x) is discontinuous at x = 0 resulting in the delta-function t e rm for 

P'(x) given by p~ 5(x). In other words, p~ = P ( 0 + )  - P ( 0 - ) .  Then, from (1.6) we see tha t  

W• contains [q0 TP~o/2] 5(x). Using (3.5) and (3.6) we obtain 

lim 2ikR• = qo =k exp ~= dzP(z  ]kI-++o~ , (3.13) 

Iim 2ikL• = qo ~5 exp ~= dzP(z) . 
]k]-++o~ 

We will use (3.13) in Section 7. 

4. BOUND STATES 

In this section we analyze the bound states of (0.1) and (0.2) and introduce the bound- 

s ta te  constants  which will be used in the scattering da ta  to solve the inverse scat tering 

problem. Recall tha t  the bound states of (0.1) correspond to the zeros of 1/T+(k) in C + 

and tha t  such zeros are either si tuated on the positive imaginary axis or are symmetr ical ly  

located with respect  to the positive imaginary axis; moreover, the multiplicity of each such 

zero may  be larger than  one [AKV97]. If  P E L 1 (R),  Q E L~ (R), and there are no zeros 

of 1/T+(k) for k E R,  then the number  of zeros (including multiplicities) of 1/T+(k) in 

C + is finite fAKV97]. 

Let k f  for j -- 1 , . . .  , N • correspond to the poles of T• in C + and let n~ denote 

the multiplicity of the pole of Ti(k)  at k~=. Let us also define 

1 - e •  (4.1) c •  d•  f~(k,x)" 

~•  • x) vanishes at  some x, then f~(k~ ,x)  also vanishes at  the same Note  that ,  in case Jz ~ j ,  
~- • 

x because f ~ ( k j ,  x) and f ~  (k~, x) are linearly dependent. 

PROPOSITION 4.1 Assume P E LI (R) ,  Q E L~(R),  and suppose 1/T• has a zero 
at k~ e C + of multiplicity n~. Then, in the Taylor series ofc• and d• x) at  k~=, 

the first n~ coefficients do not depend on x. 
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PROOF. From (0.5) and (4.1) we get 

Oc ~ (k, z )  • k =e•  ( ,x ) ; :r  _ -2 ik  1 
OX ~ e~=PT• + f~ (k, x)2 f~ (k, x)2" 

Hence, we have 

0 c •  ) s d j - 2 i k  { O ~  "-3 1 . (4.2) 
a-~ = ~ ~pT~(k) <Ok/ • Si (k,;~ i=O 

Since the val,.e of -2{k/T~(k) and its ~rst ~? - I derivatives at kJ= vanish, from (4.2) we 

see that o~=~(V,x)/ak" ~anish for ~ : 0, i,... ,~J= - i. Th~s, 

c• x) : E c~ s(x) (k - k~=) s, (4.3) 
s : O  

where c • �9 • do not depend on z E R.  Note that  in the expansion 
j , O '  " " , C j , n ~ _  1 

$ = 0  

each coefficient d~,~(x) can be expressed in terms of c~,o(x), • �9 .. , ei,~(x ) because we have 

s c~,m(x) d;~_.~(x)=6s,o , s : O , l , . . .  , 'n~- 1, (4.4) 
m : 0  

where 6j,m is the Kronecker delta. Hence, the first n~: coefficients in the expansion (4.4) 

are independent of x if and only if the same is true for the expansion (4.3). | 

Note tha t  we can construct e-PT+(k) and ePT-(k)  uniquely in terms of R+(k) ,  

R - ( k ) ,  k +, k ; ,  n +, and n~-, where j : 1 , . . . , N  + and s : i , - . .  , N - .  Let us write (0.9) 

in the form 

[eTPT• [e•  = 1 - / { •  R ~ ( - k ) ,  k E 1%. (4.5) 

Recall tha t  k e• + i)T• is analytic in C +, is continuous in C +, and approaches 1 

as /~ -+ co in C+o The construction of e~=PT~=(k) can be carried out by solving the scalar 

Riemann-Hilbert  problem (4.5). Having constructed e-PT + (k) and ePT - (k), one can also 

• . c • construct e=F~PL~(k) using (0.8). As we will see later, the constants {Cj,o,.. , j ,~=_l} for 

j : 1, . .  �9 , N • play the role of the bound-state norming constants in the inverse scattering 

problem for the usual SchrSdinger equation [Fa64,DT79,NeS0,CS89,AKV93]. As seen in 
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the proof  of Proposi t ion 4.1, knowledge of these constants is equivalent to knowledge of 

~- . .  d ~= the set {d~,0, �9 , j , ~? - l }  fo ry  = 1 , . . .  , Y  • 

Let us define the reduced transmission coefc ien t s  To + (k) and T O (k) by 

T• : ~o~(k) 17[ \ k _  k? ] " 
j----I 

(4.6) 

Note tha t  To(k ) is analytic in C +. We have 

?,,S" 
e~:PT• = E E (k-  kf) ~+1 + F •  (4.7) 

]=1 s=0 

where 

G - (~? _ 1 _ s)~ L ~  T• (k - k~k~ 

and F •  is analytic in C +, is continuous in C--~, and tends to 1 as k -+ oc in C +. 

Note tha t  the parameters  t -+ and tin, u are uniquely determined when one knows R+(k), .%s 

R - ( k ) ,  k +, k~,  n +, and n~ ,  where j = 1 , . . .  , N + ;  m = 1 , - . - , Y - ;  s = G " " ,  n+  - 1; 

and u = 0 , . . .  , n ~  - 1. 

Recall tha t  for each x E R,  the functions ~l ( , x) and ~/~(k, x) are analytic in C +, 

and hence we have the convergent expansions 

= ,~,~(~)  ( k -  k f )  ~, ,~(~,~) = • r/;;j,~ (x ) (k  - k~=) ~, (4.8) 
s = 0  s = 0  

valid for I/~ - k~l < Imk~:.  Using (1.1), (2.1), (4.1), and (4.3) in (4.8), we get 

(4.9) 

Using (2.2) and (4.8), we also have 

%~-,~( ) = 5~,o + do d z  s! I ~ , J, (4.10) 

s! 



296 Aktosun, KlausandvanderMee 

Using (4.7) and (4.8) we get 

~ ~;~-~;-~-s ~ • 
V" n~;~,m(x) t~, ~+'~ 

e - m P T •  E A.~ -{~--_~_.• ' 
j = l  s=O m = O  ~ J ] 

(4.11) 

N• n ~ - l  n~ - 1 - s  :t: • %j,.~(x) tj,~+m 
j = l  s = 0  m = 0  

where for each x the functions H~(k, x) and H?(k, x) belong to the Hardy space H~(R) .  

Let us define 
1 

A~(x, y) = ~ f _ ~  dk e~Y [e~PT• ~?(k, x) - 1], (4.12) 

A~ (x, y) = ~ dk e i~y [eTPT • (k) ~7~ (k, x) - 1]. 

nora (0.6) and (1.~) it follows ~hat A~(~,~) and A~(~,~) are rea~ ~a~ued. Using (4 .n)  i .  

(4.12), for y > 0 we obtain 

j = l  s=O m = 0  

%,;j,m (x) tj,s+~. ~ ~ ~(iy)~ • • (4.13) 

Using (4.9) in (4.13), for y > 0 we can write A~(x, y) as 

AI • (x, y) 

N ~  ~ ? - ; " ~ ? - 1 - ~  ~ " ~ - ~  ( i y )  ~ ( 2 i ~ )  . . . . .  . ~  • , , :~ 

j = l  s=O m : 0  u=O n = 0  

(4.14) 

Note that we can write (4.14) as 

~- -  , ~ - 1  ~ - ~  . . . .  _~_~, ( i y )  ~ 

j = l  s = 0  w=s u = 0  n = 0  

(2iX) w - s - u - n  . •  • rx~ c • 
- - ( w _ 8 _ u _ n ) ! ~ j , w ? T l ; j , u  ~, ) j ,n" 

(4.15) 

Using 

n~--In~--i .... --s--u n~--I ......... n~--I w w--nw--s--n n~--i ......... 

Y_, F_,E E - : U , U , E  E = E E E  F_, =F_,EE E ,  
s=O w = s  'u=O n=O w----O 8~0 n=O u=O w=O n=O s=O u=O "w=O 'n=O u=O s=O 
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we can simplify (4.15) to 

NJ: n ~ - - I  w w- -n  

A~(., ~) = i::'~(') ~ .~:("§ Z r ~ "?,., Z ~,.,o(') • Ii(2.(~._~__ ~ + Y ) ]  ....., (4.16) 
j=l w=O n = 0  u = 0  

where y > 0. In a similar manner,  we obtain 

N:~ n~: --i w w--n  

A~(~,y) = ~e•162 Z ~;(-~+~) Z t;~, Z d~., ~ • [i(-2x + y)] . . . .  n 
j = l  ~=0 ~=0 ~=0 %~,~(x)  ( ~ _  ~ -  ~)! , 

where y > 0 irrespective of the sign of x. Note tha t  e•162 y) and e:~2r y) 
are functions of 2x + y and - 2 x  + y, respectively. 

When  P(x) <_ 0 in (0.1), there are  notable simplifications. In  this special case, 

1/T+(k) cannot have any real zeros and hence S+(k) exists for all k E 19.. We have 

IT+(]~)I 2 + IL+(k)l 2 _< 1, iT+(k)l 2 + 1R• 2 _< 1, k e a .  

The  number  of poles of T+(k) in C + is equal to N(0,  Q), and each such pole is simple 

and located on the imaginary axis. Let us order these poles such tha t  Im  k + < I m  k++l. 

Then  the Jost  solutions f + ( k  +, x) and f+(k +, x) each have exactly N(O,Q)-  j zeros, 

and hence from Theorem 10.4 of [AKV97] and (1.1) we conclude tha t  the common sign 

~+ {]~+ -o~ ]  of ',z < j ,  : and ~?+(k +, +co)  is the same as the sign of (--1)g(~ - j .  Therefore, in 

this case the quanti ty c+(k +, x) is a nonzero real constant, usually called a bound-s ta te  

norming constant,  whose sign agrees with that  of (-1) N(O,Q)-i. 

5. MARCHENKO EQUATIONS AND THE INVERSE PROBLEM 

In this section, we derive the two uncoupled Marchenko integral equations (5.14) and 

show that the corresponding integral operators are compact and have the same nonzero 

eigenvalues. We also describe the recovery of P(x) and Q(x) from the solutions of these 

Marchenko equations. 

When  k e R,  the quantities f z - ( - k ,  x) and f~ - ( -k ,  x) axe also solutions of (0.1), and 

hence, they can be expressed as linear combinations of f+(k, x) and f+(k, x), unless the 

la t ter  functions are linearly dependent.  Using (0.3) and (0.4) we obtain 

f~(-k,x) = -L• T• . [ / ~ ( k , x )  ' k e R .  (5.1) 

Using (1.1), we can write (5.1) in the form 

V~( -k ,x )  = L-L•177162 e~=PT• J v ~ ( k , x ) J "  (5.2) 
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For z E R, define 

/_ /? 1 o~ 1 dk e 'kz L • (k), (5.3) R• = -~ dk e ikz R• L• = 
o o  r 

N :t: n ~:  - -  i m 

S~(z) : R• - i ~ eik~ z ~ t~, m ~ (iz)m-s c • (5.4) 

N~: n~ --1 rn 

Z d• (5.5) 
j=l m=0 ~=0 ( m -  s)! ~'~" 

Note that S~=(z) and S~(z) are real valued because of (0.6) and the real-valueduess of 

A~(x, y) and A~(x, y). Let us write (5.2) in the form 

, / ( - k ,  ~) - 1 : e ~  T•  ~ ( k ,  ~) - 1 - R •  e ~ ( ~ )  ~ ( k ,  ~), (5.6) 

~?(-k, ~) - 1 : e ~  T • ( k ) ~  (k, ~) - 1 - L • (k) ~ - ~ T ~ •  (k, ~). (5.7) 

With the help of (2.1), (4.12), and (5.3), the Fourier transform of (5.6) gives us for y > 0 

B ~ ( x , y ) = A ~ ( x , y ) - e  T2r R ~ ( 2 x + y ) +  d z R ~ ( 2 x + y + z ) B ~ ( x , z )  . (5.8) 

Using (4.10) and (4A6) in (5.8), we obtain the coupled Marchenko equations 

B?(~,y)  = _~T~(~) (2~+y)  + d z ~ ? ( 2 ~ + y + ~ ) B ~ ( ~ , z )  , y > O. (5.9) 

In a similar way, applying the Fourier transform to (5.7) we obtain the coupled Marchenko 

equations 

/0 ] B?(~,y)  = - e  •  ( - 2 ~ + y )  + d ~ g ( - ~ . ~ + y + z ) B ~ ( ~ , z )  , y > O, 

(5.10) 

where S~(x~y) and Br~(x,y) are the quantities defined in (5.5) and (2.1), respectively. 

In (5.9) and (5.10) the coupling refers to the fact that the quantities pertaining to (0.1) 

and (0.2) appear in the same equation; for example, both B+(x~y) related to (0.1) and 

B[-(x, y) related to (0.2) appear in the same equation. 

We will only analyze the pair of coupled integral equations (5.9). The analysis of 

(5.10) is similar. Note tha~ S~(z) and S~:(z) given in (5.4) and (5.5), respectively, can be 

constructed uniquely in terms o~ the scattering data consisting of the reflection coefficients 

R + (k) and R-(k) ,  the bound-state energies corresponding to the k + each with multiplicity 
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ny  and the k~ each with multiplicity n~,  and the corresponding bound-state constants c. + 
J , 8  

and c~,~, where j -- 1 , . . .  ,N+;  m = 1, . . .  , N - ;  s = 0 , . . .  , n f - 1 ;  and u = 0,- . .  ,n~n-1.  

1 z_ PROPOSITION 5.1 Let g E L~(R ~ ) for some (~ E [0, 1]. Then, for every p E [1,+co) 

and for every ~ C [0, ~], the integral operator Og defined by 

(ogf) (x)  = dyg(x + y) f (y)  

is a compact operator on f 2 ( R  +) and on L~(R+). In all of these cases, the operator norm 
of O9 is bounded above by IIglrl,z. 

PROOF. Since the Fourier transform t~(k) of g(x) is continuous and vanishes as 

k -+ +oo in R, the compactness on LP(R+) follows from the Hartman-Wintner theorem 

on the compactness of Hankel operators (Theorem 1.4 and the discussion following (1.1) 

of [Po82]; Corollary 4.7 of [Pa881). Here we give an independent proof. The convolution 

product of a function in L~(R +) and e function in LP(R +) belongs to LP(I~+), and hence 

the norm of O 9 is bounded above by IlgIll. The convolution product of two functions 

in L~(R +) is again in L~(R+), and hence the norm of (9 9 is bounded above by I]g;ll,Z. 

Approximating g by integrable step functions in the norm of either LP(R +) or L~(R+), we 

approximate (.gg in the operator norm by compact operators, which implies the compactness 

of Og. II 

Let us introduce the integral operators M~(x) and K~(x)  : 

fM?(~) h](~) = d~ ~f(2~ + y +  ~)h(z), ~ > 0, (5.11) 

(5.12) 
[K~(~)h](y) = fo dzK~(~;y , z )h(~) ,  y > O. 

We may then decouple the system of equations (5.9) to obtain the two uncoupled equations 

/f B?(x , y )  - d z K f ( x ; y , z ) B f ( x , z )  = -eT2r  y > O. 

These equations are not convenient for solving the inverse scattering problem, because 

their right-hand sides contain the unknown quantity e <(~). However, letting 

Bt~(x, y) = -e•162 Y) + bt~(x, y), (5.13) 

we can obtain B~(x ,  y) by using e 2r and the solutions of the equations 

/f a~(x,y) - d z K ~ ( x ; y , z ) a ~ ( x , z )  = S ~ ( 2 x §  y > 0, (5.14) 
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f0 ~ bT( , y) - = 0), y > 0, (5.15) 

where the right-hand sides are now known in terms of the scattering data. Note that the 

coupled Marchenko equations (5.9) are equivalent to the uncoupled equations (5.14) and 

(5.15). We will refer to (5.14) and (5.15) as the uncoupled Marchenko equations. 

PROPOSITION 5.2 In the generic case, assume that P E LI(R), Q E LI(R),  1/T+(k) 

and 1~T-(k)  do not vanish for k e R \ {0}, and W+~ W -  e L~+~(R) for some a > O. 

In the exceptional case, assume that P, Q e LI(R), 1/T+(k) and 1~T-(k)  do not vanish 

for k E R, and W +, W -  E LI+a(R) for some a >_ O. Then, for each x E R, the integral 

operators M+(x) and M~-(x) defined in (5.11) are compact on L~(R+). 

PROOF. From Proposition 5.1 and Theorems 3.5 and 3.6, it follows that the operators 

corresponding to the kernels R+(z) and/~+(z) are compact on L~(R+). Since S~(z) - 

R• (z) and S# ( z ) -  e~=2PL • (z) correspond to degenerate kernels, it follows that the integral 

operators in (5.9) and (5.10) are compact on LI(R+).  | 

In the next theorem we show that the Marchenko integral operators in (5.14) and 

(5.15) are compact perturbations of the identity. Thus, the uncoupled Marchenko inte- 
gral equations (5.14) and (5.15) are uniquely solvable if the corresponding homogeneous 

equations do not have any nontrivial solutions. 

THEOt~EM 5.3 Under the assumptions in Proposition 5.2, the kernels Kz+ (x; y, z) and 

K[-(x; y, z) defined in (5.12) are real valued and satisfy 

z) = KF(x;z ,y ) ,  y ,z  > O. (5.16) 

Moreover, the operators Kz+(x) and K~-(z) are compact on LI~(R +) for fl e [O, a] and have 

the same nonzero eigenvalues, and these eigenvalues are real. 

PROOF. Since S+(z) and Sz-(z) are real valued, it follows that Kl+(x;y,z) and 
K[-(x;y ,z)  are real, and from (5.12) we get (5.16). The compactness of M~-(x) and 

M~-(z) on L~(R +) follows from Propositions 5.1 and 5.2. From (5.11) and (5.12) we have 

K (x) = M 3 ( x ) M T ( x ) ,  (5.17) 

and hence K + (x) and K~ (x) are compact operators on L~ (R +) having the same nonzero 
eigenvalues. By Theorems 3.5 and 3.6 we have &+, -~- E LI~(R+); thus, using Proposition 
5.1 and an argument as in the proof of Proposition 5.2, we can conclude that M+(x) 

and M-(x) and hence K+(x) and K-(x) are compact operators on both L~(R +) and 

L 2 (R+). Then a simple Fredholm argument implies that the nonzero eigenvalues of K • (x) 

on L~(R +) and on L2(R +) are identical. However, as a result of (5.16) and the realness of 
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K+(x;  y, z) and K-(x; y, z), it follows that K+(z) and K - ( x )  are selfadjoint operators on 
L 2 (R § ) that are each other's adjoints. Thus the nonzero eigenvalues of K+(x) and K - ( x )  

are all real. S 

PROPOSITION 5.4 Under the assumptions in Proposition 5.2, if the integral equations 
(5.14) are uniquely solvable in LI(R+),  then so are (5.15). 

PROOF. This follows from Theorem 5.3 and the fact that (5.14) and (5.15) are 
uniquely solvable if and only if 1 is not an eigenvalue of K~ (x). | 

From (5.17) we have 

MF(x)  K~(x) = KF(x) MF(x).  (5.18) 

From Proposition 5.2 it follows that M~(x)  is a bounded operator on LI(R+),  and hence 
M ?  (x) a~ (x, .) belongs to L 1 (R +) whenever a~ (x, .) e L 1 (R+). Applying M~ (x) to (5.14) 

and using (5.18), we see that MF(x)  a~(a, .) satisfies (5.15), and hence the unique solution 
a~(x, y) of (5.14) leads to the unique solution b~(x, y) of (5.15) given by 

/? b?(x,y)=[M2(x)a~(x,.)](y)= dzSF(2x+y+z)a~(x,z), y > 0 .  (5.19) 

Note that (5.14) and (5.15) are equivalent to the linear system of coupled Marchenko 

equations 

a~(x,y)-~o dzS~(2x+y§ y > 0 ,  
(5.20) 

b~(x,y)- ~o dzSF(2x +y+ z)a~(x'z) =O' y > 0 .  

Under the general assumptions of this section, we have S+, S~ e L~(R). This means that 
the integral terms in (5.20) are continuous in y e (0, +oo) whenever a~(x, .) and b~(x, .) 
belong to L~(R+). Thus, from (5.20) we see that for each x C R, the discontinuities of 
a~ (x, y) and S~ (2x + y) coincide for y > 0 and that b~ (x, y) is continuous in y > 0. 

The functions a~ (x, y) and b~ (x, y) appear as elements of the 2 • 2 resolvent kernel 
matrix F(x; y, z) of the linear system of integral equations 

cz(x,y)-fo y>0,  (5.21) 
dz( ,y) - fo y>0,  

where RHS1 (g) and RttS2 (y) denote nonhomogeneous terms. In fact, if (5.20) are uniquely 
solvable, then the unique solution of (5.21) is given by 

dr(x, y) L RHS2 (y) J .RHS2 (z) (5.22) 
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Then (5.20) implies 

F(x;Y'O)= [ b~(x'y)a~-(x, y) a~(x,y)]b~ +(x,y) " (5.23) 

Indeed, using the short-hand notations N(x) and D(x) for the integral operators on the 

[ 0 S[-(2x~y+z)J and F(x;y,z), one half-line with respective kernels S~- (2~ + y + z) 

gets from (5.2i)  and (5.22) 
[I - N(x)]  -~ = I + r (~ ) ,  

and hence 

[i - N(~) ]  r (~ )  = N ( ~ ) .  (5.24) 

Let [M]jm stand for the (2", rn)-entry of a matrix M. Rewriting (5.24) in the form 

[ r ( ~ ; -  .~ d~ ~?(2~ + y + ~) [r(~; ~, w)]~j = [N(2~ + y + ~)]~j, 

~ O O  

iF(x; y, w)]2j - J0 dz S[-(2x + y + z) iF(x; z, w)]ij = [N(2x + y + w)]~j, 

where j = l ,  2, y > o, [N(2~ + y + w ) ] ~  = [N(2~ + y + w)]~: = 0, [N(2~ + y + ~)]~:  = 
S+(2x + y § w), and [N(2x § y + w)]21 = St-(2x + y § w), and comparing the latter 

systems for w = 0 with (5.20), we obtain (5.23). Finally, we remark that the resolvent 

kernels F + (x; y, z) and F-  (x; y, z) of the integral equations (5.14) are given by iF(x; y, z)] iz 

and iF(x; y, z)122, respectively. Moreover, 

F r+  (~; y, z) 

r(~;v,~) = aust-(2~ + y  + u ) r + ( ~ ; u ,  ~) ] du ~ ? ( 2 ~  + ~ + ~) r -  (~; ~, z )  

r -  (x; y, z) 

In the next theorem we show how the unique solutions of the pair of uncoupled 

equations (5.14) lead to the solution of the inverse scattering problem. 

THEOREM 5.5 Suppose that, for each x E R, the two integral equations (5.14) have 
unique solutions a +(x, y) and a~-(x, y) belonging to L i(R+). Then e 2r P(x), and Q(x) 
can be obtained fro.~ a? (~, y) and ai- (~, ~) ~s follows: 

e2c(~) = i +  < a?(~ ,  .) > + < bi-(~, ') > 
i+ < ai-(x, .) > + < C(~,  ") > '  

(5~25) 

~o d where b~(x,y) is the quantity in (5.19) and< f >= fo Y f(Y), 

1 de 2~(~) 
P ( ~ ) = - 2 r  e2c(~) d~ ' (5.26) 
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PROOF. From (0.11), (1.1), and (2.2) it follows that 

dr  _ ~r  _ ~ ? ( 0 , ~ )  _ 1 +  < B F ( ~ , . )  > 

e-r v/-(o,~) l + < B f ( ~ , . ) > "  

F~rthermore, from (5.13) we have 

< B?(~ , . )  > =  - e  •162 < ~?(~, .) > + < b?(~, .) > .  

(5.27) 

( 5 . 2 s )  

(5.29) 

Eliminating < Bf(x~ .) > from (5.28) and (5.29), we get (5.25). Next, from (2.3) we get 

(5.26), and from (1.6), (2.14), and (5.29) we get (5.27). | 

In order for the inversion algorithm contained in Theorem 5.5 to lead to real potentials 

P E LI(R)  and Q E L~(R), the right-hand side of (5.25) should be positive for every x G R, 

the derivative in (5.26) should exist for all but finitely many x E R, and the derivative in 

(5.27) should exist almost everywhere. Even then, restrictions on the scattering data are 

usually necessary to assure that the potentials P(x) and Q(x) thus obtained satisfy the 

general conditions of this article. 

6. UNIQUE SOLVABILITY OF THE ~V[ARCHENKO EQUATIONS 

In this section we present some conditions on the scattering data for the unique 

solvability of the iV~archenko integral equations (5.14). The assumptions for the results in 

this section to hold are the same as those stated in Proposition 5.2. That is, in the generic 

case, we assume that P ~ LI(R), Q E L~(R), W +, W- E L~+a(R ) for some ~ _> 0, and 

1/T+(k) and 1~T-(k) do not vanish for k e R \ {0}; in the exceptional case, we assume 

that P, Q E L~(R), W+, W- ~ L~+~(a) for some ~ > 0, and i/T+(k) and I/T-(k) 

do not vanish for k G R. Under these conditions, as we have seen in Theorem 5.3, the 

Marchenko integral operators are compact perturbations of the identity acting on L~ (R +) 

for any /3 E [0, a], and hence the unique solvability of the two uncoupled Marchenko 

equations (5.14) follows from the nonexistence of nontrivial solutions of the corresponding 

homogeneous equations. 

Using (5.4) let us define 

f_ ~ (k-k;)'~-s+l''8 (6.1) s~ (k )  = ~ z e - ~ z ~ ( z )  = R•  - F_, ~,,~ 
oo  "= m = O  s = O  

Because S~ (y) is real valued, we have the symmetry relation 

S~(k) = S ~ ( - k ) ,  k e R. (6.2) 
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The Banach space W~ of Fourier transforms of functions in L~(R)  can be decomposed 

in a na tura l  way as ~4~ = l&~ '+ @ ~V~'-, where ~d,~ '-- denotes the Banach space of Fourier 

t ransforms of functions in L~(RA).  The projection I I•  of W~ onto W~ '• is bounded with 

unit norm if we endow this space with the norm IIhllw~ == IlhtJl,~. We write 

h• = Yi• h E W~. (6.3) 

In our analysis of the uncoupled Marchenko equations (5.14) and (5.15), h will be one of 

a• .) and b• .) extended to the full line. 

Let Z(k)  be a continuous matr ix  function for k E R tending to the identity as 

]k] -+ +oc  such tha t  its entries belong to W~ for some/3 _> 0. Then by a right canonical 

faetorization of Z(k) we mean a representation of Z(k) in the form Z(k) = Z+(k) Z_(k) ,  

such tha t  for j, m E {1~ 2} we have 

[z• - ~j~ e w~ ,• [z• - ~j~ e w #  • (6.4) 

By a left canonical factorization of Z(k) we mean a representat ion of Z(k) in the form 

Z(k)  = Z_ (k) Z+ (k), where Z• (k) satisfies (6.4). Right and left canonical factorizations 

are unique when they exist. 

The next theorem will be proved by converting (5.20) into a Riemann-Hilber t  prob- 

lem whose unique solvability can be reduced to the existence of a canonical Wiener-Hopf  

factorization following a procedure given in [Fe61,FGK94]. 

THEOREM 6.1 Under the assumptions of Proposition 5.2, the scalar 1 is not an eigen- 

value of the integral operator K ~ ( x )  defined in (5.12) if and only if the matrix function 

Z • (., x) defined by 

[ 1 Sy(k)e uk~ ] 
z• = -s~ (-k)~ i s/~(k) • - - ~ ' ~  - s ~ ( - k )  - ( 6 . 5 )  

has both a right canonical factorization and a left canonical faetorization. 
PROOF. Note that  (5.20) is valid only when y > 0. Let us extend (5.20) to y E R by 

letting 
a ~ ( x , y )  = a~ (x ,y )  + a_~(x,y), bT(x,y) = b+~(x,y) + b_~(x,y), 

where a+~(~,y) = b~(~,y)  = 0 for y < 0 and a_~(~,y) = b~(~,y)  = 0 for y > 0. Thus, we 

have 

a~(~,y)+~(~,y)- f~ d~(2~+y+z)b,(~,z)=@(2x+y), V~R, 
~o ~ (6.6) 

b_~(~, [ d~ ~?(2~ + + ~) a~(~, z) = 0, V e ~.  
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Let us define 

[IL } So- a~(~ ,~)  =H•  d ~ ( ~ , ~ ) e  ~" = ~  e~?(~ ,~)e~% (6.T) 

[s ] 5~(k,x) = H= 7 dya?(x,y) e ~ky = :V dya[-(x,Y) ei~v, (6.9) 

~(k ,  ~) = n ~  dy b~(~, y) e ~ = T dy b~(x, y) ~ " ,  (6.10) 

where II+ and H_ are the projections given in (6.3). Applying the Fourier transform to 

(6.6) and using (6.7)-(6.1o) we obtain 

{ 5~+(k'x)+&• =S~(--k)e-2ik~' (6.11) 

~ ( ~ , ~ ) + ~ •  O. 

Substituting - k  for k in (6.11) we get 

{ a+ ~ ( -k ,  ~) + a_ ~ ( - k ,  ~) - s? (k)  e ~k~ b~(k, x) = S? (k) e ~ ,  

~+~(-k, ~) + ~• ~) - s~(k) e - ~  a+~(k, ~) = o. 
(6.12) 

Letting 

x •  = 
a ~ ( - k , x )  

1 

s 1 7 7  = ~ o 
-s?(-k) 

n• = 

, Y• = 

I ~i ta) e 
0 

S~ (-k ) e -:~ 
0 

o Oil 1 0 
- s ~ ( - k )  e -2ik, 1 ' 

e - 2 i k ~  O O 

~ •  t . . ,  2 i kx  

- z  ~'~ 0 O 
I 0 0 ' 
0 1 0 

we can write (6.11) and (6.12) together as the single system 

s177177 +n•177 = yi(k,x), k E R. (6.13) 
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From Theorem 5.3 it follows that, for each fixed a �9 R, the entries of the vector function 

X ~ (-, a) belong to ]/Y~'+, where/3 �9 [0, c~]. Thus, finding X • (k, 2) in terms of the scattering 

data constitutes a Riemann-Hilbert problem. Let us define 

MI = 0 1 0 0 
0 0 ' M~= 0 1 " 
0 0 0 0 

It can be verified that 

Mt s177 x) -1 T~• x) M2 = Z• x) @ Z• x)*, (6.14) 

where Z• x)* denotes the conjugate transpose of Z• x). Multiplying (6.13) on the 

left by M1 L:• x) -1 and using (6.14), we can write (6.13) as the pair of Riemann-Hilbert 

problems 

a~-(k, x) [ a+~(k, 2) = S ? ( _ k ) e _ ~ k ~  , ~ �9 R ,  (6.15) 

/~-i(k, x) J +Z• L D_~(k,2) = Ls?(_k)S3(k) , k � 9  (6.16) 

It is known [GF71] that the two problems described by (6.15) and (6.16) are uniquely 

solvable if Z • (k, 2) and Z • (k, 2)* both have a left canonical factorization, or equivalently, 

if Z• x) has both right and left canonical factorizations. Thus, we have shown that 

(5.20) is uniquely solvable if Z• x) has both right and Ieft canonical factorizations. 

We will next prove that if (5.20) is uniquely solvable, then Z• x) has both right 

and left canonical factorizations. Let us replace (6.6) with the system 

F { a~_(x,y)+a~_(2, y) - dzS~:(22§ z)-- ~ ( y ) ,  y E R ,  
(6.17') 

P 

b~(x,y) + bi_(x,y) / d z S ? ( 2 x §  4 - a ~ ( 2 , z )  = ~ ( y ) ,  y �9 i~, 
j -  

where ~?, ~ �9 n~ (R). Writing r~ (k) = f~_~ dy e-~kY~j (y) for j = 1, 2 and following the 

above procedure, instead of (6.15) and (6.16) we get for k �9 R 

a• + z •  = L a~(k,~) j ~ ? ( k ) + S ? ( - k ) e - ~ ( - k )  (6.18) 

~_~(~,~) +z• ~(k,2) = r ~ ( k ) + S F ( _ k ) _ ~ ( _ ~ )  j .  (6.~9) 
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Analogously, replacing (6.17) by the linear system 

F 
b+~(~,y) + b_~(x,y) + f_ & ~F(2x + y + ~) a+~(~, z) = ~g(y), y c R ,  

(6.20) 

where ~ ,  r;̂ ~ ~ L~(R), we get instead of (6.18) and (6.19) for k E R 

a~(k,~) J + z •  L ~+~(k,~) r ~ ( ~ ) -  S~(-k)~-2~k~r~(-k)]  ' 

�9 + z • (k, z)* = 

The systems (6.17) and (6.20) are uniquely solvable if and only if Z• x) has both right 

and left canonical factorizations. Thus, we see that the existence of both right and left 

canonical factorizations of Z • (k, x) is equivalent to +1 and - 1  not being eigenvalues of 

the linear operators [cf. (5.11)] 

[MO(x) Mo(X) ] (6.21) 

defined on L~(R +) q~ L~(R+). From (5.11) and (5.12) we have 

0 
0 I -  

(6.22) 
Note that none of the three matrices in (6.22) can be one-sided invertible unless they are 

two-sided invertible. Hence, from (6.22) we see that the nonzero eigenvalues of K?(x) ,  

which coincide with the nonzero eigenvalues of K~(x), are exactly the squares of the 

nonzero eigenvalues of the two operators defined by (6.21). Hence the existence of both 
right and left canonical factorizations of Z-(k,  x) is equivalent to 1 not being an eigenvalue 

of K~(x).  | 

PROPOSITION 6.2 Suppose 

sup IS~(k)+S[(k)[ < 2, (6.23) 
k C R  

where S+(k) and Sl-(k ) are the quantities defined in (6.1). Then the matrix function 
Z• x) given in (6.5) has both right and left canonicaI factorizations. 
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PI~OOF. Let 
1 [z~(k, x) + z• x)*] - a ,  e• = 

where ~ is a positive parameter .  From Proposit ion I I I  1.2 and Theorem II  6.3 in [CG81], 

it follows tha t  the matr ix  Z • (k, x) has both  right and left canonical factorizations if and 

only if for some small r the matr ix  C• x, s) is selfadjoint and nonnegative for all k E i t .  

Note tha t  C• x, r is selfadjoint for any real r To show tha t  C• x, r is nonnegative, 

it is enough to show tha t  the determinant and the trace of C• x, 0) are positive. Using 

(6.2), from (6.5) we get 

(k, x, 0) = 1 - ~lS~: (k) § S?  (k)] 2, (6.24) det C • 

t r  C • (k, x, 0) -= 1 + I IS { (k) - St :F (k) l 2 4- det C • (k, x, 0). (6.25) 

From (6.2), (6.24), and (6.25) we see tha t  C• has positive trace and positive 

determinant  if and only if tS~(k)4-S~(k)l < 2 for k E R.  Hence, if (6.23) is satisfied, then 

C•  x, r is selfadjoint and nonnegative for sufficiently small positive s. | 

From Theorem 6.1 and Proposit ion 6.2 we have the following. 

COROLLARY 6.3 Assume that (6.23) is satisfied. Then, under the assumptions of 

Proposition 5.2, the uncoupled Marchenko equations (5.14) and (5.15) are uniquely solvable 

in L ~ ( R  +) forfl e [0, a]. 

Consider the function 

( k~ [1 - R+(k)R-(-k)]  k e R, (6.26) 4- 1 
d 

--U-/ 

where d = 0 in the exceptional case and d = 1 in the generic case. Let w denote the 

winding number  of the graph of the function in (6.26) as k varies from - ~ z  to +cx~ on the 

real axis. 

THEOI~EM 6.4 Suppose R+(k) and R-(k)  are continuous in k E R. Then, the winding 

number w of the graph of the function defined in (6.26) is given by 

w = N( -P ,  Q) - N(P, Q), (6.27) 

where N ( P, Q) and N ( -  P, Q) are the number of bound states of(0.1) and (0.2), respectively. 

PI~OOP. Using (0.9) and (4.6) we have 

] 1-R+(k)R-(-k)= r+(k)II\k-k+/j=l J T~ \k+~-j-/ ' kerr,  
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where [(k + i)/k]dTo~(k) are continuous in k C C +, are analytic in k E C § do not vanish 

in C+,  and have nonzero limits as k -+ cc in C+.  Thus the winding number  w of (6.26) 

is equal to ~ ; - - 1  ny  N+ 
- ~ j = l  n~-. Note tha t  N(• Q) coincides with the number  of poles 

X-~2~• n=t= of T• in C + including multiplicities, and hence N(• Q) = z...,j=~ j .  Thus, (6.27) 

holds. | 

From Theorem 6.4 we see tha t  (0.1) and (0.2) must have the same number  of bound 

states if the winding number  of the function in (6.26) is zero. Conversely, if neither (0.1) 

nor (0.2) have any bound states, the winding number must be zero. 

7. EXAMPLES 

In this section we present some examples illustrating the recovery of P(x) and Q(x) 

by the Marchenko method outlined in Section 5. 

EXAMPLE 7.1 Consider the inverse scattering problem with no bound states, where 

R-(k) ---- 0 and R+(k) satisfies some mild technical conditions tha t  will be apparent  as 

we proceed. From (4.5) we get T• = e • Thus we are in the exceptional case. Using 

(5.12) we see that K 2 ( ~ ; y , z )  = 0. Solving (5.14) and using (5.19) we get 

~+(x,  y) = _~+(2~ + y), ~ - (~ ,  y) = b~ + (~, y) = hi-(x, y) = 0, 

so that 

(a2(x,  .)) = dyR+(y) ,  (a~-(x, " ) /=  (bT(x, ") /=  (b/~(~, " ) /=  0. 

Then  from (5.25) we get e ~r = 1 + f ~  dy_~+(y), from which we see that ,  in order to 

have P C L 1 (R),  our scattering da ta  need to satisfy inf~c R fs dy R+(y)  > - 1 .  When  this 

condition is satisfied, as outlined in Theorem 5.5, we obtain 

P(x) = 2-f/+(2x) Q(x) = 2f/+ '(2x) + 3-f/+(2x)2 

1 + f ~  d y ~ + ( y ) '  1 + f ~  dyR+(y)  
( ~  ^ 2 "  

[1 + f~  dyR+(y)] 

R § = i~ (k + i~) 
(k - ip)(k + i~)' R -  (~) = 

i(~ - ~)(Z + ~)(~ + iZ) 
c(k - i~)[k + i (9  - ~ + ~)]' 

Note tha t  if we further require t h a t / ~ +  E L~(R) and (/~+)2,/~+, E L~(R),  then we have 

P e L 1 (R) and Q e L~(R).  

EXAMPLE 7.2 Let us consider the inverse scattering problem with the scattering da ta  

consisting of the reflection coefficients 
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where e is a nonzero real constant and a,  fl, s are positive parameters  such tha t  f l - a + s  > 0. 

Let us also assume tha t  neither (0.1) nor (0.2) have any bound states. We construct  

e ~  T•  by us i . g  (4.5) and obta i .  

e-PT + ( k ) - k + ia 
k §  

k + i 9  
ePT-(k) = k + i ( 9 -  a + ~)" 

In fact, using (0.8) we also construct e~=2pL• and get 

e_2PL+(k ) : i (s  - a)(/9 + ~) e2PL_(k ) =. ic 
(k + ~ )  ' k + i (9  - ~ + e)" (7.1) 

From (7.1) we see tha t  e=F2PL~(k) belongs to the Hardy space H~_(R), aud hence from 

(5.10) we conclude tha t  B?(x , y )  = 0 for x < 0, and thus P(x)  = Q(x) = 0 for x < 0. 

Now let us find P(x)  and Q(x) for x > 0. We will do so by using the procedure outlined 

in Theorem 5.5. Wi th  the help of (5.3) and (5.4) we obtain 

g~+(z) = ~ + ( z )  - c ( ~ + 9 )  _Z~, z > 0 ,  (7.2) 

~7(z )  = R - ( z )  = - c - 1 ( ~  +9 ) (~  - ~ ) e  - ~ ,  

Using (7.2) and (7.3) in (5.12) we get 

z > o. (7.3) 

9 + ~  
y~ z ~ 0, 

(~ + 9)(~ - a) _:(~+z)~ _ .~_~ ,  
K[-(x;y ,z)  

9 + e  
y , z > O .  

Thus we have the two uncoupled Marchenko equations (5.14) for x > 0 given by 

fO ~ 
a + ( x , y ) -  (c~ + 9 ) ( E -  a)e-2(~+Z)~-Zu dze-a~a+(x ,z )  

= _ c(a  + 9) e-~(2~+y), y > O ,  

(7.4) 

a~- (x, y) - (a  +9+e9)(e - o~) e_2(~+Z)~_~y j~0 ~176 dz e - ~  a~ (x, z) 

= - c  -1 (a + 9 ) ( ~  - a) e -~ (~+y) ,  

The soiutions of the Marchenko equations (7.4) and (7.5) are given by 

y > O .  

(7.5) 

,_ -c(a + 9)e-~(2~+y) 
al (~, v) = (9 + ~) - (~ - ~)e-~(~+~)~' y > O ,  (7.6) 
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a~(x, y) = 03 + e) - (~ - a)e-2(~+Z) = 

Subs t i tu t ing  (7.6) and  (7.7) in (5.19), we obta in  

-~-~ (~ + Z)(e - ~)(Z + ~) e-~(~'+~) 

(,~ + ~)(~ - a) e-2(c'+m'-~'y 
= - Y > 0 ,  

(~ + 9)(~ - ~) ~-2(~,+m.-z~ 
> ~  

Using (7.6)-(7.9) in (5.25) we get for m > 0 

e2r = 

y > 0 .  

~Z(Z + ~) _ c ~ ( ~  + Z) e-2Z, + ~2(~ _ ~) e-~(~+Z> 

~ ( ~  + ~) - ~-~P(~ + ~)(~ - ~) (~  + ~) ~ - ~  + p~(~ - ~) e-~(~+z)" " 

(7.7) 

(7.8) 

(7.9) 

(7.1o) 

Note thai the right-hand side in (7.10) must be positive for x > 0, and this forces us to 

impose certain additional restrictions on the parameters c~,/3, c, e if we want P E LI(R). 

For example, by choosing c < 0 and e > ~, we see thai both the numerator and the 

denominator of the right-hand side in (7.10) are positive. On the other hand, the choice 

---- s results  in the  scat ter ing da ta  e::FPTa=(k) = 1, R - ( k )  ---- 0, and  R+(k) ---- c / (k  - i~) .  

Note also tha t  since P(x)  = 0 when x < 0, from (7.10) we see tha t  

~Z(Z + e) - c~(~  + Z) + ~2(~ _ ~) 
e2P = o~,~(Z § ~) --  c - I ,3 (o~ + f l ) (~  --  o~)(/~ + ~) -f- ,G2(e - -  c~)" (7 .11)  

Since R:~(k) is O(L/k)  but not o(L/k) as k -+ + ~ ,  from the argument leading to (3.13) 
we see t ha t  Q(x) and P'(x)  contain delta-functions at  z = 0. In  fact, from (3.13) we get 

q0 = - e  e -~" - c-1(~ - ~ ) (~  + ~) e ~p, p~ = - 2 c e  - ~  + 2 ~ < ( ~  - ~)(Z + ~) e% (7.12) 

where e 2p is the  constant  given in (7.11). Hence q0 and p~ given in (7.12) are complete ly  

de te rmined  by the  scat ter ing data .  Thus, using (5.26), (5.27), (7.10), and  (7.12), we get 

P(~)  and Q(~) also for ~ _> 0. 

EXAMPLE 7.3 Let us consider the inverse scat ter ing problem with R+(k) = R - ( k )  = 

0, when (0.1) has a bound s ta te  at  k = ic~ + with the bound-s ta te  constant  c + and (0.2) 

has a bound  s ta te  at  k = i s -  with the  bound-s ta te  constant  c - ,  where a + and a -  axe 

some posi t ive constants .  Using (4.5) and (4.6) we obta in  e~=PT + (k) = (k + io~ =~)/(k- ia+). 
W i t h  the  help of (4.7), from (5.4) we obta in  S~(z )  = (a+  + ~ - )  e• - ~ z .  From (5.12), for 

x E R ,  we obta in  

K ~ ( x ; y , z )  -- c+c-(o~ + §  -9-(a++~-)=-c'• y , z  > O. 
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The two uncoupled Marchenko equations (5.14) are given by 

~ ( ~ '  Y) - ~§ + ~-)~-~("++~-)~-~• ~ z e - ~  ~ ( ~ ' ~ )  (7.13) 

-~ C• + + a - )  e -a• 

The solutions of the Marchenko equations (7.13) are 

a~(x , y )  = c• § a - ) e  -"• 
1 - c + c  -e-2(~++a-)  ~ ~ y E R  +, x ~ R .  

Using (5.19) we get 

b?(~,y) = e§ + ~-)e-~(~§ ~ - ~  
1 - c+c - e-2(a++a-) ~ , y E R +, x E R.  

From (5.25) we obtain 

e2r = a + a  - + e + a - ( a  + + a - )  e -2~+~ + e + e - ( a + ) 2 e - 2 ( ~ + + ~ - )  ~ 
a + a _ + c _ a + ( a + + a _ ) e _ 2 ~ _  +c+c_(a_)2e_2(~++~_)~, x E R .  (7.14) 

Proceeding as in Theorem 5.5, from (7.14) we compute P(x)  and Q(x). Note that,  when 

the bound-state  constants c + and c -  are positive, we are assured that  the numerator  and 

the denominator in (7.14) are positive for all x E R. Then, letting x -+ - o c  in (7.14) we 

see that  P E L I ( R )  and e p -- a + / a  - .  

Note that  the integral equations (7.13) are not uniquely solvable when c+c - > 0 

and x = x0, where x0 = ln(c+c-) /[2(a + + a - ) ] .  However, for c +, c -  > 0 the right-hand 

side of (7.14) is well defined and ~(x) remains continuous as x -+ x0. Moreover, tedious 

but straightforward analysis shows that  P(x )  and Q(x) are continuously different• 

everywhere (also at x0) and exponentially decreasing as x -+ •  

EXAMPLE 7.4 Consider the inverse problem with R+(k)  = i a •  - i~) with ~ > 0 

and f~2 > a + a - .  Assume that  there are no bound states. Let z = V/~ 2 - a + a - .  From (4.5) 

we obtain ~ P T  • = (k+i~)/(~+ig). Using (5.3) and (5.4) we get ~ [ ( z )  = - ~ •  
where O(z) is the Hear• function. 

When  x > 0 we proceed as follows. From (5.12) we obtain 

O/'+OL- e -4flx'-fl(y-i-z),  2~, y, Z > O. (7.15) 

Using (7.15) we write the Marchenko equations (5.14) as 

a~ (x, y) c~+c~-2~ e-~(4~+v) dz e - ~  a~(x, z) = - a  • e -r x, y > O, 
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whose solutions are 

--4192~ • e-B(2z+Y) 
af(x'Y) = 4--~-- ~-n~- ~--=~' 

From (5.19) and (7.16) we get 

2~a+a- e-Z(~+y) 
bf(x,y) : -~-~--4--d=~-~-~' 

Hence, using (7.16) and (7.17) in (5.25) we obtain 

e2('(z) = 4/92 -- 4a+j9 e-2f~ + a + a  - e-4f{z 
4~ 2 -- 4a-/9 e -2~z -{- o~+a- e -4f~z ~ 

z ,y  > 0. 

x,y>O. 

x > 0 .  

(7,16) 

(7.17) 

(7,18) 

Note that the numerator and the denominator in (7.18) are positive when a + and ~ -  have 

the same sign and are each bounded in absolute value by/9. As outlined in Theorem 5.5, 
we obtain P(x) and Q(x) for x > 0 explicitly. 

When x < 0, using (5.19) we get 

{ a+~ e -Ny-zl 0 < rain{y, z} < --2x, 
K~ (x; y, z) = 2/9 ' (7.19) + - 

a * a  e_4Z~_~O+_~ ) min{y,z} > -2x.  
2/3 

Using (7.19) we write the Marchenko equations (5.14) as 

" ~176 ~ / F  F ]  a~(x ,y ) -  23 + + d~c-~'~- ' la~(x ,~)=o,  o < y < - 2 x ,  (7.20) 
2~ 

f 0  2w ~- a+a- e -By dz e ~z a~ (x, z) 
~[-(*' Y) 2Z (7.21) 

F ~+~-  e -~(4~+y) dz e-~a~(x, z) = - a + e  -~(2~+y), y > -2x.  
2~ 2~ 

The solution a~(z, y) of (7.20) and (7.21) have the form 

{ [ / ~ - e _ ~ . l  #~ +..~e p~(~)  ~ - ~ ] ,  0 < y < -2~,  a~ (x, y) (7.22) 
w~-(x) e-~y, y > -2z, 

where p• and w-~(x) are to be determined. Using (7.22) in (7.20) and (7.21) we get 

~(~) [(~ + ~)r - (~- ~)~-~], o < y < -2~, 

af(x, Y) : 2,3a • e_Z(2~+v ) e)2e4~] , (7.23) 
~(~) [(Z + ~)~ - (Z - y > - 2 ~ ,  
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where r ( x )  = (fl + r _ (fl _ e)3e4e~. Using (7.23) in (5.19) we get 

/ O~q-O~- [- 2 --r c)2ee(4:~q-y)] < Y - ( Z -  , 0 < - 2 x ,  

4fl ~ o~ + a -  e 2r 2~+ y ) (7.24) 
, y > --2x. 

Using (7.23) and (7.24) in (5.25) we obta in  

~2r = (~ -- O~+)(fl q" E)3 q_ 2(O~+)20~-(fl __ O~-) e 2ez q- (fl -- O~+)(~ -- ~)3 e4ez 
(fl_oL_)(~_f_~)3.q_ 20~+(o_)Z(fl_O~+)e2ez q_(fl_~_)(fl_r162 , X < 0 .  

(7.25) 
As in (7.21), the  numera tor  and the denominator  in (7.25) are posit ive when a + and a -  

have the same sign and are each bounded in absolute value by ft. Let t ing x --+ - c ~  in 

(7.25) we see tha t  e 2p = (fl - a + ) / ( f l  - a - ) .  As outl ined in Theorem 5.5, we can wri te  

P ( x )  and Q ( x )  for x < 0 using (7.23)-(7.25). 

Since 2 i k R •  approaches - 2 a  • as k --+ +00, from (3.13) we see tha t  Q ( x )  and 

P ' ( z )  contain Dirac-del ta  dis tr ibut ions at  x = 0 with coefficients 

qo = --o"-e2r176 -- o~+e-2r176 p~} = 2o~-e 2r -- 2o~+e -2r (7.26) 

where 
e2r = 4fl 2 - 4a+ fl + ~ + a -  

4t32 - 4 ~ - f l  + ~ + a - "  

Thus, having q0 and p~ in (7.26), we have completed the  recovery of Q(x) and P ( z )  for all 

x E R.  In the special  case ~+ = c~-, from (7.18) and (7.25) we get r = 0 for z E R.  Note 

tha t  in the  l imit ing case f12 = c~+~-,  i.e. when r = 0, we are in the generic case and we 

must  have a -  = ~+ = ~ in order to have R•  -- - 1 ;  in this case we get @(r = - 2 f l  5(z) 

and P ( x )  = O. 

Finally,  we remark  tha t  the solution of the  inverse scat ter ing problem in the  last three  

examples  can also be obta ined by solving the Riemann-Hilber t  problem in (5.2) directly. 

In  fact, whenever the  scat ter ing coefficients are ra t ional  functions, the  Riemann-Hi lber t  

p rob lem in (5.2) can be  solved explicitly, leading to the  recovery of P ( z )  and  Q ( x ) .  

ACKNOWLEDGMENTS. This material is based upon work supported by the National 

Science Foundation under grant No. DMS-9501053. One of the authors (CvdM) is indebted 

to the Mathematics Departments at Virginia Tech and North Dakota State University for 

their hospitality and support during the visit in which a part of this research was performed 

and to C.N.R. and MURST for additional financial support. 



Aktosun, Klaus and van der Mee 315 

[AKV93] 

[AKV97] 

[cs89] 

[co81] 

[DT79] 

[Fa64] 

[ e61] 

[FGK94] 

[ORS64] 

[GF71] 

[GGK93] 

[Ja76] 

EJJ72] 

[SJ76a] 

[JJ76b] 

[Ka75] 

[Ne80] 

[PASS] 

REFERENCES 

Aktosun, T., Klaus, M., and van der Mee, C.: On the Riemann-Hilbert problem 
for the one-dimensional SehrSdinger equation. J. Math. Phys. 34, 2651-2690 
(1993). 
Aktosun, T., Klaus, M., and van der Mee, C.: Wave scattering in one dimension 
with absorption. J. Math. Phys., to appear. 
Chadan, K. and Sabatier, P.: Inverse Problems in Quantum Scattering Theory. 
2nd ed., Springer, New York, 1989. 
Clancey, K. and Gohberg, t." Faetorization of Matrix Functions and Singular 
Integral Operators. OT 3, Birkhs Basel, 1981. 
Deift, P. and Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. 
Math. 32, 121-251 (1979). 
Faddeev, L. D.: Properties of the S-matrix of the one-dimensional SchrSdinger 
equation. Amer. Math. Soc. Transl. 2, 139-166 (1964)[Trudy Mat. Inst. 
Steklova 73, 314-336 (1964) (Russian)]. 
Feldman, I. A.: On an effective solution of certain integral equations on the 
line and on the half-line. Izv. Akad. Nauk Mold. SSR 10 (88), 16-26 (1961) 
(Russian). 
Feldman, I., Gohberg, I., and Krupnik, N.: A method of explicit faetorization 
of matriz functions and applications. Integral Equations Operator Theory 18, 
277-302 (1994). 
Gel'land, I. M., Raikov, D. A., and Shilov, G. E.: Commutative Normed Rings. 
Chelsea Publ. Co., New York, 1964. 
Gohberg, I. C. and Feldman, I. A.: Convolution Equations and Projection Meth- 
ods for their Solution. Transl. Math. Monographs 41, A.M.S., Providence, 1974 
[Nauka, Moscow, 1971 (Russian)]. 
Gohberg, I., Goldberg, S., and Kaashoek, M. A.: Classes of Linear Operators. 
Vol. II, OT 63, Birkhguser, Basel, 1993. 
Jaulent, M.: Inverse scattering problems in absorbing media. J. Math. Phys. 
17, 1351-1360 (1976). 
Jaulent, M. and Jean, C.: The inverse s-wave scattering problem for a class of 
potentials depending on energy. Comm. Math. Phys. 28, 177-220 (1972). 
Jaulent, M. and Jean, C.: The inverse problem for the one-dimensional Schr6- 
dinger equation with an energy-dependent potential. L Ann. Inst. Henri Poin- 
car@ A 25, 105-118 (1976). 
Jaulent, M. and Jean, C.: The inverse problem for the one-dimensional SchrS- 
dinger equation with an energy-dependent potential. II. Ann. Inst. Henri Poin- 
car@ A 25, 119-137 (1976). 
Kaup, D. J.: A higher-order water-wave equation and the method for solving it. 
Progr. Theor. Phys. 54, 396-408 (1975). 
Newton, R. G.: Inverse scattering. L One dimension. J. Math. Phys. 21, 
493-505 (1980). 
Partington, J. R.: An Introduction to Hankel Operators. London Math. Soc. 
Student Texts, Vol. 13, Cambridge Univ. Press, Cambridge, 1988. 



316 Aktosun, Klaus and van dcr Mcc 

[Po82] Power, S. C.: Hankel Operators on Hilbert Space. Research Notes in Mathemat- 
ics, 64, Pitman, Boston, 1982. 

[SS95] Sattinger, D. H. and Szmigielski, J.: Energy dependent scattering theory. Differ. 
Integral Eqs. 8, 945-959 (1995)o 

[SS96] Sattinger, D. H. and Szmigielski, J.: A Riemann-Hilbert problem for an energy 
dependent Schrb'dinger operator. Inverse Problems 12, 1003-1025 (1996). 

[Ts81] Tsutsumi, M.: On the inverse scattering problem for the one-dimensional Schr6- 
dinger equation with an energy dependent potential. J. Math. Anal. AppI. 83, 
316-350 (1981). 

Tuncay Aktosun 
Dept. of Mathematics 
North Dakota State Univ. 
Fargo, ND 58105 
aktosun@plains.nodak.edu 

Martin Klaus 
Dept. of Mathematics 
Virginia Polytechnic Inst. 

and State Univo 
Blacksburg, VA 24061 
klaus@math.vt.edu 

MSC Primary 34A55, 81U40, Secondary 73D50 

Cornelis van der Mee 
Dipartimento di Matematica 
Universit& di Cagliari 
Via Ospedale 72 
09124 Cagliari, Italy 
cornelis@krein.unica.it 

Submitted: August 25, 1997 


