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Abstract .  In this paper factorization results for transfer functions of Pritchard-Salamon nys- 
tems are obtained. In particular, transfer functions sufficiently close to the identity operator are 
shown to have a canonical Wiener - Hopf factorization. Moreover, the Bounded Real Lemma is gen- 
eralized to Pritchard - Salamon systems and applied to  relate left and right canonical Wiener - Hopf 
factorizations of their transfer functions. 

1. .Introduction 

In the theory of H" -control and in particular in the description of all solutions 
of the Nehari problem one encounters the following problem (see [GGLD]). Given 
W(A) = G( -X)*JG(X), where G(X) is a stable transfer function with astable inverse, 
and J = J' = J - l ,  one seeks a factorization of the form W(X) = Z( - x) 'JZ(X) ,  
where Z(X) and its inverse are antistable. In other words, given a left canonical 
Wiener - Hopf factorization of W(X) one is looking for a right canonical Wiener - Hopf 
factorization of W (A). 

In case the stable transfer function G(X) is rational, and thus the corresponding sys- 
tem is finite dimensional the unsymmetric version of this problem was solved in [BR], 
using methods from [BGKl]. A generalization to infinite dimensions in the context 
of realizations of the type considered in [BGKZ] was given in [BC]. The symmetric 
version of the problem of left versus right factorization, with applications to the Ne- 
hari problem, was studied in [R] within a class of realizations with bounded input and 
output maps, a class smaller than the class studied in [BGKZ]. (See also [CZl] for this 
case.) 
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This paper concerns the general problem of left versus right factorization for a class 
of infinite dimensional systems which has been introduced in [PS, S] and is known as 
the Pritchard - Salmon class (cf. [C, CLTZ, vK1, KMR]). Systems from this class have 
been succesfully used in the analysis of control and optimization problems involving 
partial differential equations and/or delay equations (see, e. g., [vKl], compare also 
[CZl]). In [CR] the symmetric version of the problem was studied within the context 
of the class of realizations considered in the present paper, i. e., the Pritchard - Salmon 
class. In the latter paper, however, the input and output spaces were taken to be finite 
dimensional. In [CZ2] a factorization approach to the Nehari problem was given for 
the case where the input and output spaces are allowed to be infinite dimensional. 

If G(X) is the transfer function of a stable Pritchard-Salmon system, then W(X) is 
not necessarily the transfer function of a stable Pritchard -Salmon system. This mo- 
tivates the introduction of a generalization of the class of stable Pritchard - Salmon 
systems, as to encompass noncausal systems. The definition of these systems is given 
in terms of so - called extended Pritchard -Salmon realizations, where the noncausal- 
ity forces one to employ bisemigroups (as introduced in [BGKP, BGK31) instead of 
semigroups. This class of systems is introduced in Section 3, while some elementary 
properties of such systems are discussed in Section 4. We will draw heavily on [KMR] 
where basic results on the corresponding (causal) Pritchard - Salmon systems were 
derived and the class of functions that may occur as transfer functions of Pritchard - 
Salmon systems was described directly. Section 2 is of a preparatory nature and 
contains a review of the theory of bisemigroups. 

The main result of this paper is a canonical Wiener-Hopf factorization theorem 
for transfer functions of extended Pritchard-Salmon (PS) realizations in terms of 
complementary pairs of invariant subspaces of the bigenerator of the bisemigroup 
governing the state space evolution of the system and that of the bisemigroup governing 
the state space evolution of the system obtained by reversing the roles of input and 
output. This result is presented in Section 5.  Explicit formulas for the factors in a 
factorization that is canonical, apart from the fact that convergence at infinity is in 
the strong operator topology instead of the norm topology, are given in terms of the 
operators appearing in an extended PS -realization of the operator function under 
consideration. In particular, in case the transfer function of an extended PS - system 
is close to the identity operator it can be shown that these so - called quasi - canonical 
factorizations (both left and right) exist. For transfer functions of stable PS -systems 
the Bounded Real Lemma is derived. As in the finite dimensional case, it is shown that 
if W(X) is the transfer function of a stable PS-system and IlW(X) - 111 < 1 for real 
A, then a certain algebraic operator Riccati equation has a solution, and conversely. 
All of these results exist for finite dimensional systems (see, e. g, [BGKl, GRa, GRu]); 
some of them exist for a class of infinite dimensional systems described by so-called 
BGK realizations [BGKZ, BGK31 and for a class of infinite dimensional systems used 
to study abstract transport equations [GMP]. They are new for the class of extended 
Pritchard - Salmon realizations, with the exception of the Bounded Real Lemma for 
the class of stable PS-systems, which was derived earlier in [vK2], but for which we 
give a dif€erent proof. 

In the final section we return to the problem outlined in the beginning of this in- 
troduction. Necessary and sufficient conditions are given for the existence of a right 
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quasi - canonical factorization of the transfer funtion if this function is known to have 
a left quasi - canonical factorization. 

We conclude this introduction with a few words about notation. We denote the 
open upper and lower half-planes by C+ and C-, and their closures (including 00) 

by 6+ and 6-, respectively. If X and Y are complex B a n d  spaces, we denote by 
L ( X ,  Y) the set of bounded linear operators from X into Y; if X = Y we write L ( X )  
instead of L ( X , X ) .  The domain of an operator T (X + X) is denoted by D(T).  Its 
kernel, range, resolvent set and spectrum are denoted by Ker T, Im T, p ( T )  and a(T),  
respectively. For 1 5 p < 00, ( E , p )  a measure space and Y a complex Banach space, 
L , ( E ; Y )  denotes the Banach space of all strongly measurable functions f : E + Y 
such that I l f (  .)lly E L,(E), endowed with the norm l l f l l  = [JE Ilf(t) l l”yp(t)]” if 
1 I P < 00 and llfllp = e s s ~ ~ ~ ~ ~ ~ l l f ( t ) l l ~  if p = 00 (cf. [DU]). 

2. Bisemigroups 

A strongly continuous semigroup S( t )  on a complex Banach space X is called expo- 
nentially decaying if IlS(t)II < Me-Qt for certain M, (L > 0. If A (X + X) denotes 
its infinitesimal generator, i. e., S(t)  = etA,  then its spectrum a(A)  is contained in the 
closed half - plane of all X with Re X < -a. 

Let X be a complex Ban& space and let A (X + X) be a linear operator defined 
on a linear subspace D(A)  of X with values in X. We say that A is exponentially di- 
chotomous if A is densely defined (i. e., D(A)  is dense in X) and X admits a topological 
direct sum decomposition 

(2.1) x = x- a3 x+ 
with the following properties: the decomposition reduces A, the restriction -A- of 
-A to X -  is the infinitesimal generator of an exponentially decaying semigroup, and 
the same is true for the restriction A+ of A to X+. The projection of X onto X- 
along X+ is called a separating projection for A. This projection is uniquely deter- 
mined by A. Now suppose A (X + X) is exponentially dichotomous, and let (2.1) 
be the decomposition having the properties described above. With respect to this 
decomposition, we write 

A = ( A -  O ) .  
0 A+ 

The bisemigroup E( . ; A) generated by A is then defined as follows: 

-e tA-Px , t < 0, 
e t A + ( I - P ) z ,  t > 0, 

E ( t ; A ) z  = 

where P is the separating projection for A. The operator A will sometimes be referred 
to as the bigenerator of E( * ;A). Note that the function E( ;A)  takes its values in 
t ( X ) ,  the Banach space of all bounded linear operators on X. If A is bounded, A 
is exponentially dichotomous if and only if a(A)  does not meet the imaginary axis, 
and then the separating projection is just the Riesz projection corresponding to the 



74 Math. Nachr. 196 (1998) 

part of u(A)  lying in the open right half-plane. A detailed theory of exponentially 
dichotomous operators may be found in [BGKZ, BGK31. 

Since -A- and A+ generate exponentially decaying semigroups, there exists a con- 
stant w > 0 such that 

If (2.3) is fulfilled, we say that A (or the bisemigroup generated by A) is of exponential 
type --w. Note that (2.3) is equivalent to 

sup eWltlllE(t; ~ ) l l  < 00, 

The infimum of all -w such that A is of exponential type -w will be called the 
exponential growth bound of A (or of the bisemigroup generated by A). 

Recall (cf. [HP, PI) that the spectrum of the generator of an exponentially decaying 
semigroup is a closed subset of the set of all X with ReX 5 -w. As a result, if A is 
exponentially dichotomous, then {A  E C : IFteXl < w }  c p(A) for some w > 0. 

For later use we mention a few simple facts about bisemigroups. Suppose A (X --t X) 
is exponentially dichotomous, and let E( ; A) be the corresponding bisemigroup given 
by (2.2). Take z E X. The function E( ; A ) z  is continuous on R \ {0} and Bochner 
integrable on R. It also has a jump discontinuity at the origin and in fact 

t # O  

E(O-;A)s  := lim E ( t ; A ) z  = -Pz, E(O+; A)z  := lim E ( t ; A ) z  = (I - P ) z  , 
:to w 

where P is the separating projection for A. If z belongs to the domain D(A) of A, 
then E(  . ; A ) z  is differentiable on R \ (0) and 

d 
dt - E ( t ; A ) z  = E ( t ; A ) h  = A E ( t ; A ) s ,  t # 0. 

Obviously, for z E D(A)  the derivative of E( ; A ) z  is continuous on IR \ {0}, Bochner 
integrable on R and has a jump discontinuity at the origin. From (2.2) it is clear that 

E(t ;A)P = P E ( t ; A )  = E ( t ; A ) ,  t < 0 ,  

E ( t ; A ) ( I  - P )  = ( I -  P ) E ( t ; A )  = E ( t ; A ) ,  t > 0 .  

Moreover , the following semigroup properties hold: 

- E ( t ; A ) E ( s ; A ) ,  t ,  s < 0 ,  

E( t ;  A ) E ( s ; A )  , t ,  s > 0. 
E ( t + s ; A )  = 

3. Extended Pritchard - Salamon realizations: basic proper- 
ties 

Let V and W be complex Hilbert spaces (not necessarily separable), and let T : W --t V 
be a fixed continuous and dense imbedding. For A (V 3 V )  a possibly unbounded 
operator we define the part Aw of A in W by 

D ( A w )  = (2 E W : T X  E Z)(A), ATX E T[WJ}  , ~ ( A w z )  = AT%, 2 E Z)(Aw). 
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Then Aw (W + W) is a closed operator whenever A (V -+ V )  is closed, but it may 
fail to be densely defined, even if A (V + V )  is densely defined. 

Let Y be a complex Hilbert space. We call 8 = ( A , B , C ; V , W ; Y )  an extended 
Pritchard - Salamon realization (or an extended PS - realization for short) if 

1. - iA (V -+ V) is exponentially dichotomous; 
2 .  The part -iAw of -iA in W is exponentially dichotomous and 

( 3 4  E( * ; - ~ A ) T  = TE( - ; - iAw)  ; 

3.  B E L(Y, V )  and C E L(W, Y); 
4. There is a bounded linear operator A0 : V -+ L2(R; Y )  such that 

A e T x  = C E ( * ; - i A w ) x ,  x E W ;  

5 .  There is a bounded linear operator re : L2(1R; Y )  -+ W such that 
00 

E ( s ;  - iA)Bd(s)  ds ( E  T[W])  I d E L2(R; Y )  . L TI?@@ = 

Note that for every t E R there is a bounded linear operator re,t : Lz(R;Y)  -+ W 
such that 

Tre,t 4 = Loo ~ ( t  - s; - i ~ ) ~ d ( s )  (E ~ 1 )  , 4 E L ~ ( R ;  Y) , 
oo 

namely the operator satisfying 

7re,t 4 = 7re d ( t  - 1, 6 E Lz(R; Y) . 
In (KMR] a definition of a Pritchard -Salmon realization 8 appears that differs from 

the present definition of an extended Pritchard - Salamon realization in the following 
respects. In the first place - iA (V -+ V )  and its part in W are generators of strongly 
continuous semigroups instead of exponentially dichotomous operators. Moreover, 
these semigroups need not be exponentially decaying; in fact when they are, 8 is 
called a stable Pritchard - Salamon realization. Finally, instead of Y one has an input 
space U and an output space Y such that B E L(U, V )  and C E L(W, Y), where U and 
Y may be different. Nevertheless, we have the following connection between extended 
PS -realizations and stable PS - realizations; its proof may be given by inspection. 

Proposition 3.1. Let 8 = (A ,  B , C ; V ,  W ; Y )  be an extended PS-realization, and 
let P and Pw denote the separating projections of the bisemigroups E ( .  ; -iA) and 
E( ; - iAw) ,  respectively. With respect to the decompositions of V and W as direct 
sums of the ranges V- and W- and the kernels V+ and W+ of P and Pw, mpectively, 
wn'te 

A = ("- ">, B = ("-), B+ C = (C- C+). 
0 A+ (3.2) 

Then 8* = (FA*,  Bk, C* ; V* , W* , Y, Y )  are stable PS - realizations. Conversely, let 
8*=(rA*,B*,C*; V', W*,Y,Y) be stable PS-realizations, and define V=V-  @V+, 
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W = W- @ W+, and A,  B and C as in (3.2). Then 8 = ( A ,  B , C ;  V , W ; Y )  is  an 
extended PS - realization. 

The definition of a PS - realization as given in [KMR] was inspired by the definition 
of a Pritchard-Salmon system as given in [PS, CLTZ]. In these works, as well as in 
the later [vKl], the operator T : W + V is always the natural imbedding, which, as 
we have seen in [KMR], complicates the duality theory. Prior to [vKl], all references 
on the subject include the requirement D(A)  c W in the definition of a Pritchard- 
Salamon system. Both in [vKl] and our previous paper [KMR] this class of systems 
was studied without this requirement. 

The next lemma is a technical result immediate from Lemma 1.2 in [KMR] and 
Proposition 3.1. 

Lemma 3.2.  Let 8 = ( A ,  B,  C; V, W ;  Y )  be an extended PS-realaxation, and let -we 
be the maximum of the growth bounds of the bisemigroups E( . ; - iA)  and E( . ; - i A w ) .  
Then for every p E [O,we) there art constants ~ ( p )  and B(p) such that 

(3.3) x E V ;  

These statements are also valid if LZ is replaced bg L1. 

The number -we defined in the lemma above plays an important role in the sequel, 

Making D(A)  into a Hilbert space by endowing it with the graph norm l l z l l ~ ( ~ )  = 
and will be used throughout without further explanation. 

[llz#, + l lA~11$]~ '~,  we have (cf. Proposition 3.1, and [KMR], Proposition 1.4): 

Proposition 3.3. Let 8 = (A ,  B ,  C; V, W ;  Y )  be an &ended PS-rwrlixation. Then 
there exists a unique c : V ( A )  + Y such that Cx = CTX, x E V ( A w ) ,  and C 
is A -bounded, a. e., E L(V(A) ,  Y )  where V ( A )  is endowed with the gmph norm 
11 * II 'D(A). 

Using 6' : V ( A )  + Y as well as the bounded linear operators 

(3.5) C = CA-' : V + Y ,  B = T-'A-'B : Y + W ,  

there are three equivalent ways of defining the transfer function of an extended PS- 
realization 8 = (A, B,  C; V, W ;  Y) (cf. Proposition 3.1, and (KMR], Propositions 2.1 
and 2.2), namely 

(3.6) 

W(X) = I + C ( X - A ) - ' B  

= I + 6A(X - A)- 'B 

= I + C A ~ ( X  - A ~ ) - ~ S  , 
where IIrn XI < we. Note that, in contrast to (KMR], we have inserted the term I in the 
definition of We( a ) .  In other words, we always assume implicitly that the feedthrough 
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coefficient of an extended PS-realization is equal to the identity operator I on Y 
The reason for this choice will become clear in Theorem 4.2. 

From Proposition 3.3 and (3.5) we readily derive the following identities: 

(3.7) (Ae.)(t) = CE(t; - iA)z ,  2 E D(A) , 

(3.8) &A-'3) ( t )  = CE(t; -iA)z , 2 E V , 
M and 

(3.9) A$,'re 6 = 1, E(t; -iAw)&b(t) dt , 4 E L2(lR; Y )  . 

The weighting pattern of an extended PS-realization B = (A ,B,C;V,  W ; Y )  is 
defined as (cf. [KMR]) 

ke : IR + L(Y)  , ke(t)u = (AeBu)(t) .  

From (3.3) and B E L(Y, V) we immediately find for every p E [O,we) that 

A similar estimate holds with LZ replaced by L1. In analogy with Eq.  (1.5) of [KMR] 
using I as the feedthrough coefficient, we now define the input-output operator by 

J-00 

is an invertible operator on L z ( R ; Y )  such that (27r)-'i2F is unitary [DU], we have 
the following result (cf. Proposition 3.2, and [KMR], Corollary 2.3): 

Proposition 3.4. Let B = (A,  B ,  C; V, W ;  Y )  be an extended PS-realization. Then 
the input - output opemtor TO i s  a bounded linear opemtor on L2(1R; Y )  satislying 

(3.10) (%)(A) = We(~)4(X),  x E IR. 
-_. -1- ~ 

The following analogous result, however, requires a proof. 
~ ' s ? % - & ?  

Proposition 3.5. Let B = (A ,  B ,  C; V, W ;  Y )  be an extended PS-realization. Then 
the operators C and B defined by 

(3.11) 
00 

(Ct$l>(t) = -i LW CE(t - s; -iA)&(s) ds ; 
W 

(3.12) (B&)(t)  = - i ~ - l J _ ,  E(t  - S; -iA)B&(s) ds,  
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are bounded from L2(R; V )  into L2(R; Y )  and from Lz(IR; Y )  into Lz(R; W ) ,  respec- 
tively, and satisfy 

(3.13) ( a ) ( A )  = C(X - A)-'Jl(A) (E&) (X )  = Aw(A - Aw)- 'aJr(A)  1 

where j ( A )  = J-ww eaA'f(t) dt.  

Proof .  Let us define the auxiliary bounded operators c : L2(R; W )  -) Lz(R; Y )  
and B : Lz(R; Y )  + Lz(R; V )  by the Bochner integrals 

00 

(C+l) ( t )  = -i [ CE(t  - s; - iAw)+l(s)  d s ,  
J --m 

J-00  

where the boundedness is immediate from the exponential decay of the bisemigroups. 
By Fourier transformation we get 

Now note that 

Further (cf. [GGK], p. 410), A(X - A)-' and Aw(A - Aw)-' vanish in the strong 
operator topology on V and W as X + f o o  and hence are bounded in L(V)  and L(W) 
for A E R. Hence the premultiplication Ml of a vector in Lz(R; V )  by c(X - A)-l 
is a bounded operator from Lz(R; V )  into &(R; Y) and the premultiplication Mr of 
a vector in L z ( R ; Y )  by Aw(X - A w ) - ' k  is a bounded operator from L2(R;Y) into 

Now note that for every t E R the right-hand sides of (3.11) and (3.12) are vectors 
in Y and W whose norms are bounded above by 7(0)llq5111t2(~;v) and /3(0)IJ&llLp(lR;Y), 
respectively (cf. (3.3) - (3.4)). hr the r ,  

L Z ( R  W ) .  

(T-'MiFT+i)(t) = (CT+l ) ( t )  = (C$l ) ( t )  I +l E ~52(R; w) ; 

7(T-'MrT+r)(t) = T(B+r)(t) = (B+r)(t)> +r E L z ( R ; Y ) .  

Consequently, C and B are bounded as claimed above. 0 

Note that the operators Te, C and 23 satisfy the identity 

where B is considered as a bounded linear operator B : Lz(R, Y )  + Lz(R; V )  and C 
is considered as a bounded linear operator C : L2(R; W) + L2(R; Y). 
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Generating extended Pritchard - Salmon realizations 

In this section we construct, starting from two extended PS - realizations 81 and 8 2 ,  
an extended PS-realization 8, called the product of 81 and 8 2 ,  such that We(X) = 
We,(X)We,(X) for X E R. Next, given the extended PS-realization 8 we define the 
extended PS-realizations O x  and O',  called the associate and the adjoint extended 
PS-realization, respectively, such that Wex (A) = We(X)-' and Wp(X) = W(x) '  for 
X E R. 

We begin with the product of two extended PS-realizations. 

Theorem 4.1. Let81 = (Al1B1,C1;V1,W1;Y) and82 = (Az,Bz1Cz;V2,Wz;Y) be 
extended PS- realizations. Put 

where 6 2  is defined as in Proposition 3.3. Then 8 = (A,  B ,  C; V, W ;  Y )  is an extended 
PS - realization. Moreover, 

(4.1) we(X) = We, (XIWe, (4 I h  XI < f i n  (we,, we,) . 

The PS -realization 8 as defined in the theorem is called the product of 81 and 82.  

Proof. Fkom Proposition 3.3 it is clear that BlCz is an A2 -bounded operator into 
Vl , which makes A with D(A) = D(A1) @ D(A2) well-defined. 

Put 

m where 
F(t )z  = -i J_, E(t  - S; -iAi)Bi(Ae,~)(t~) ds , z E Vz , 

and 

where 
00 

Fw(t)z = -i7r1 LW E(t  - s; -iA1)BlC2E(s; -iAz.w)zds , z E W2. 

Then A@, E L(V2,Lz(R; Y ) )  implies that F(t)  E C(v2, VI), Fw(t) E C(Wz, Wi)  and 

F(t)72 = 71FW(t) 1 

and hence 
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Next, for (51 Z Z ) ~  E V = V1 @ VZ we have 

Indeed, for 2 2  E D(A2) one can use (3.7) to derive this formula. As all three parts in 
the identity above are bounded in V, the identity holds for all (21 Z Z ) ~  E V. Hence 
E( . ) = E( ; - iA)  is an exponentially decaying bisemigroup. Similarly, by applying 
(3.13) to el,  we have for (21 ~ 2 ) ~  E W 

00 

- a  LW e'"Ew(t) (::) dt 

where the last equality follows with the help of (4.2). Indeed, denoting the identi- 
cal left and middle members of the above equality by Gw(A) ,  we see directly that 
~ [ 1 m G w ( A ) ]  C D(A)  and (A - A)-'T = TGw(A) ,  so that Gw(A)  is the resolvent of 
the part Aw of A in W. Hence E w (  a )  = E( . ; 4 A w )  is an exponentially decaying 
bisemigroup. 

Next, we compute ( n e  ( z : ) )  ( t )  for (z1 z ~ ) ~  E V. Taking Fourier transforms, 

using (3.10) for 8' , and (3.13) for 81 and 8 2 ,  and then taking inverse Fourier transforms 
we compute that 

where the integral is to be understood as a Pettis integral. Hence by Proposition 3.4 

By computing 7re 4 we also find 

where in terms of a Pettis integral 

Hence, for all 9 E L2(R;  Y )  
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Finally, (4.1) follows from the first line of (3.6). 0 

Let 0 = ( A ,  B , C ;  V, W; Y )  be an extended PS-realization. Put AX = A - B e  
viewed as an operator from D ( A )  to V. Then for X 4 a ( A X )  U o ( A )  the operator 
We(X) is invertible and we have 

we(x)-l = I - C(X - A ~ ) - ’ B .  

Indeed, this is an easy consequence of the fact that B e  may be written as (A - A X )  - 
(A  - A). Put e x  = ( A X ,  B, -C; V, W ;  Y). The next theorem shows that under certain 
additional conditions ex is an extended PS -realization and that its transfer function 
is We(X)-’ for X E R. 

Theorem 4.2. Let 0 = ( A ,  B ,  C; V, W ;  Y )  be an &ended PS-realization, and put 
A X  = A - B e .  Suppose there exist v E (0 ,we)  and M > 0 such that We(X) i s  
invertible on Y with (lWe(X)-’ 11 5 M if IIm XI 5 v. Then O x  = ( A X ,  B ,  -C; V, W ;  Y) 
is an extended PS - realization, and 

(4.3) W,x(X) = We(X)-’ , X E R. 

Proof.  Note that D ( A X )  = D(A) .  Let A$ be the part of A X  in W. Consider the 
full line convolution equation 

(4.4) H ( t ) z  + ( P )  J ke(t - s ) H ( s ) z ~ s  = - i (Aez) ( t ) ,  t E IR \ (0) , 

where z E V and the integral is to be understood as a Pettis integral. Then for every 

00 

-W 

defines the unique solution of (4.4) in L2(R; Y). Because epl.IABz E &(R; Y) for every 
z E V (cf. (3.3)) and IlWe(X)-’)I 5 M if I I m X I  5 u (< we), we have 
e”I‘IH( .)z E L,(R; Y) and 

Next, put 

(4.6) S(t )z  = E ( t ;  -iA)z - E(t  - S; - i A ) B H ( s ) ~ d s  , t E R \ (0) , 

for z E V, and 

Sw(t)z  = E(t;  -iAw)z - 7-l E( t  - s; - i A ) B H ( s ) ~ z d s  , t E R \ (0) , 

for 2 E W. Then S( .)z E L2(R; V) for z E V, Sw( -)z E L2(R; W) for z E W (cf. 
Proposition 3.51, and 

S(t)T = T S W ( t ) ,  t E  R\(O}. 
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F'rom (3.4) and (4.5) we get 

llsw(t)zllw 5 const. e - ' ~ t ~ ~ ~ z ~ ~ w  

By Fourier transformation, for z E V 
00 

eixtS(t)xcit = (A  - A)-'x - (A - A)-'sA(A)z 
- a  Lw 

= (A - A)-'z - (A - A)-'BWe(A)-'C(A - A)-'z 
= ( X - A X ) - ' x ,  

whereas for x E W 
W 

-i J_, ei"Sw(t)z cit 

(4.7) = (A - Aw)- 'z  - Aw(A - A w )  -'BWe(A)-lC(A - Aw)-'z 

= ( A - A ; ) - ' z .  

To justify the last equality, we denote the equivalent left and middle members of 
(4.7) by Kw(A) and find TKw(A) = (A - AX)- '7 ,  so that Kw(A) is the resolvent of 
the part A$ of A X  in W. Hence, - iAX and -iA$ are exponentially dichotomous, 
S(t)  = E(t; - i A X ) ,  and Sw(t) = E(t;  -iA$). 

Now observe that for every z 6 W 

hex T X  + Ae x = iCBH( * ) T z ,  

where C is to be read &s an operator from L*(R;  W) into Lz (R; Y). Then the bound- 
edness of C and Ae, (4.5), and Proposition 3.5 imply 

I l~exzll~2(nr;y) I const- 1 1 ~ 1 1 ~  I z V .  

Next, observe [cf. (4.4) and (3.12)] 

E( t ;  - i A X ) z  - E(t;  -iA)x = --ir(BH( * ) z ) ( t )  , x E V .  

Then, by Proposition 3.5 and (4.5), 

eYl'lllBH(. ) W I L , ( R W )  5 const. IMIY , 

IlBH( * )B4ILI(IR;W) 5 const. Il.llY 

so that 

This implies, by (3.13), 

Now, for E L,(lR; Y) we obtain from (4.6) 
00 W 

I'#xt$-I'e4 = - 7 - l  lw 7 - l  lm E(t - s; - iA)BH(s)B#(t)  ds dt . 
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With the help of (4.8) we then get 

l l r e x 4  - re 4llw I CH I I~IIL~(IR;Y) - 
As a result, ex = ( A X ,  B,  4; V, W ;  Y )  is an extended PS-realization. 0 

Corollary 4.3. Let 8 = (A ,  B ,  C ;  V, W ;  Y )  be an eztended PS-realization, .and put 
AX = A - B e .  Assume, in addition, that ePl.lke(.) E Ll (R;C(Y) )  fdr some p E 
(0,we). Then ( A X , B , - C ; V , W ; Y )  is an eztendedP.9-realization i f a ( A X ) n R =  0. 

Proof.  Under the additional hypothesis on ke, we have 

F'rom o ( A X )  n R = 0 it follows, taking into account the observation made before 
Theorem 4.2, that We(A) is invertible for real A. Combining these facts one sees 
that there exist v E (O,p] C (0,we) and M > 0 such that We(A) is invertible and 

0 

The extra assumption on ke made in Corollary 4.3 is always satisfied if Y is a 
finite - dimensional space (see [BGK2]). 

Finally, we define the adjoint 8' of an extended PS-realization 8. The adjoint of 
a Pritchard-Salamon system was defined before in [vKl]. However, the use of the 
natural imbedding of W into V in this adjoint realization coupled to the use of the 
same Hilbert state spaces V and W for the adjoint system led to a rather complicated 
definition. A more natural approach was the way in which the adjoint 8' of a PS- 
realization 8 was defined in [KMR]. The realization studied in [KMR] has the symmetry 
propeities 

reflecting the emphasis put on the weighting pattern. Below we will m o d e  the defi- 
nition of the adjoint PS -realization given in [KMR] to account for bisemigroups and 
for the more convenient symmetry relations 

I I W ~ ( A ) - ~ ~ I  5 M if I h A l  5 v. 

k p ( t )  = ke(t)',  w ~ ( A )  = we( - A ) ,  

k p ( t )  = ke(- t )* ,  Wp(A) = w~(X), 
because in the present paper the transfer function is emphasized instead of the weight- 
ing pattern. The crucial idea underlying the definitions of 8' in (KMR] and in the 
present paper is the reversal of the roles of the state spaces V and W and the use of 
the adjoint operator T* : V + W as the imbedding of V into W. 

Theorem 4.4. Let 8 = (A ,  B ,  C; V, W ;  Y )  be an extended P S -  realization. Then 
the six -tuple 8' = ( A b ,  C', B'; W, V ;  Y )  w also an extended PS - d i z a t i o n  and 

k p ( t )  = ke( - t )* ,  w ~ ( X )  = w~(X). 
The proof of Theorem 4.4 is very similar to the proof of Proposition 3.1 of [KMR]. 

The major changes are the use of bisemigroups instead of semigroups and some sign 
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differences due to the different symmetry relations in the weighting pattern and the 
transfer function. 

We will list some of the properties of 8' below. For their proofs we refer to [KMR] 
where some differences appear due to the different definitions of the adjoint. 

(a) (7.). = r .  
(b) The part of A b  (W + W )  in V is A* (V + V ) .  

(d) A,. = (re)* and re. = (A@)'. 
(e) Defining B^. and 6 in terms of 0' as C and h have been specified in terms of 8 

( c )  E ( t ;  -iA&) = E ( t ;  - iAw)*  and E(t;  -iA*) = E( t ;  -iA)*. 

in (3.5), we have 
(4.9) 5 = (B)*, F = (C)*. 

5. Factorization theorems 

In this section we study factorizations of transfer functions of extended PS - realiza- 
tions where the factors and their inverses are analytic in the upper and lower half- 
plane and have strong limits at infinity. These factorizations will be called left and 
right quasi - canonical. We also generalize the Bounded Real Lemma on the existence 
of solutions of certain Fticcati equations to extended Pritchard - Salamon realizations 
(see also (vK21). 

Let Y be a complex Hilbert space. Suppose W is an operator function defined on 
the extended real line with values in L(Y),  which is continuous in the norm on R and 
strongly continuous at infinity. Then 

W(X) = W+(X)W-(X), x E R U  (00)  , 
is called a left quasi-canonical factorization of W if 

1. W* extends to an operator function that is continuous in the norm on C * U R, 

2. W*(X) is boundedly invertible for all X E s; analytic on C *, and strongly continuous on f. C! 

3. W*( * ) - I  is strongly continuous on f C! . 
The factorization is called a canonical factorization (instead of a quasi-canonical 
factorization) if the continuity in conditions 1 and 3 is with respect to the norm 
topology instead of the strong topology. In particular, in case dimY < m the two 
notions coincide. 

A factorization of W of the form 

W(X)  = W-(X)W+(A) , x E R U  {m} , 

where the factors W* have the properties 1 - 3 stated above, is called a right quasi - 
canonical factorization of W. 

We begin with a general factorization result for transfer functions. 

Theorem 5.1. Let B = (A ,  B ,  C; V, W ;  Y )  be an &ended PS-mlizataon such that 

we(x) = I + c ( x  - A ) - ~ B  = I + C A ~ ( X  - ~ w 1 - 9  
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is boundedly invertible and llW~(A)-lll 5 M i f  IIm XI 5 u. Let A X  = A - B e  be 
defined on V ( A ) .  Suppose 

VABV,. = v ,  W _ @ w :  = W ,  

where Vh = ImE(O*;-iA), Wk = ImE(O*;- iAw),  V,X = ImE(O*; - iAX)  and 
W$ = ImE(O*; -aA&). Let Al ,  A2, A; and A,X be the parts of A ,  A ,  A X  and 
A X  in V-,  V+,  V-’ and V+”, respectively, and let Al,w,  A ~ , w ,  Allw and be the 
parts of A w ,  A w ,  A& and A& an W-,  W+, W_” and W r ,  respectively. If I’I and 
nw denote the projections of V onto V+” along V- ,  respectively, the projection of 
W onto W r  along W-,  put B1 = ( I -  n ) B  : Y + V- ,  B2 = IIB : Y + V,?, 
C1 = C(I  - IIw) : W- + Y and C2 = Cllw : W+” + Y .  Then 

81 = ( A i , B i , C i ; V - , W - ; Y ) ,  82 = (A2 ,Bz ,Cz ;V+ ,W+;Y) ,  

0; = (A:,Bl,-Cl;V-,W-;Y), 0,. = (Ag1B2, -C2;V+,W+;Y)  

are extended PS - realizations satisfyng 

(5.1) We(A) = We,(A)We,(X) , I h  XI I v ,  
and 
(5 .2)  We(A)-’ = W ~ ; ( X ) W ~ : ( X ) ,  I I ~ X ~  I U. 

Proof .  First note that all of the parts of operators mentioned in the statement 
of Theorem 5.1 are densely defined. Observe also that V- is A-invariant, W- is 
Aw -invariant, V,? is A X  -invariant, and W+” is A h  -invariant. Remark also that 
if fl and ?2 are the natural imbeddings of Wl into W and of W,X into W ,  then 
T~ = 7?1 : Wl + V1 and 7 2  = 772 : W,X + V .  are continuous and dense imbeddings. 

Define 
E l ( t )  = E( t ;  - i A ) ( I  - n) , 
Ez( t )  = IIE(t; -iA)II, 

E: ( t )  = ( I  - II)E(t; - i A X ) ( I  - II) , 
E: ( t )  = E(t; -iAX)II, 

Ei,w(t)  = E ( t ; - i A w ) ( I  - UW), 
EZ,W(t) = IIwE(t; - iA)IIw,  

E;w(t) = ( I  - IIw)E(t; -iA&)(I - IIw) , 
E&(t) = E(t;  - iA&)IIw, 

(5.3) 

where the operators El(t )  and E: (t) act on V l ,  the operators E2(t) and E; ( t )  act on 
V:, the operators El ,w( t )  and E t w ( t )  act on “1, and finally, the operators &,w(t) 
and Elw ( t )  act on W: . Then all eight operators &(t )  given by (5.3) satisfy 

II&(t)II I const.e-’ltl , 

and are strongly continuous in t with a jump discontinuity at t = 0. Moreover, for 

t E R \ (0) , 

r =  1,2 
00 00 

eixtE,? ( t )  dt = (A - A:)-’ ; 
- 2  1, eiXtEr(t) dt = (A  - Ar)-’ , 

m 
-i 1, 

00 

eiXtEr,w(t) dt = (A  - A,,w)-’ , -i Lm eiXtE,lw(t) dt = (A - . 
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Thus all eight expressions in (5.3) d e h e  exponentially decaying bisemigroups. We 
will henceforth write them in terms of their bigenerators. 

Next, we prove the identity 

(5.4) n T  = Tnw.  

Indeed, taking z E W and writing IIwz = E(O+;-iA&)wl for some w1 E W and 
(I - nw)z  = E(O-; -iAw)wZ for some wz E W ,  we find TIIWZ = E(O+; -iAX)7w1 E 
Imn~ and ~ ( 1 - I I w ) z  = E(O-; -iA)7w2 E Im ( I - n ) ~ .  Thus T ~ W T - '  is a projection 
defined on T[W] whose range and kernel are contained in the range and kernel of n, 
respectively, and which is a restriction of n. We then readily find (5.4). 

Using (5.4) we have for z E W1 

so that Ae; E L(V2, L2(R; Y ) ) .  Using (5.4) we have for 4 E L2(R;  Y )  

so that re, E L(L2(R; Y), W2). Similarly, for q5 E L2(R; Y )  we have 

m 

qre: 4 = E(s;  -iA;)Blq5(s) ds 

m 
( I  - II)E(s; - i A X ) ( I  - II)B$(s) ds 

m 
= Lm 
= ( I  - n) / E(s;  - iAX)B#(s )  ds 

= ( I -  n)7rexq5 
= ~ ( 1 -  I Iw ) reX  t$ , 

-m 

so that reX E L(L2(R; Y), W1). 
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The other four boundedness proofs for A and I' operators are more involved. First, 
we find from (3.15) and (4.3) 

(A - A&)-' - (A - Aw)-' = -Aw(A - Aw)-'BW@(A)-'C(A - Aw)-' 

(5.5) = -Aw (A - Aw)-'BWe(A)-'C(A - A)-'T 
= -Aw(A - Aw)-'BC(A - AX)- ' .  

Similarly, we find using (3.15) and (4.3) 

T [ ( A  - A%)-' - (A - Aw)-l]  = -TAW (A - Aw)-'I%Ve(A)-'C(A - Aw)-' 

= - (A - A)-'BWe(A)-'C(A - Aw)-' 

= -(A - A X ) - ~ B C ( A  - ~ ~ 1 - l  

= -TA& (A - A;)-'&c(A - A ~ ) - ' ,  

where 8' = T-' (A&)-'B E L(Y, W ) .  Hence 

(5.6) (A  - A;)-' - (A - ~ ~ 1 - l  = -A;(A - A;)-'&T(A - ~ ~ 1 - l .  

Thus (5.5), (3.7) and (3.13) imply 

[ E ( t ;  +A&) - E ( t ;  -iAw)] x = ( B A @ ~ T z ) ( ~ ) ,  

where B is as in Proposition 3.5. Analogously, (5.6), (3.7) and (3.13) imply 

x E W ,  

[E(t;  - iAG)  - E ( t ;  -iAw)] z = - ( B X A e T Z ) ( t )  , z E W , 

where (23'4) ( t )  = -i~-' J-", E(t - s; -iAX)B#(s) ds defines a bounded operator 
from &(R; Y )  into W .  Hence for x E W1 we have 

Aer 712 = -CIE( * ; - i A : , w ) ~  
= -C(I - IIw)E( * ; -ZAG) ( I  - I I ~ ) z  
= -CE( * ;  -iAw) (I - IIw)z - C ( I  - I I w ) B A ~ X T ( I  - ~ W ) Z  

= -&(I - II)Tz - C ( I  - I I ~ ) B A ~ x  (I - II)Tz , 

so that Aex E t(Vl;L2(lR;Y)). By the same token, for x E W2 we have 
1 

AezT2x = C2E(. ; - i A z , w ) ~  
= CIIwE( * ; -iAw)IIwz 
= CE( .; -iA&)IIwz + C I I W B ~ A ~ X I I T S  
= -Ae(I  - ~ ) T Z  + C I I W B ~ A ~ X I I T Z  , 

so that Ae, E t(Vz;Lz(R; Y)). 
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The last two boundedness proofs for r operators require the use of ( J y d ) ( t )  = d ( - t )  
on L 2 ( R ; Y )  and ( J v $ ) ( t )  = $( - t )  on Lz(lR;V), as well as repeated use of (3.7) - 
(3.9). Furthermore, we need the following two analogues of (5.5) and (5.6): 

(A - Ax) - '  - (A - A)-' = - (A - A)-'BC(A - AX)- '  
= -(A - AX)-'BC(A - A ) - ' .  (5.7) 

Using (5.7), (3.7) applied to O x ,  and (3.14) we then get 

[E(t;  - i A X )  - E(t;  - iA) ]  z = (BAexX) ( t ) ,  x E V ,  

while (5.7), (3.7), and the boundedness of the linear operator gx defined by (Sxt$)(t) = 
-is-", E(t - s; - i A X ) B 4 ( s )  ds from L2(1R; Y )  into L2(R; V) (cf. (3.14) applied to 
O x )  imply 

[E( t ;  - i A X )  - E(t;  - iA)]  x = - ( B X A e  ~ ) ( t ) ,  x E V .  

For C$ E L2(R;  Y )  we have 

71 re, 4 

= T ( I  - n) [E(S; - ; A X )  - i E(s  - t ;  - iAX)BCE(t;  -iA) dt (I - n)B#(S) ds 1 
-00 L -00 J 

= ( I  - n) { 7 r o x  Q - i /m /m E(a;  - iAX)BCE(s  - a; - i A ) ( I  - n)B#(s) dsdo 
-w -00 

m where (CXq5)( t )  = i J-, CE(t - s; - iAX)#( s )  ds defines a bounded operator from 
L 2 ( R ;  V) into L2(R;  Y )  (cf. (3.12) applied to O x ) ,  so that re: E t (Lz (R;Y) ,  W2). 

0 This completes the proof, as (5.1) and (5.2) follow from Theorem 4.1. 

Theorem 5.2.  Let 0 = (A,  B ,  C; V, W ;  Y )  be an eztended PS-realization, and let 
We( .)- '  be uniformly bounded on tAe strip IIm XI 5 v for some v E (0,we). Then the 
following statements are equivalent: 
1. We( . ) has a left quasi - canonical factorization; 



Kaashoek/van der M e e l k ,  Factorization of PS - Realizations 89 

2. V = V- @I V+" and W = W- @I W+" , where V- , V+" , W- and W+" are defined in 

3. For every g E Lz(R+;  Y ) ,  the following equation is uniquely solvable in 
Theorem 5.1; 

L z ( R + ; Y ) :  

(5.8) 
00 

# ( t )  + (PI J ke(t - s ~ ( 8 )  

4. Put kl( .)x = - iB(Aex)(  . )  for x E V .  Then for every g1 E Lz(R+;V),  the 

= g ( t )  , t > 0; 
0 

following equation is uniquely solvable in LZ (R+; V )  : 

(5.9) 

5. 

A(t )  + (P) I" ki(t - s)#i(s) ds = gi(t) , t > 0 ; 

Then for every 
gr E Lz(R+; W ) ,  the following equation is uniquely solvable in the Hilbert space 

For $ E L z ( R + ; W ) ,  put (P)J," kr(t)$(t)dt = -XoC$. 

Lz (R+; W )  : 
W 

(5.10) #r(t)  + (P)/ kr( t - s )#r(s )ds  = g r ( t ) ,  t > 0 .  
0 

In (5.8) - (5.10) the integmls are to be understood 4s Pettis integmls. 

Proof. (2) I (1). This is the content of Theorem 5.1. 
(3) s (4) (5). Using Proposition 3.3 we write (5.8) - (5.10) in the form 

# + CB+# = 4+C+B# = g (E L z ( R + ; Y ) )  , 
41 + BC+41 = 91 (E Lz(R+; V ) )  1 

#r + B+C#r = gr (E Lz(R+; W ) )  1 

where C+ and B+ are defined as C and B but with the integration over R+. Since 

LZ (R'; V) and C : LZ (R+; W )  -) LZ (R'; Y )  are bounded, these three equations are 
uniquely solvable if one of them is uniquely solvable. 

C+ : Lz(R+; V )  -t Lz(R+; Y ) ,  f3+ : Lz(IR+; Y) -t Lz(R+; W ) ,  B : Lz(R+;  Y )  -t 

(1) a (3). If W has the left quasi-canonical factorization 

We(x) = w - ( x ) W + ( x )  , IImxl 5 v ,  

then (5.8) reduces to the Riemann - Hilbert problem 

W+(X)fjj+(X) + w-(x)-'&(x) = w-(X)-'j(x) , x E IR, 
where 
(5.11) &(A) = &/*- e"*#(t)dt, j ( A )  = 1" e'Atg(t) d t  , 

and d( t )  = -(P)Jr ke(t - s)#(s)ds  for t < 0, the integral being understood as a 
Pettis integral. From the unique additive decomposition 

w-(A)-Ij(A) = h+(X) + L ( A )  



90 Math. Nachr. 106 (1998) 

with i * ( X )  = f J,'" eiAth(t) dt for some h E L2(R; Y), we find the unique solution 

in L2 (R+; Y ) .  

(5.12) G ( t ) z  - i7-l 1 E(t  - S ;  -iA)BCG(s)zds = E ( t ;  - i A w ) z ,  t > 0 ,  

where z E W .  By our hypothesis its unique solution G( . )z belongs to LZ (R'; W). 
For all u 2 0 and t > 0 we have 

(5) I (2). Consider the vector - valued integral equation 
00 

00 

&(t + u)z - a /d E(t  - s; -iA)BCG(s + u)zds 

m 
= 7G(t + u)z - i J.  E(t  + - s; - ~ A ) B c G ( ~ ) ~  ds 

= 7 E ( t  + u; - iAw)z  + i E(t + u - s; -aA)BCG(s)zds 
10  

1 = 7E( t ;  - iAw)  E(u - s; -iA)BCG(s)zds 

1 = 7 E ( t ;  - iAw) E(u; - iAw)z  + i7-l E(u - s; -iA)BCG(s)z ds I" 
= TE(t;  - iAw)G(u)z , 

where we used in the one but last equality the fact that E(t; -iA)E(s; - iA) = 0 for 
t > 0 and s < 0. Thus 

G ( t + u ) z  = G(t)G(u)z ,  z E W ,  

As G( . )  is strongly continuous from the right at zero, we see that G(0) is a bounded 
projection on W. Further, if z E W, we have G(0)z  = 0 iff G ( t ) z  f 0 i fIE(t;  - iAw)z 
0 iff z E W-, so that KerG(0) = W-.  

Let us substitute E (  .;-iA&)G(O)z with z E W in the left-hand side of (5.12). 
Taking Fourier transforms we fmd for the left- hand side of (5.12) the vector function 
i+( a ) ,  where &(A)  = f Jtm e'"e(t) dt with e E Lp(R+;  W) and 

J -m 

Hence, 

which equals (X-Aw)-'(I-&)z because of KerG(0) = W-.  Thus W-CBImG(0) = 
W and Im G(0) c W+". Similarly, substituting E( - ; -iA&)z with x E W+ in the left - 
hand side of (5.12), we find (I - & ) E ( .  ; - iAw)z  for the right -hand side. Thus 
W- + W+" = W. Finally, because of the unique solvability of (5.12) we obtain 

i + ( X )  = (A - Aw)-'(I  - Pw)G(O)z,  

W-@W$ = W ,  
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so that G ( 0 )  is the projection of W onto W+" along W-. 
Taking t J. 0 in (5.12) we get for every x E W 

00 

G ( 0 ) x  = ( I  - Pw)s + i7-l  /d E(-s; -iA)BCE(s; -iA&)G(O)xds 

= (I - PW)Z + JyreAe TG(O)Z, 

where ( J y 4 ) ( t )  = # ( - t ) ,  and therefore 

IIG(0)a: - ( I  - Pw)zl(w 5 const. lIAe.rG(O)sllLP(R+;Y) L const. 1 1 ~ ~ 1 1 ~ .  
Thus there exists a bounded operator Q on V such that 

(Q - ( I  - P))Tz  = T(G(O) - ( I  - &))z, z E W .  

Hence V = V- fB V+" and Q is the projection of V onto V' along V-. 0 

Analogues of the following corollary have been proved for norm continuous operator 
functions belonging to certain operator algebras [GL] and for the transfer function of 
the linear system naturally occurring in abstract transport theory (GMP]. 

Corollary 5.3. Let 6 = (A ,  B,  C; V,  W ;  Y )  be an &ended PS-realization, and let 

SUP IlWdN - 4 l q Y )  < 1- 
(Im Xl<v 

Then We( . ) has a left and a right quasi - canonical factorhation. 

Proof.  Let H* be the closed subspaces of Lz(R;Y)  consisting of those h( . )  which 
can be written as h(X) = fit" eax*h(t)dt for some h E L 2 ( R f ; Y ) ,  and let 
TO : L 2 ( R ; Y )  + H+ and TO : H+ + L 2 ( R ; Y )  be defined in such a way that TOTO is 
the identity operator on H+ and TOTO is the orthogonal projection of L z ( R ; Y )  onto 
H+. Then (5.8) can be written in the equivalent form 

i+ + ao[We( * ) - 1)Tod+ = i j ,  

where i+ and i j  are given by (5.11) and belong to H+. Since TO and TO have unit 
norm, 

IlTo[We(*) - 11~011H+ I SUP Ilwe(8 - &(Y) < 1 
XEm 

and hence (5.8) is uniquely solvable in L2(R+; Y). As a result, We has a left quasi- 
canonical factorization. 

The existence of a right quasi -canonical factorization follows by applying the same 
0 

We note that Theorems 5.1 and 5.2 have counterparts involving right quasi - canon- 
ical factorization. This is also the case for Theorem 5.4 below, which generalizes the 
Bounded Real Lemma on the existence of solutions of Riccati equations. In [vK2] this 

argument to ( = ( -A ,  B, -C; V, W ;  Y), knowing that W.(X) = We(-X). 
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result was derived as a consequence of a result on general LQ-optimal control prob- 
lems for the class of PS -systems. The proof given below is based on our factorization 
theorems above. 

Theorem 5.4. Let 8 = (A ,  B ,  C; V, W ;  Y )  be an extended PS-realization, and let 
we( + ) - '  be uniformly bounded on the strip IIm XI 5 v .  Suppose u(A)  U o ( A w )  C C -. 
Then 

(5.13) 

for some vo > 0 if and only if the algebmic Rimti  equation 

(5.14) - ~ X A X  + ~ A ~ , X X  + X B B I ' X ~  + c*cX = o , x E v ( A ) ,  

has a solution X E L(V, W )  where X [ D ( A ) ]  C D ( A t , ) ,  

o ( A  + iBBI'X) c C- , o ( A &  - i X B 5 )  c C+ , 

and X r  = r * X v w  for some XVW E L(W,V). Here 5 is given in terms of the 
&ended PS - realization 8' by Proposition 3.3. Momover, X r  E C(W) is selfadjoint. 

= V @ W ,  I@ = W @ V ,  
Proof.  We split the proof into four parts. 
Part (a). Introduce $J = ( ,&&,&Q,m;Y)  where 

i = T @ T * ,  

A =  ( A -  O), B =  (:), c =  (0 - B e ) ,  
C'C At ,  

and D ( n )  = D(A)  @ D ( A t , ) .  Applying Theorem 5.1 to the extended PS-realizations 
8 = ( A ,  B ,  C; V, W ;  Y )  and 8' = (A t , ,  C*, B*; W, V ;  Y) one sees that 

is an extended PS-realization and thus rC, is an extended PS-realization. Further, 
the operator c E C ( D ( n ) ,  Y) as defmed in terms of $J in Lemma 3.1 is given by 

I 

8 = (0 -F), 
where E C(D(A' , ) ,Y)  is defined in terms of 8' as in Lemma 3.1. Note that 
B* = (B)*A', : D(A',) + Y (cf. (3.5) applied to 8*, and (4.9)]. The resolvent of A 
has the form 

- 

(A - A)-' 0 
(5.15) (A - A)-' = ( ( A  - A',)-'C*C(X - A)-' (A - Ah)- '  
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Further, (A)* is most easily described by specifying its resolvent, which is found by 
using the identity 

(A-A) - ' i  = i 

and is given by 

where we have employed (4.9). Using (5.15) we easily obtain the transfer function 
- 

W,(A) = I+C(A-A)- lE 

(5.17) 

= I - 5 (A - Ab)-'C*C(A - A)-'B 
= I - [We. (A) - Il[We(X) - I ] .  

For later use we define 

with domain D ( A )  = D ( A ) $ D ( A b ) .  Observe that its part (Ax) *  in I@ is not easily 
specified. 

Part (b). Suppose (5.13) is true. Because 

SUP I l ~ , ( A )  - I l l  I ( SUP IlWe(4 -1111 < 1, 
IImXI 5 vo IIm 4 5 ~ 0  

W,( ) has a left quasi - canonical factorization and hence 

v-$v: = v ,  I@-@I@f = I@. 

Since o ( A )  C C- and u ( A b )  C C + ,  (5.15) implies v- = (0) @ W. In the same way, 
since u(Aw) C C - and a(A*)  C Q: +, (5.16) implies @- = (0) @ V. Hence, there exist 
X w v  E C(V, W )  and Xvw E C(W, V) such that 

_ + L ^ W .  

Because for every w E W there exists v E V such that 

we find 
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(5.18) r'XVw = X W V T .  
Thus, noting that D ( A x )  = D((n), we get from Ax [D(A)  n C v .  that 

A x (  ixwv I ) = ( i x w v  I )A0 

for some operator 
and 

which implies (5.14). Note that (I ~ X W V ) ~  maps D(&) = D(A)  into D ( A x )  = 
D(A)  @ D ( A b )  and therefore X w v [ D ( A ) ]  C D ( A b ) .  hrther ,  a(&) C C - l  as Ao is 
similar to the part of A x  in l?'+". 

(V -+ v).  AS a result, D ( A ~ )  = D ( A ) ,  ~0 = A + i ~ g ~ w v ,  

C'C + i A b X w v  = i X w v  ( A  + i B F X w v )  , 

Let us now consider the identity 

( - i X v w  I ) A x  = A; ,w  ( - i X v w  I )  

for some A;,w (W + W). Then D(A; ,w)  = D ( A b ) ,  A;,w is similar to the part of 
A x  in v-', and hence O ( A ; , ~ )  c C+. We easily find that A;,w = A', - iXvwBB'  
and (5.14) is satisfied. 

Now X = XWV has all the properties required by Theorem 5.4, except possibly 
XVW = ( X w v ) '  which will be proved below. 

Part (c). Conversely, let X be a solution of (5.14) with the properties mentioned in 
Theorem 5.4 (except for the selfadjointness of XT) .  Then 

- 

w, 0) 
= I - 

= [ I + i F ( h - A i , , ) - ' X B ]  [ I - & X ( X - A ) - ' B ]  

= [I + i&A;,(A - Ai, , ) - 'XB] [I - i&Ai,,X(X - A)-'B] 

(A - Aly)-' [ - i X ( A  - A )  + i(X - Aly)X - X B S X ]  ( A  - A)- 'B 

(5.19) 
where (3.5) applied to 0' and (4.9) were employed. Then, inverting the two factors in 
(5.19), we find 

W,(X)-l = [I + i g X ( X  - Ao)-'B] [I - i g ( X  - A; ,w) - 'XB]  , 

where A0 = A + i B g X  satisfies a(Ao)  C 6- and A;,w = A b  - i X B 5  satisfies 
O ( A ; , ~ )  C C + .  Also, a ( A )  C C- and a ( A b )  C C+. Thus (5.19) is a right quasi- 
canonical factorization of W, and its factors and their inverses tend to the identity 

f operator in the strong operator topology as X + 00 in Q: . 
Note from (5.17) that W+ takes selfadjoint values on the real line. Taking adjoints 

in (5.18) it easily follows that 

W*(X) = [ I  + iB'(X - A')-'X'Aw&] [ I  - iB'X'(X - Aw)- 'Aw&] 

is also a right quasi -canonical factorization of W,, for which the factors tend to the 
identity operator in the strong operator topology as X -+ 00 in C f .  However, such a 
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right quasi -canonical factorization is readily seen to be unique. Thus for X E IR the 
two factors in (5.19) are each others adjoints and hence W,(X) 1 0 for all X E IR. But 
then 

Since We ( .  ) - I  is bounded on all strips IIm XI 5 vo with vo small enough, 

SUP IlWe(4 -111 c 1 
IIm Xl<vo 

for yo small enough. 

in (5.19) are each others adjoints, we obtain 
Part (d). It remains to prove that X T  E L(W) is selfadjoint. Using that the factors 

W,(X) = [I + iB'(X - A')- 'X*AwB] [I - iB'X'Aw(X - Aw)- 'B]  

= [ I  +ig(X - A;N)-'X;wB] [I - i S X C w ( X  - A)- 'B]  , 

where we used (4.9) and (5.7). The result is (5.19) with X replaced by Xcw. Taking 
inverses of the factors we find 

W,(X)-' = [I + i E X ; w ( X  - Al)- 'B]  [I - ig(X - A&)- 'XcwB]  , 

where A1 = A + i B F X t w  satisfies D(A1) = D ( A )  and a(A1) C C- and A& = 
A;, - i X ; , B g  satisfies D(Ag,w) = D(A',) and ~ ( 4 , ~ )  C C+. This implies 

A x (  iXCW I ) = ( i x c w  I )A1 

on D ( A l )  = D(A) .  Hence Im(I  iX;w)T  is an A x  -invariant subspace of V @ W  and 
the restriction of Ax to this subspace has its spectrum contained in C -. Thus 

which implies XCW = X .  The selfadjointness of X T  then follows from (5.18). 0 

are selfadjoint operators on V @ W and W @ V, respectively. Thus the spectra of A x  
and (Ax) *  are symmetric with respect to the real axis. 

6. Left and right quasi - canonical factorization 

In this section we give necessary and sufficient conditions for the existence of a 
right quasi-canonical factorization of the transfer function We of an extended PS- 
realization if We is assumed to have a left quasi - canonical factorization. 
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L e m m a  6.1. Let @* = (A*,B*,C*;V*, W*;Y)  be two extended PS-realizations 
such that u(A*) U u(A*,w) C C T .  Then there exists a unique pair (Q,Qw) of 
solutions of the Lyapunov equations 

(6.1) 

(6.2) Q W X  - A,twQwA-,w~ = -B+C-x , x E D(A- ,w) ,  

where Q E L(V-,V+), Qw E L(W-,W+), Q[D(A-)] c D(A+), and C-+ and & are 
defined in terms of the &ended PS-realizations @-+ in Proposition 3.3 and in (3.5), 
respectively. This pair of solutions is  given by 

A+Qx - QA-x = -B+C-X , x E V ( A - )  ; 

Moreover, Qrz = rQwz for  z E D(A-,w).  

Proof.  Let (Q,Qw) be a solution. Then replace z by eiaA-z with s > 0 in (6.1) 
while using the invariance of D(A-) under eiaA- , and premultiply the whole expression 
by i e-iaA+ while using the invariance of D(A+) under e-aaA+ , yielding 

i e-iaA+A+QeiaA-z - e-iaA+QA-e18A-z} = - i ,-iaA+ B+C-eiaA-z, - { 
where z E D(A-).  Hence for r > 0 we have 

QeirA-= = -i e - i a A + ~  + C - eiaA- X ~ S ,  I' Qx - e--("A+ 

so that 
e-'aA+B+C-ei*A-zds. 1" QX = -i 

Thus 

and we may conclude that Q extends uniquely to an operator in L(V-,V+). 

-AT'B+C-T-X = -r+B+C-x = r+Qwz - AT'r+QwA-,wx , 

Qz = -ir+I'e+Ae-z,  x E D(A-) , 

In a similar manner, let x E D(A-,w) satisfy (6.2). Then 7-2 E D(A-) and 

so that r+Qwz E D(A+). Then A+r+Qwz = -B+C-r-z + ~+QwA-,wz  and 
therefore Q w z E D (A+,  W )  , and hence 

A+T+Qwz - T+QwA-,wx = -B+C-X. 

Then replacing z by eiaA-sw z with s > 0, premultiplying the resulting expression by 
i e-iaA+ , we obtain by integration 

7+QWz - e-'rA+r+QWeirA-.wz = -i e-'aA+B+C-eiaA-.Wzds 1' 
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which implies (6.4) for x E 'D(A-,w). Observing that 

Qwx = -ire+Ae-T-x , x f D(A-,w) , 

we get (6.4). 
Conversely, if (Q, Qw) is given by (6.3) and (6.4), the Lyapunov equations (6.1) and 

(6.2) are immediate. Further, T+QWX = QTX for x E D(A-,w). n 

Theorem 6.2. Let d* = (A*, B*, C*; V*, W f ;  Y )  be two extended PS-realiza- 
tions with a(A*)  U a(A*,w) c C F ,  and let 8 = (A,  B ,  C; V, W ;  Y )  be the product of 
8+ and 8 - .  I n  particular, 

we(X) = We+(A)We- (A) , E R, 

is a left quasi-canonical factorization. Let ( Q ,  Qw) be the unique pair of solutions of 
the Lyapunov equations (6.1), (6.2), i. e., 

A+Qx - QA-x = -B+C-X, x E D(A-) ; 
z E D(A-,w) Qwz - AT;WQWA-,WX = -B+C-X 

and let (P, Pw) be the unique pair of solutions of the Lyapunov equations 

(6.6) Pwx - ( A X , w ) - l ~ A f , w ~  = fi?C+z, x E D(A:,w) , 

where & and B+ are defined in tenns of the eztended P S  - recrlizations 8* in Pmpo- 
sition 313 and in (3.5), and 8: = T I ~ ( A ? ) - ~ B -  E L(Y,W-). Then We has a right 
quasi - canonical factorization 

(6.7) we(X) = We,(A)We,(X) , E R ,  

i f  and only if the operator I - QP is boundedly invertible on  V+ and the operator 
I - QwPw is boundedly invertible on W+, or, equivalently, i f  and only if the opemtor 
I-PQ is boundedly invertible on  V- and the opemtor I - h Q w  is  boundedly invertible 
o n  W - .  When this i s  the case, the factors We,,, and We, are given by the formulas 

(6.8) We, (A) = I + (C+Q + C-)(A - A-)-'(I - PQ)-'(-PB+ + B - )  ; 

(6.9) We,(A) = I + (c+ + C-P)(I  - QP)-'(A - A+)-'(B+ - QB-) , 

and their inverses a m  given by 

Proof. We split the proof into three parts. 
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Part (a). Let 8 = (A, B ,  C; V, W ;  Y) be the extended PS-realization with transfer 
function We constructed as the product of 8+ and 8-. Then, by Theorem 4.1, 

as well as 

and 

with 
00 

Fw( t ) z  = -irT1 E ( t  - 6; - iA+,w)B+C-E(s;  - i A - , w ) z d s ,  z E W- . 
J - w  

By the same token, if we depart from the factorization B x  = t??B:, we find in addition 

as well as 

with 

and 

with 

Now note that there is 
(a) a closed A-invariant subspace of V complementary to V+ @ (0), namely tllv 

Likewise, there exist 
(b) a closed Aw -invariant subspace of W complementary to W+ @ (0), 
(c) a closed A X  -invariant subspace of V complementary to (0) @ V_” , and 
(d) a closed A; -invariant subspace of W complementary to (0) @ W? . 

spectral subspace of A with respect to its spectrum in C _. 

Thus there exist 
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(a) Q E L(V-,V+) such that ( 2- ) leaves invariant D(A) and is A - invariant, 

(b) Qw E L(W-,W+) such that (7;) leaves invariant D ( A w )  and is Aw - 
invariant. 

(c) P E L(V+,V-) such that ('2) leaves invariant D ( A X )  = D(A)  and is A X  - 

(d) Pw E L(W+,W-) such that (2) leaves invariant D ( A L )  and is A& - 

Further, QT- = T+QW and PT+ = T-Pw. Moreover, since 

invariant, and 

invariant. 

D(A) = D ( A X )  = D(A+)  @D(A-)  = D(A:) @D(A:) ,  

we have Q [ D ( A - ) ]  C D(A+) and P[D(A+)] c D(A-). hrthermore, the Lyapunov 
equations (6.1) and (6.5) are satisfied. The identities QT- = T+QW and PT+ = T-PW 
then imply that the Lyapunov equations (6.2) and (6.6) are satisfied as well. 

Part (b). Now suppose We has a right quasi-canonical factorization. Then, by 

Theorem 5.2, the ranges of (2- ) and ('2) have a trivial intersection and add 

up to V, and the ranges of (2)  and (2) have a trivial intersection and add 

up to W .  Consequently, I - PQ, I - QP, I - PWQW and I - QwPw are boundedly 
invertible on V- , V+ , W- , and W+, respectively. 

Part (c). Conversely, let the operators Q E t(V-,V+), Qw E C(W-,W+), P E 
t (V+,  V7) and Pw E L(W+, W-)  be as in Part (a), and assume that I - QP is 
boundedly invertible on V+, and I - QwPw is boundedly invertible on W+. Then 

Im(;-)@Im(';) = v ,  I m ( ~ ) @ I m ( ~ )  = w .  

We then define the projection Il of V onto Im ('2) along Im( z-) and the pro- 

jection IIw of W onto Im ( 2 ) along Im ( 
(6.12) 

) . It is easily seen that 

ll = ( ' ; ) ( I  - QP)-l (I"+ - Q )  ; 

(6.13) 

(6.14) I - n  = ( ~ - ) ( I - P Q ) - ~ ( - P  I"- ) ;  

nw = (2) ( I  - QwPw1-l (Iw, - Q w )  ; 

(6.15) I - n w  = (2)  ( I  - PwQw)-' (-PW Iw-) . 
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Applying Theorem 5.1 we obtain the right quasi - canonical factorization (6.7), where 
dm = (Am,Bm,Cm;Vm,Wm;Y) with Vm = Kern, Wm = Kernw, Am (Vm -+ V,) 
and Cm E L(WmlY) the restrictions of A and C to Vm and Wm, respectively, and 
B, E L(Y, Vm) given by Bmz = (I - n)Bz, and where e, = (A,, Bp, C,; Vp, WpjY)  
with V, = Imn, W, = Imnw, A, (V, -+ V,), C, E L(W,,Y) and Bp E L(Y,V,) oven 
by A,s = IIAs for z E V,, C,x = Cz for s E W, and Bpz = nBz.  Observe that 
Vm is indeed A - invariant because of (6.1), and V, is AX - invariant because of (6.5). 
Likewise, the invariance of Wm under Aw follows from (6.2), while the invariance of 
W, under A& follows from (6.6). 

Let us now define the operators S E L(V-,KerII), Sw E L(W-,KerIIw), T E 
L(V+,Imll) and TW E ,C(W+,ImIIw) given by 

S = ( ' ) ,  IV- SW = ( Q w ) ,  Iw- T = (I?), Tw = (2). 
Then these four operators are boundedly invertible and their inverses are given by 

S-' = ( I - P Q ) - ' ( - P  I"-), 
T-' = ( I  - QP)-'(Iv+ 

S;' = ( I -PwQw)- ' ( -Pw I w - ) ;  
TG' = ( I  - Qw&)-'(Iw+ - Q )  , - Qw)  . 

Moreover, S[D(A-)] = D(Am), and T[D(A+)] = D(Ap). We find with the help of the 
four expressions (6.12) - (6.15) and the expressions for S, T, S-' and T-' that 

S-'AmS = A _ ,  T-'A,T = ( I  - QP)-'A+(I  - Q P )  
T-'B, = ( I  - QP)-'(B+ - QB-) S-'Bm = 

CmSw = C+Qw +C-  ; 
( I  - PQ)-'(-PB+ + B - )  , 

CpTw = C+ + C-qV . 

Using that Sr = rSw and Tr = rTw, we obtain in addition 

S;'Am,wSw = A-,w ; 
TG'Ap,wT = (I - QwPw)- 'A+,w(I-  QwSV). 

We thus find the right quasi - canonical factorization (6.7) where the factors me given 
by (6.8) and (6.9). The factors (6.10) and (6.11) are found by considering O x  = O;O:,. 

0 
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